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We present electron transport calculations of shocked argon based on an average-atom modeling of the
plasma and compare them with measurements, involving both incident and reflected shock waves. Since the
corresponding experiments are subject to a 5 T magnetic field, the impact of the latter on the Rankine-Hugoniot
equations is taken into account, starting from the magnetoresistive hydrodynamics, and the resistivity tensor
is deduced from the Boltzmann equation. The resistivity tensor yields the electrical and Hall resistivities. Our
average-atom code PARADISIO provides the quantities required for the calculation of electrical resistivity within
the Ziman-Evans formalism, as well as for the Hall resistivity. We obtain good agreement between calculated
conductivities and experimental values, both for the incident and reflected shocks. Our values of the Hall constant
are compared to experimental values derived from Hall voltage measurements, as well as to theoretical ones
based on the quantum statistical linear-relaxation-time approach.
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I. INTRODUCTION

Argon is the most abundant noble gas on Earth, and is
also present in the atmosphere of gaseous giant planets [1–3].
Understanding the physics of the latter requires accurate
equations of state (EOS), as well as theoretical transport co-
efficients for this element. More generally, argon is also an
ideal candidate for theoretical studies of warm dense matter
(WDM), due to its high ionization energy (15.76 eV [4], only
surpassed by He, F, and Ne). As a result, argon remains in
partially ionized states over wide density and temperature
ranges. Partial ionization is one of the main features of WDM,
and the determination of the free-electron density ne is of
particular importance under these conditions. Experiments
are also essential as reference points for WDM theoretical
models.

Experiments involving noble gas plasmas, including He,
Ne, Ar, Kr, and Xe, have been conducted over the last 30
years using explosively driven shock wave plasmas. Noble
gas plasmas were created with temperatures T of 6000–105 K
and densities of 0.001–10 g/cm3 [5–7]. The direct current
(dc) conductivity was measured in each experiment. In the
most recent experiments by Shilkin et al. [7], shock-loading
experiments have been realized in the presence of magnetic
fields for Xe and Ar, providing measurements of the Hall
voltage. The latter are expected to be a more direct diagnostic
tool for ne than electrical conductivity.

To properly describe transport properties of dense plasmas,
a consistent quantum statistical description of electronic struc-
ture is necessary. Adams et al. used an approach based on
linear response theory (LRT) as proposed by Zubarev [8,9], to
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describe transport properties in terms of force-force correla-
tion functions calculated within perturbation theory [10–13].
This model enables a complete description of partially ionized
plasmas, accounting for electron interactions with other elec-
trons, with different ionic species (carrying different charges
Z = 1, 2, . . .) and with neutral argon atoms. To the best of our
knowledge, to date their work represents the most complete
theoretical study of the transport properties in argon under
these very weak ionization conditions.

In this paper, we present an alternative study based on
the use of the average-atom method to derive a collision fre-
quency between electrons and a mean ion, whose low charge
is representative of the average charge carried by the actual
various ion species. This approach avoids the difficulties of
calculating the actual plasma composition and of modeling
different collision frequencies between electrons and numer-
ous species composing the plasma. Electron-ion collisions are
easily obtained with the T -matrix formalism. As far as we
know, there are few theoretical models for the electron-neutral
collision frequency under the conditions reached in the exper-
iments carried out by Shilkin et al. on argon.

Average-atom models are commonly used for dc electri-
cal resistivity calculations within the Ziman-Evans formalism
(see, for instance, Refs. [14–19]), which was extended to
other electron-transfer coefficients for the fully ionized, fully
degenerate hydrogen plasma [20].

The main features of Ziman’s formalism for conductivity
are recalled in Sec. II, as well as the way the required quanti-
ties are derived from our average-atom code PARADISIO, also
described within this section.

Section III opens with a brief description of the shock-
loading experiments of Shilkin et al. on argon. Starting
from the magnetohydrodynamics equations, the Rankine-
Hugoniot relations in presence of a magnetic field are derived.
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The Rankine-Hugoniot equations relate the thermodynamical
conditions behind the shock wave to the incident ones. In the
presence of an external magnetic field, the relation between
an applied electric field and the induced electric current is
tensorial. We recall the main steps leading to the resistivity
tensor, starting from the Boltzmann equation.

Section IV presents our numerical electrical conductiv-
ity and Hall resistivity calculations in the conditions of the
experiments of Shilkin et al. Our results are compared to
experimental values and, concerning Hall effect, to other the-
oretical results.

In Sec. V, we focus on comparisons with the LRT Hall
constant calculations of Adams et al. The relevance of
average-atom methods for these calculations in partially ion-
ized plasmas is discussed, before finally concluding this paper
by a brief summary (Sec. VI).

II. CALCULATION OF ELECTRICAL RESISTIVITY IN
THE FRAMEWORK OF THE AVERAGE-ATOM MODEL

A. The Ziman-Evans formulation

The Ziman resistivity formula [21] reads

η = − 1

3πZ∗2ni

h̄

e2

∫ ∞

0

∂ f

∂ε
(ε, μ∗)I (ε)dε, (2.1)

where ni is the ion density, Z∗ the mean ionic charge, μ∗ the
chemical potential. f (ε, μ∗) is the Fermi-Dirac distribution
function,

f (ε, μ∗) = 1

1 + eβ(ε−μ∗ )
, (2.2)

where β = 1/(kBT ), kB denoting the Boltzmann constant. To
be consistent with the uniform electron gas (UEG) assumption
underlying the Ziman theory, the chemical potential μ∗ is
given by

Z∗ni =
√

2

π2β3/2
F1/2(βμ∗), (2.3)

where

F1/2(x) =
∫ ∞

0
dt

t1/2

et−x + 1
(2.4)

defines the Fermi function of order 1/2. The function I (ε) is
related to the scattering cross-section �(q) and to the ion-ion
structure factor S(q) by

I (ε) =
∫ 2k

0
q3S(q)�(q)dq, (2.5)

where �q = �k′ − �k is the momentum transferred in the elastic
scattering event, (i.e., in which |�k′| = |�k|). Introducing the
scattering angle θ ≡ (�k, �k′), one has q2 = 2k2(1 − χ ), where
χ = cos θ , and one gets then the following expression in-
troducing the squared modulus of the scattering amplitude
|a(k, χ )|2:

I (ε) = 2k4
∫ 1

−1
S[k
√

2(1 − χ )]|a(k, χ )|2(1 − χ )dχ. (2.6)

|a(k, χ )|2 is provided by the T -matrix formalism of Evans
[22] which reads, in the relativistic formalism underlying our

average-atom code PARADISIO [15,23],

|a(k, χ )|2 = 1

k2

⎛
⎝
∣∣∣∣∣
∑

κ

|κ|eiδκ (k) sin[δκ (k)]P�(χ )

∣∣∣∣∣
2

+
∣∣∣∣∣
∑

κ

|κ|
iκ

eiδκ (k) sin[δκ (k)]P1
� (χ )

∣∣∣∣∣
2
⎞
⎠, (2.7)

where κ = −(� + 1) for j = � + 1/2, κ = � for j = � − 1/2,
� being the usual orbital quantum number. P� and P1

� are the
Legendre and associated Legendre polynomials. Finally, the
quantities δκ (k) denote the scattering phase-shifts.

In the present paper, the mean ionic charge Z∗ and the
scattering phase-shifts δκ (k) are provided by the average-atom
code PARADISIO. Outputs from this code are also used to build
the ion-ion structure factor S(q).

B. The average-atom model PARADISIO

Atomic units where e = h̄ = me = 1, and where the veloc-
ity of light c = 137.036 is the inverse of the fine structure
constant α = e2/(8πε0aB), aB being the Bohr radius and ε0

the permittivity of vacuum, are used throughout this section.
The PARADISIO [23] code is based on Liberman’s rela-

tivistic quantum-average-atom model INFERNO [24], which
considers the atom as a point nucleus surrounded by its Z
electrons, placed at the center of a spherical cavity of radius
Rws dug into a jellium. The Wigner-Seitz radius Rws reads

Rws =
(

3

4π

A/NAvo

ρ

)1/3

, (2.8)

with ρ, A, and NAvo denoting, respectively, the mass density,
molar mass and Avogadro number.

The jellium consists of a uniform electron gas and a uni-
form distribution of positive charges that ensures its electrical
neutrality. The INFERNO model also imposes electrical neu-
trality inside the cavity. The electronic structure is computed
in a self-consistent way. The only required parameters are
atomic number Z , molar mass A, mass density ρ, and tem-
perature T .

In this spherical symmetry, the one-electron wave func-
tions, solutions of the Dirac equation, are of the form

ψs(�r) ≡ ψ j�m(�r) =
(

1
r F (r)� j�m(θ, φ)

− i
r G(r)� j�′m(θ, φ)

)
, (2.9)

where � j�m and � j′�m are two spinors. j, �, and m are quantum
numbers associated, respectively, to the total angular momen-
tum J , to the orbital angular momentum L, and its projection
Lz on the z axis. The quantum number �′ is given by

�′ =
{
� + 1 if j = � + 1/2

� − 1 if j = � − 1/2.
(2.10)

The Dirac equation then reduces to the following equa-
tions satisfied by the radial functions F (r) and G(r):{

dF
dr = − κ

r F (r) − Veff (r)−c2−ε

c G(r)
dG
dr = Veff (r)+c2−ε

c F (r) + κ
r G(r),

(2.11)
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where {
κ = −(� + 1) for j = � + 1/2

κ = � for j = � − 1/2.
(2.12)

Outside the cavity, the effective potential Veff (r) is constant
and given by

V∞ = μxc[n̄, T ], (2.13)

with n̄ denoting the density of the jellium.

n =
√

2

π2β3/2
F1/2(βμ), (2.14)

with the Fermi function F1/2(βμ) expression given in
Eq. (2.4). μxc[n, T ] is the electron exchange-correlation po-
tential functional evaluated at the UEG density n and at
temperature T . PARADISIO uses the finite temperature func-
tionals of the KSDT form [25] with revised parameters from
Groth et al. [26].

The model imposes F (r) = G(r) = 0 at r = 0 and r →
∞. Outside the cavity, the radial functions F oc(r) and Goc(r)
(the superscript oc stands for outside cavity) satisfying those
boundary conditions are, for bound states (i.e., for energies
ε < V∞), modified Bessel functions of the third kind [27],
exponentially decreasing,

ε < V∞ :

{
F oc

b (r) = a0
kc

V∞−ε
rK�+1/2(kr)

Goc
b (r) = a0rK�′+1/2(kr),

(2.15)

and, for free states, (i.e., for energies ε � V∞), combinations
of Bessel functions of the first and second kinds, with decreas-
ing amplitudes as r → ∞,

ε � V∞:

{
F oc

f (r) = b0
kc

ε−V∞
r[cos(δκ ) j�(kr) − sin(δκ )n�(kr)]

Goc
f (r) = b0r[cos(δκ ) j�′ (kr) − sin(δκ )n�′ (kr)],

(2.16)

where a0 and b0 are two normalization factors. PARADISIO

then only needs to solve Eq. (2.11) inside the cavity. The
continuity condition at the cavity radius r = Rws is only pos-
sible for discrete values of the energies ε < V∞, yielding the
bound states. The matching of inside and outside solutions is
possible at any energy ε � V∞ by adjusting the phase shifts
δκ (k), giving the continuum of free states.

The electronic density n(r) is then obtained by

n(r) =
∑

b

∑
κ

2|κ| [Fb(r, κ, εb)2 + Gb(r, κ, εb)2]

+
∫ ∞

0
dε
∑

κ

2|κ| [Ff (r, κ, ε)2 + Gf (r, κ, ε)2].

(2.17)

The number Zbound of bound electrons and the number Zcont of
continuum ones, respectively, read

Zbound =
∑

b

f (εb, μ)
∑

κ

2|κ|

×
{∫ Rws

0
[Fb(r, κ, εb)2 + Gb(r, κ, εb)2] r2dr

}
(2.18)

2.4 2.6 2.8 3 3.2 3.4 3.6
D (km/s)

10-5

10-4

10-3

10-2

10-1

Z*

Z* = Zcont
Z* = Zfree

incident shock wave

reflected shock wave

FIG. 1. Argon mean ion charge Z∗ in the conditions of the shock
experiments of Shilkin et al. from our average-atom code, using two
widely used definitions. Z∗ = Zcont, is the one based on the contin-
uum density of states, giving the values represented by the circles.
The squares correspond to Z∗ = Zfree, i.e., the number deduced from
the jellium’s density of states. The data relative to the incident shock
waves are presented in red, and those corresponding to the reflected
shocks in black. D denotes the shock speeds.

and

Zcont =
∫ ∞

0
dε f (ε, μ)

∑
κ

2|κ|

×
{∫ Rws

0
[Ff (r, κ, ε)2 + Gf (r, κ, ε)2] r2dr

}
.

(2.19)

The chemical potential μ is obtained from the charge neutral-
ity condition Z = Zbound + Zcont inside the cavity.

C. Mean ionic charge and ion-ion structure factor from the code

The scattering phase shifts δκ (k) needed by the Ziman
formalism are obtained from the continuity condition on the
radial functions solutions of Eqs. (2.11) at the cavity radius
r = Rws for ε � V∞.

The formalism requires a value for the mean ionic charge
Z∗. In the framework of our average-atom approach, the use of
Zcont, given by Eq. (2.19) for this quantity seems obvious, as
does that of the one obtained from the jellium’s charge density,
denoted Zfree and reading

Zfree = n ×
(

4π

3
R3

ws

)
. (2.20)

The value of the chemical potential μ∗ required by the Ziman
formula is related to the value of Z∗ by Eq. (2.3).

In most situations, in particular, when the continuum of
energies is uniform electron-gas-like, the two values are close
and the impact of their difference on the Ziman resistivity
is limited, due to compensation by the chemical potential
[28]. In the case of argon in the thermodynamic conditions
investigated in the present paper, we found that Zcont ≈ Zfree

within a few percents (see Fig. 1). We also did not find qua-
sibound or quasi-free-states which would justify corrections
of Zcont as recommended in our previous work on low density
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metallic plasmas where such states occur [19]. All our resis-
tivity calculations were therefore performed with Z∗ = Zcont.

Electrical resistivity calculations within the Ziman ap-
proach are sensitive to the ion-ion structure factor S(q) mainly
in the WDM conditions. In a study on aluminum at solid
density and temperatures ranging from ambient one up to
100 eV, we showed the importance of equivalent modeling of
S(q) in the liquid and solid states [18]. Sophisticated models
are of less importance in hot plasmas, as well as in low
density ones [28]. In the present paper on argon, in which elec-
tronic densities remain very small (ranging from 1015 up to
1019 cm−3), we solve the Ornstein-Zernike equation together
with the hypernetted-chain closure relation for a system of
screened charged spheres [29].

III. SHOCK-LOADING EXPERIMENTS IN PRESENCE
OF A MAGNETIC FIELD

A. Description of Shilkin et al.’s experiments [7]

To simplify, the experimental device consists of an ap-
proximately 30-cm-long cylinder with an inner diameter of
5 cm, in which an explosive charge is placed in the first 12
up to 15 cm, and the studied gas in the remaining space.
Shock waves are formed by the expansion of the detona-
tion products in the gas. It has been checked, by a series of
separate experiments, that the shock is one-dimensional and
stationary at a distance of 5 up to 10 cm from the end of the
charge, which allows for a uniform plasma bunch of several
centimeters thick, sufficient for placing probe diagnostics. An
obstacle closes the cylinder, enabling shock reflection and
further compression and heating of the studied gas. A solenoid
is also wound around the cylinder, generating a magnetic field
B = 5 T aligned along the cylinder axis.

Diagnostic probes provide experimental shock velocities
D, electric resistance to an external electric current, and Hall
voltage induced by the applied magnetic field. Hall voltage
UHall is related to the Hall coefficient RHall by

RHall = h

Q

UHall

IB
, (3.1)

where I denotes the external electric current, h the plasma
thickness, and Q a geometric factor specific to the experimen-
tal device and determined in a series of separate experiments.
The Hall coefficient varies inversely to the electron density.
The latter may therefore be inferred from the Hall voltage
measurements.

B. Rankine-Hugoniot relations in absence of a magnetic field

1. Incident shock wave

In the following, the upstream (i.e., before the shock front)
thermodynamic conditions are denoted ρ0, T0, u0, and P0,
respectively, being mass density, temperature, mass internal
energy, and pressure. V0 corresponds to upstream mass ve-
locity and D to shock velocity. Downstream (i.e., beyond the
shock wave) thermodynamic conditions are ρH , TH , uH , and
PH , and the mass velocity VH (see Fig. 2). The Rankine-
Hugoniot jump conditions across a planar shock front consist
of three conservation relations. In the reference frame fixed to

FIG. 2. First shock wave, before reflection on the obstacle, rep-
resented in blue. Left: Description in the fluid frame, where the
upstream fluid velocity is V0 = 0. Right: Description in the shock
frame, where the shock velocity is zero.

the shock,

ρH (D − VH ) = ρ0(D − V0) (3.2)

is the first relation, expressing the mass conservation across
the shock front,

ρH (D − VH )2 + PH = ρ0(D − V0)2 + P0 (3.3)

is the momentum conservation law, and

1

2
(D − VH )2 + uH + PH

ρH
= 1

2
(D − V0)2 + u0 + P0

ρ0
(3.4)

the energy conservation equation. Inserting Eq. (3.2) into
Eq. (3.3) yields

(D − V0) =
[
ρH

ρ0

(PH − P0)

(ρH − ρ0)

]1/2

. (3.5)

Using this in Eq. (3.2) gives

(VH − V0) = (D − V0)

(
1 − ρ0

ρH

)
, (3.6)

and putting Eq. (3.5) in Eq. (3.4):

(uH − u0) + 1

2
(PH + P0)

(
1

ρH
− 1

ρ0

)
= 0. (3.7)

The latter equation, together with an equation of state u(ρ, T )
and P(ρ, T ), and under the condition that Eq. (3.5) is satisfied,
yields the thermodynamic conditions ρH , TH , uH , and PH

beyond the shock wave, and the value of the downstream
velocity VH as functions of the shock velocity D.

2. Reflected shock wave

In Shilkin et al.’s experiments, the shock wave encoun-
ters an obstacle, creating a reflected shock wave opposing
the shocked plasma moving at velocity VH (see Fig. 3).
The upstream conditions here correspond to the preceding
downstream one, i.e., we have ρ0 = ρH , T0 = TH , u0 = uH ,
P0 = PH , and V0 = VH . In the fluid frame, the reflected shock
velocity is (−D + VH ) (Fig. 3, left). We will here denote
the downstream quantities ρ, T , u, P, and V . Assuming that
the incident shock wave reflects perfectly on the obstacle,
the downstream velocity is V = −VH + VH = 0. Rankine-
Hugoniot relations then read, in the shock frame (Fig. 3 right),

ρ(D − VH ) = ρH D, (3.8)

ρ(D − VH )2 + P = ρH D2 + PH , (3.9)
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FIG. 3. Second shock wave, after reflection on the obstacle, rep-
resented in blue. Left: Description in the fluid frame, where the
upstream fluid velocity is V0 = −VH and the shock velocity −D +
VH , VH is the fluid velocity downstream the incident shock. Right:
Description in the shock frame, where the shock velocity is zero.

and

1

2
(D − VH )2 + u + P

ρ
= 1

2
D2 + uH + PH

ρH
. (3.10)

After performing the same operations as for the incident shock
wave case, we get

(u − uH ) + 1

2
(P + PH )

(
1

ρ
− 1

ρH

)
= 0, (3.11)

which, together with our EOS u(ρ, T ) and P(ρ, T ), and under
the constraint that

VH =
(

1 − ρH

ρ

)[
ρ

ρH

(P − PH )

(ρ − ρH )

]1/2

, (3.12)

yields the thermodynamic conditions ρ, T , u, and P beyond
the reflected shock wave, as functions of the upstream mass
velocity VH reach the incident shock downstream.

C. Impact of the external magnetic field
on Rankine-Hugoniot relations

Up to now, we did not take into account the existence of
the magnetic field present in Shilkin et al.’s experiments for
the need for Hall effect measurements. The magnetic field
interacts strongly with the plasma flow, and the Rankine-
Hugoniot relations must be revised within the framework of
magnetohydrodynamic theory.

The flow of a compressible, nonviscous heat-insulating
fluid in a magnetic field is described by a set of continuity rela-
tions [30], commonly referred to as Euler’s equations, coupled
to Maxwell’s relations. The first Euler equation expresses the
conservation of mass:

∂ρ

∂t
+ �∇ · (ρ �V ) = 0. (3.13)

The second relation is the actual Euler’s equation [31], and
expresses the conservation of momentum,

∂

∂t
(ρ �V ) + �∇ · (ρ �V ⊗ �V ) = −�∇P + �S, (3.14)

where �S denotes the external forces acting on the fluid. Alter-
nately, this conservation relation may also be written:

∂

∂t
(ρ �V ) + (ρ �V · �∇ ) �V = −�∇P + �S. (3.15)

�S is here the sum of the Lorentz forces acting on both electrons
and ions:

�S = �Fi + �Fe

= Z∗eni( �E + �Vi × �B) − ene( �E + �Ve × �B)

= ene( �Vi − �Ve) × �B, (3.16)

where the last equality results from the electrical neutrality
assumption Z∗ni = ne. Finally, introducing the current density
�J = ene( �Vi − �Ve):

�S = �J × �B. (3.17)

The energy conservation relation follows from the derivation
of two equations expressing the balance of the kinetic energy
and the internal energy components. The kinetic energy con-
servation equation reads [30]

∂

∂t

(
1

2
ρV 2

)
+ �∇ ·

[(
1

2
ρV 2

)
�V
]

= −�∇P · �V + W, (3.18)

W being the work produced by the Lorentz forces:

W = �Fi · �Vi + �Fe · �Ve = �E · �J. (3.19)

The derivation of a similar conservation relation for the
internal energy [30] starts by writing the first law of thermo-
dynamics,

dU = −Pd�, (3.20)

where U denotes the internal energy and � the volume. Intro-
ducing the mass internal energy u = U/me:

du

dt
= P

ρ2

dρ

dt
. (3.21)

Applying the relation

d

dt
= ∂

∂t
+ �V · �∇ (3.22)

to both sides of this equation, and using the mass conservation
Eq. (3.13) yields

∂u

∂t
+ �V · �∇u = −P

ρ
�∇ · �V . (3.23)

The internal energy balance equation is obtained by summing
the preceding equation multiplied by ρ and Eq. (3.13) multi-
plied by u:

∂

∂t
(ρu) + �∇ · (uρ �V ) = −P �∇ · �V . (3.24)

Finally, one gets, adding Eq. (3.18) [also using Eqs. (3.19)]
and (3.24),

∂

∂t

(
1

2
ρV 2 + ρu

)
+ �∇ ·

[(
1

2
ρV 2 + ρh) �V

)]
= �E · �J,

(3.25)
h denoting the mass enthalpy h = u + P

ρ
.
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The Maxwell equations read

∂ �B
∂t

= −�∇ × �E , (3.26)

�∇ × �B = μ0 �J,

�∇ · �B = 0,

�∇ · �E = 0, (3.27)

with μ0 = 4π10−7 H/m denoting the magnetic permeability.
The two first Eqs. (3.26) and (3.27) link electrical field �E ,
magnetic induction �B, and electric current density �J . Ohm’s
law provides the third relation necessary to obtain these quan-
tities. Assuming that Hall effects can be neglected (this point
will be verified later), Ohm’s law reads

�J = σ ( �E + �V × �B). (3.28)

Using Eq. (3.27):

�J × �B = �∇ × �B
μ0

× �B = −�∇
(

B2

2μ0

)
+ ( �B · �∇ ) �B

μ0
. (3.29)

The quantity on the right side of this equation is the diver-

gence �∇ · T em of the magnetic pressure tensor (also called the
Maxwell tensor),

T em = − B2

2μ0
I + �B ⊗ �B

μ0
, (3.30)

whose elements read

Ti j = − B2

2μ0
δi j + BiBj

μ0
. (3.31)

The momentum conservation Eq. (3.14) then reads

∂

∂t
(ρ �V ) + �∇ · (ρ �V ⊗ �V ) + �∇P

= −�∇
(

B2

2μ0

)
+ �∇ · ( �B ⊗ �B)

μ0
, (3.32)

or, alternately:

∂

∂t
(ρ �V ) + (ρ �V · �∇ ) �V + �∇P

= −�∇
(

B2

2μ0

)
+ ( �B · �∇ ) �B

μ0
. (3.33)

Let us here gather the equations that will be useful for our
further developments:

∂ρ

∂t
+ �∇ · (ρ �V ) = 0, (3.34)

∂

∂t
(ρ �V ) + (ρ �V · �∇ ) �V + �∇P = −�∇

(
B2

2μ0

)
+ ( �B · �∇ ) �B

μ0
,

(3.35)
∂

∂t

(
1

2
ρV 2 + ρu

)
+ �∇ ·

[(
1

2
ρV 2 + ρh) �V

)]
= �E · �J,

(3.36)

�J = σ ( �E + �V × �B). (3.37)

We will now consider the propagation of a planar shock in
a cylindrical shock tube surrounded by a solenoid. The latter

induces a magnetic field �B0 parallel to the cylindrical axis,
which we will identify to the z axis. The upstream conditions
will be denoted ρ1, P1, and h1 as concerns the density, the pres-
sure, and the enthalpy, the gas velocity and the magnetic field
being, respectively, �V1 = (0, 0,V1) and �B1 = (0, 0, B0). Their
downstream counterparts will be ρ2, P2, h2, �V2 = (0, 0,V2)
and �B2 = (0, 0, B2). We will also assume low upstream elec-
trical conductivity, i.e., σ1 ≈ 0, and the possibility of a strong
increase of this quantity inside the shock front. Therefore,
inside the shock, the gas velocity and magnetic field get com-
ponents parallel to the shock plane and read �V = (V||, 0,V⊥)
and �B = (B||, 0, B⊥), where the subscripts ⊥ and ||, respec-
tively, denote the components perpendicular and parallel to
the shock plane. The increase of the electrical conductivity
induces an electric current �J in the shock plane, which in
turn induces the parallel to the shock plane contribution to the
magnetic field. The relation between B|| and �J results from
Maxwell-Ampère equation (3.27) and reads

�J =
(

0,
1

μ0

∂B||
∂z

, 0

)
. (3.38)

Finally, assuming that the shock plane remains normal to the z
direction, all quantities involved in the problem are supposed
to vary only with z coordinate, i.e., ∂

∂x ≡ 0 and ∂
∂y ≡ 0. We

also consider stationary shock, i.e., ∂
∂t ≡ 0.

Introducing the notation [F]z0+δ
z0

= F (z0 + δ) − F (z0), z0

denoting the position of the upstream front and δ the shock
thickness:

[ρV ]z0+δ
z0

= 0, (3.39)

[ρV 2 + P]z0+δ
z0

=
∫ z0+δ

z0

[
− ∂

∂z

(
B2

2μ0

)
+ B⊥

μ0

∂B⊥
∂z

]
dz,

(3.40)[(
1

2
ρV 2 + h

)
V

]z0+δ

z0

=
∫ z0+δ

z0

(
1

μ0

∂B||
∂z

)[
1

σμ0

∂B||
∂z

− (V||B⊥ − V⊥B||)
]

dz.

(3.41)

Maxwell relation �∇ · �B = 0 yields ∂B⊥
∂z = 0, and the second of

the above equations becomes[
ρV 2 + P +

(
B2

||
2μ0

)]z0+δ

z0

= 0. (3.42)

When the electrical conductivity σ inside the shock remains
low, the above equations reduce to the usual Rankine-
Hugoniot jump relations (3.2)–(3.4), applicable to shock
propagation in absence of any magnetic field. Indeed, in that
situation, no electric current can appear and, consequently,
∂B||
∂z = 0. Shilkin et al. asserted that this is the case for their

direct shock experiments on argon.
At the opposite, they claim that all of their reflected shocks

are ionizing, and that electrical conductivities inside these
shocks are then high enough to reach the conditions for
“frozen-in” magnetic fields. Let us consider the extreme case
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of infinite electrical conductivity σ . We then have then

1

σμ0

∂B||
∂z

 −(V||B⊥ − V⊥B||), (3.43)

and also B|| � B⊥, yielding V||B⊥ − V⊥B|| ≈ −V⊥B||.
The electric field inside the shock is �E = − �V × �B ≈
(0,−V⊥B||, 0). Applying Maxwell relation �∇ × �E = 0,
one obtains that V⊥B|| is constant across the shock front. The
jump relations in the limit σ → ∞ then read

[ρV ]z0+δ
z0

= 0, (3.44)

[B||V ]z0+δ
z0

= 0, (3.45)[
ρV 2 + P +

(
B2

||
2μ0

)]z0+δ

z0

= 0, (3.46)

[(
1

2
ρV 2 + h + B2

||
μ0

)
V

]z0+δ

z0

= 0. (3.47)

Since the gas velocities �V are taken at their upstream and
downstream values (that are parallel to the z axis), V⊥ has been
replaced by V in these equations. The two first relations can
also be gathered to give[

B||
ρ

]z0+δ

z0

= 0. (3.48)

The equality [ρV ]z0+δ
z0

= [B||V ]z0+δ
z0

is at the origin of the ex-
pression “frozen-in” magnetic field, since the evolution of B||
follows exactly the one of the mass, as if magnetic lines are
attached to matter.

σ is the key quantity that governs the evolution of the mag-
netic field inside the shock front. Using Eqs. (3.26)–(3.27),
one gets the following induction equation:

∂ �B
∂t

= −�∇ × �E = −�∇ ×
(

�J
σ

− �V × �B
)

= − �∇ × ( �∇ × �B)

μ0σ
+ �∇ × ( �V × �B). (3.49)

The first term in the right member of the latter equation de-
scribes diffusion of the magnetic field, and the second term its
advection by the fluid’s motion.

The magnetic Reynolds number, defined as the ratio

Rm ≡ | �∇ × ( �V × �B)|
|η �∇2 �B| , (3.50)

measures the relative importance of advection and diffusion
of the magnetic field. The parameter η = 1

μ0σ
(units: m2/s) is

the magnetic diffusivity. Rm is of the order of

Rm ≈ V B/Ladv

η/L2
dif

, (3.51)

where Ladv and Ldif are characteristic length scales for, respec-
tively, advection and diffusion phenomena. In the absence of
a shock wave perturbing the magnetized fluid, the two lengths
may be considered equal, and the Reynolds number is given
by the formula Rm = μ0σV L.

In the presence of a shock wave, the typical advection
length is the thickness δ of the shock front, while the char-
acteristic diffusion length is the dimension of the material
through which the magnetic field passes, in the case of
Shilkin’s experiments the diameter d of the cylinder contain-
ing the argon gas. We therefore write the Reynolds number in
the context of shock experiments as

R∗
m = V B/δ

η/d2
= μ0σV

d2

δ
. (3.52)

From Shilkin et al.’s paper [7], we estimate typical velocity
V ≈ 2.5 km/s and note experimental electrical conduc-
tivities 1 (�m)−1 � σ � 103 (�m)−1, downstream incident
shock wave, and 103 (�m)−1 � σ � 104 (�m)−1 behind the
reflected shock wave. Experimentally, the shock thickness for
argon at Mach numbers lying between 2 and 11 is in the range
3.7 mm � δ � 5.5 mm [32–34]. Retaining δ = 5 mm, and
the diameter d = 5 cm of the cylindrical experimental device
containing the argon gas, we get 0.16 × 10−2 � R∗

m � 0.16
downstream the incident shock wave, and 0.16 � R∗

m � 16
behind the reflected one. These latter values are consistent
with Shilkin et al.’s assertion that the magnetic field is frozen-
in in their reflected shock experiments. We therefore introduce
the magnetic pressures and mass internal energies in the
Rankine-Hugoniot relations for the reflected shock. Noting,
respectively, B and B0 the magnetic induction downstream and
upstream the reflected shock wave, they read [35–39]

ρ(D − VH ) = ρH D, (3.53)

ρ(D − VH )2 + P + B2

2μ0
= ρH D2 +

(
PH + B2

0

2μ0

)
, (3.54)

and

1

2
(D − VH )2 + u + P

ρ
+ B2

μ0ρ
= 1

2
D2 + uH + PH

ρH
+ B2

0

μ0ρH
.

(3.55)

The jump relation relative to the magnetic fields reads

ρ0BH = ρH B0. (3.56)

D. Derivation of the resistivity tensor
from the Boltzmann theory

In the presence of a magnetic field, Ohm’s law is no longer
linear. The electric current and electric field are then related
by the conductivity tensor σ ,

�J = σ �E ⇔ �E = η �J, (3.57)

where we have introduced the resistivity tensor η, i.e., the
inverse of the conductivity tensor. The conductivity tensor
derives from the Boltzmann transport theory, in terms of pow-
ers of the collision times. This will be the object of the first
subsection. In the second one, we will discuss the possibility
of calculating effective collisions times in the Ziman-Evans
average-atom approach used in our paper.

The Boltzmann equation for electron transport reads [40]

∂ fe

∂t
+ �v · �∇ fe − e( �E + �v × �B)

∂ fe

∂ �p = I[ fe], (3.58)
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where fe is the electron distribution function, �v the elec-
tron velocity, �p = me�v the electron momentum, and I[ fe] the
collision integral. In the context of electric conduction, it is
assumed that fe is independent of time, and that it varies in
space only through a possible temperature gradient, i.e., that

∂ fe

∂�r = ∂ f

∂T

∂T

∂�r . (3.59)

In the absence of such a gradient, the two first terms of the
left-hand side of the Boltzmann equation can then be dropped.
Another simplification consists of considering small perturba-
tions around the Fermi-Dirac distribution function Eq. (2.2):
fe = f (ε, μ) + δ f , with

δ f = −φ
∂ f (ε, μ)

∂ε
, (3.60)

introducing a quantity φ depending on the configuration vari-
ables. Using the equality

∂ f

∂ �p = �v ∂ f

∂ε
(3.61)

and only retaining the first order in φ, the Boltzmann equa-
tion then reduces to the following linearized form:

e�v · �E ∂ f

∂ε
− e[�v × �B]

∂ f

∂ε

∂φ

∂ �p = −L[I], (3.62)

L[I] denoting the linearized collision integral. Further writing
[41]

φ = �p.�ξ (ε), (3.63)

the linearized collision term takes the following form, in terms
of the collision time τ (ε):

L[I] = �ξ . �p 1

τ (ε)
. (3.64)

The linearized electron transport equation then reads [41]

e�v.[ �E + (�ξ × �B)] = −�ξ . �p 1

τ (ε)
. (3.65)

The most general decomposition of �ξ is as follows:

�ξ = αê + ζ b̂ + γ [ê × b̂], (3.66)

with b̂ = �B/B and ê = �E/E . Using this form in Eq. (3.65),
one gets (we have dropped the energy dependence of τ (ε) to
lighten the formulas)

α = −eE
τ

me
(
1 + ω2

cτ
2
) , (3.67)

ζ

α
= (ωcτ )2(ê.b̂), (3.68)

and
γ

α
= −ωcτ, (3.69)

where ωc = eB/me is the cyclotron frequency, and, finally
[41],

φ = − eτ

1 + (ωcτ )2
vi[δi j − ωcτεi jkbk + (ωcτ )2bib j]Ej .

(3.70)

The symbol εi jk represents the usual Levi-Civita one [42]:

εi jk =

⎧⎪⎨
⎪⎩

+1 if (i, j, k) is (1, 2, 3), (2, 3, 1), or (3, 1, 2)

−1 if (i, j, k) is (3, 2, 1), (1, 3, 2), or (2, 1, 3)

0 if i = j, or j = k, or k = i.
(3.71)

That is, εi jk is equal to 1 if (i, j, k) is an even permutation of
(1, 2, 3), to −1 if it is an odd permutation, and to 0 if any index
is repeated. The cyclic permutations of (1, 2, 3) are all even
permutations, similarly the anticyclic permutations are all odd
permutations. The derivation of the electric current vector �J
follows immediately. Its components are

Ji = 2

(2π )3

∫
eviδ f d3k = 2

(2π )3

∫
eviφ

∂ f

∂ε
d3k. (3.72)

Using Eq. (3.70),

Ji = σi jE j, (3.73)

where σi j are the components of the conductivity tensor that
read

σi j = δi jσ0 − εi jmbmσ1 + bib jσ2. (3.74)

When the magnetic field is along the z direction,

¯̄σ =
⎛
⎝σ0 −σ1 0

σ1 σ0 0
0 0 σ0 + σ2

⎞
⎠, (3.75)

where

σn = 4e2

3h3me

∫ ∞

0

p2

2me

τ (ωcτ )n

1 + (ωcτ )2

(
−∂ f

∂ε

)
4π p2d p (3.76)

or

σn = e2

3π2me

∫ ∞

0
k3 τ (ωcτ )n

1 + (ωcτ )2

(
−∂ f

∂ε

)
dε. (3.77)

The latter form can also be rewritten as

σn = e2ne

me

〈 τ (ωcτ )n

1 + (ωcτ )2

〉
, (3.78)

where〈
τ (ωcτ )n

1 + (ωcτ )2

〉
= 1

3π2ne

∫ ∞

0
k3 τ (ωcτ )n

1 + (ωcτ )2

(
−∂ f

∂ε

)
dε.

(3.79)
The resistivity tensor is the inverse of the conductivity one:

¯̄η =

⎛
⎜⎝

σ0

σ 2
0 +σ 2

1

σ1

σ 2
0 +σ 2

1
0

− σ1

σ 2
0 +σ 2

1

σ0

σ 2
0 +σ 2

1
0

0 0 1
σ0+σ2

⎞
⎟⎠. (3.80)

E. Resistivity tensor at the limit ωcτ � 1

One has, at order 2 in the expansion in (ωcτ ),

σ0 ≈ e2ne

me

(〈τ 〉 − ω2
c 〈τ 3〉)+ O

(
ω3

c

)
(3.81)

and

σ1 ≈ e2ne

me
ωc〈τ 2〉 + O

(
ω3

c

)
,
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which yields

σ0

σ 2
0 + σ 2

1

≈ me

e2ne

1

〈τ 〉
{

1 + ω2
c

( 〈τ 3〉
〈τ 〉 − 〈τ 2〉2

〈τ 〉2

)}
+ O

(
ω3

c

)
(3.82)

and

σ1

σ 2
0 + σ 2

1

≈meωc

e2ne

〈τ 2〉
〈τ 〉2

×
{

1 + ω2
c

(
2
〈τ 3〉
〈τ 〉 − 〈τ 2〉2

〈τ 〉2

)}
+ O

(
ω4

c

)
.

(3.83)

Noting that Eq. (2.1) can be rewritten,

η = me

nee2

〈 v

�(ε)

〉
, (3.84)

with 〈 v

�(ε)

〉
= 1

3π2ne

∫ ∞

0
k3 ∂ f

∂ε

v

�(ε)
dε, (3.85)

where �(ε) is related to I (ε) by

1

�(ε)
= πni

k4
I (ε), (3.86)

one gets a collision time τ (ε) from the data provided by our
average-atom code:

τ (ε) = �(ε)

v
. (3.87)

In the conditions of the experiments performed by Shilkin
et al. on argon, we calculated this way values of the order of
(in atomic units) 〈τ 〉 ≈ 5 × 102, 〈τ 2〉 ≈ 3 × 105 and 〈τ 3〉 ≈
3 × 108 for the shock velocity D=2.5 km/s. At the experi-
mental magnetic induction B = 5 T, the cyclotron frequency
is ωc ≈ 2 × 10−5a.u., which justifies the fact that the terms in
ω2

c inside the brackets can be neglected. Finally, since

1

σ0 + σ2
≈ me

e2ne

1

〈τ 〉 + O
(
ω5

c

)
, (3.88)

the resistivity tensor reads, in the conditions of Shilkin et al.
experiments,

¯̄η ≈

⎛
⎜⎝

1
σ

RHallB 0

−RHallB
1
σ

0

0 0 1
σ

⎞
⎟⎠+ O

(
ω2

c

)
, (3.89)

where RHall denotes the Hall coefficient, given by

RHall = 1

ene

〈τ 2〉
〈τ 〉2

. (3.90)

In other words, the tension measured along the x̂ direction in
these experiments gives the value of the electrical resistivity of
the plasma unperturbed by a magnetic field, which then can be
used for comparisons to calculations with the Ziman formula
(2.1).

F. Hall coefficient using the average-atom approach

Using Eqs. (3.87) and (3.86) in Eq. (3.90) yields

RHall = 1

ene
× 3π2ne

∫∞
0 k3

(− ∂ f
∂ε

)(
�
v

)2
dε[∫∞

0 k3
(− ∂ f

∂ε

)(
�
v

)
dε
]2 . (3.91)

The dimensionless Hall constant rHall is obtained by multiply-
ing RHall by ene, i.e., rHall = RHall × ene.

At both solid state and nondegenerate plasma limits, the
formula recovers the expected rHall = 1 value. In the former
case,

lim
T →0

(
−∂ f

∂ε

)
= δ(ε − εF ), (3.92)

yielding, using the equality k3
F = 3π2ne:

lim
T →0

rHall = (3π2ne)
k3

F τ 2(εF )

k6
F τ 2(εF )

= 1. (3.93)

The plasma electron degeneracy parameter is defined as the
ratio of thermal energy on Fermi energy:

� = kBT

εF
= 2me

h̄2

kBT

(3π2ne)2/3
. (3.94)

In the nondegenerate plasma limit � � 1:

−∂ f

∂ε
→ βe−β(ε−μ). (3.95)

βe−β(ε−μ)  1 and is a decreasing function of ε. Expanding
the scattering phase shifts δκ (k) and the ion-ion structure
factor S(k) in powers of k, and only retaining the first terms

δκ (k) ∝ k and S(k) ∝ k, (3.96)

I (ε) varies as k3 and �(ε) ∝ k. Then τ (ε) ≈ C + O(k), C
denoting a constant, and, at the lowest order in the expansion,

lim
��1

rHall = (3π2ne)

∫∞
0 k3

(− ∂ f
∂ε

)
C2dε[∫∞

0 k3
(− ∂ f

∂ε

)
Cdε

]2 = 1, (3.97)

using the equality
∫∞

0 k3(− ∂ f
∂ε

)dε = 3π2ne.
The value rHall = 1 is also predicted in the strong magnetic

fields (ωcτ � 1). Indeed, at order 4 in the expansions in
1/(ωcτ ),

σ0 ≈ e2ne

me

1

ω2
c

(〈1
τ

〉
− 1

ω2
c

〈 1

τ 3

〉)
, (3.98)

σ1 ≈ e2ne

me

1

ωc

(
1 − 1

ω2
c

〈 1

τ 2

〉)
, (3.99)

which yield, only retaining the most important term when
calculating the ratio σ1

σ 2
0 +σ 2

1
:

lim
ωcτ�1

rHall = 1 − 1

ω2
c

(〈1
τ

〉2
−
〈 1

τ 2

〉)
. (3.100)

IV. ELECTRICAL CONDUCTIVITY AND HALL
RESISTIVITY OF SHOCKED ARGON: CALCULATIONS

A. Description of our plasma equation-of-state model

The solution of the Rankine-Hugoniot relations requires
the knowledge of the equation of state. Estimations of the
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TABLE I. Parameters entering the OCP plasma model for the
ionic contribution to the equation of state [see Eq. (4.4)].

k ak bk

1 −0.895929 4.666486
2 0.11340656 13.675411
3 −0.90972827 1.8905603
4 −0.11614773 1.0277554

downstream temperature TH request U (ρ, T ) and P(ρ, T ).
To this end, we build an equation-of-state model for argon
according to the decomposition:

U (ρ, T ) = Uc(ρ) + Ui,th(ρ, T ) + Ue,th(ρ, T )

P(ρ, T ) = Pc(ρ) + Pi,th(ρ, T ) + Pe,th(ρ, T ). (4.1)

Uc(ρ) and Pc(ρ) denote the 0 K isotherms, also named cold
curves. Ue,th(ρ, T ) and Pe,th(ρ, T ) are the electronic thermal
contributions, obtained by removing the T = 0 K electronic
energies and pressures from the total electronic ones:{

Ue,th(ρ, T ) = Ue(ρ, T ) − Ue(ρ, 0)

Pe,th(ρ, T ) = Pe(ρ, T ) − Pe(ρ, 0).
(4.2)

Ue(ρ, T ) and Pe(ρ, T ) are calculated with our average-atom
code PARADISIO. The cold contributions Uc(ρ) and Pc(ρ) are
the ones of the SESAME equation of state SESAME 5172 of
argon [43,44]. SESAME 5172 incorporates the physics of six
theoretical models. It provides very good agreement with ex-
perimental shock data in the very low density range (initial
density: ρ0 = 1.34 × 10−3 g/cm3) [43,45], thereby justifying
our choice of these cold contributions. A more recent SESAME

5173 model [44] was developed to improve agreement with
high-pressure Hugoniot (above 90 GPa) as well as with low-
temperature data for fluid and solid argon, including phase
boundaries, i.e., in areas outside the scope of our paper. Fi-
nally, the one-component plasma (OCP) model [46] is used
for the thermal ionic contributions,{

Ui,th(ρ, T ) = ρkBT + ρ

3 �Ui(ρ, T )

Pi,th(ρ, T ) = 3
2 kBT + �Ui(ρ, T ),

(4.3)

where

�Ui(ρ, T )

kBT
= min

([
�3/2

4∑
k=1

ak

(bk + �)k/2
− a1�

]
,

3

2

)
,

(4.4)
� being the usual ionic coupling parameter:

� = Z∗2

(kBT )Rws
. (4.5)

The values of the parameters ak and bk are given in Table I:

B. Thermodynamic conditions reached in the shock
experiments of Shilkin et al.

Table II gives the thermodynamic conditions ρH , TH , and
PH obtained from solving the Rankine-Hugoniot relations,
and using our EOS model for argon, for each experimental
shock velocities D provided by Shilkin et al. Before the initial

TABLE II. First part of the table: Principal Hugoniot. The initial
matter velocity is V0 = 0. Second part: After the reflected shock
wave, assuming frozen-in magnetic field lines. The initial matter
velocities V0 are the velocities VH reached on the principal Hugoniot.
Since the shock is totally reflected on the obstacle, the downstream
mass velocity is the opposite of V0 and therefore VH − V0 = 0.

D − V0 ρH TH PH VH − V0

(km/s) (g/cm3) (K) (GPa) (km/s)

Principal Hugoniot (V0 = 0)

2.53 2.457 ×10−2 5199 2.945 ×10−2 1.912
2.56 2.461 ×10−2 5315 3.016 ×10−2 1.936
2.63 2.468 ×10−2 5541 3.153 ×10−2 1.980
2.85 2.500 ×10−2 6498 3.748 ×10−2 2.166
2.91 2.510 ×10−2 6757 3.915 ×10−2 2.216
2.97 2.523 ×10−2 7000 4.077 ×10−2 2.264
3.20 2.588 ×10−2 7944 4.763 ×10−2 2.458
3.27 2.613 ×10−2 8223 4.985 ×10−2 2.519
3.40 2.664 ×10−2 8737 5.418 ×10−2 2.634
3.51 2.712 ×10−2 9159 5.802 ×10−2 2.734

Behind the reflected shock wave, with B = 5 T
(V0 : previous VH values)

2.53 6.357 ×10−2 10423 1.600 ×10−1 0
2.56 6.413 ×10−2 10564 1.638 ×10−1 0
2.63 6.537 ×10−2 10897 1.728 ×10−1 0
2.85 6.945 ×10−2 11875 2.027 ×10−1 0
2.91 7.063 ×10−2 12141 2.115 ×10−1 0
2.97 7.191 ×10−2 12407 2.210 ×10−1 0
3.20 7.753 ×10−2 13429 2.624 ×10−1 0
3.27 7.942 ×10−2 13740 2.762 ×10−1 0

shocks, argon is assumed to be at ambient temperature T0 =
300 K and at pressure P0 = 0.4 MPa [7]. According to our
EOS, these conditions imply that the initial argon gas density
is ρ0 = 6 × 10−3 g/cm3.

Figures 4–6 display, respectively, the density, tempera-
ture and pressure as functions of the shock velocity in the
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D (km/s)
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Shilkin et al.
this work (neglecting B)
this work (B=5 T)

incident shock wave

reflected shock wave

FIG. 4. Density versus shock velocity on the principal (incident
shock wave) and secondary (reflected shock wave) Hugoniot curves.
Comparison between our results without magnetic field, with a mag-
netic field B = 5 T, and the experiments of Shilkin et al. [7].
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FIG. 5. Pressure versus shock velocity on the principal (incident
shock wave) and secondary (reflected shock wave) Hugoniot curves.
Comparison between our results without magnetic field, with a mag-
netic field B = 5 T, and the experimental values [7].

conditions of the shock experiments of Shilkin et al. [7]. The
crosses represent experimental values: in red for the initial
shocks and in black for the reflected ones. The lines, with
the same color code, correspond to our calculations of the
conditions reached in these experiments. For the reflected
shocks, we present two results: one obtained when the mag-
netic field is absent in the Rankine-Hugoniot equations (black
full line) and the other when taking into account the field
B = 5 T (black dashes). The former case supposes that the
reflected shocks do not ionize the argon plasma enough to
ensure frozen-in magnetic lines, whereas the latter considers
that ionization is strong enough to fully get this effect. Our
results assuming the frozen-in applied B = 5 T magnetic field
present the closest agreement with the experimental densities
and pressures. The agreement is particularly improved con-
cerning the densities (see Fig. 4). The temperature reached
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Shilkin et al.
this work (neglecting B)
this work (B=5 T)

incident shock wave

reflected shock wave

FIG. 6. Temperature versus shock velocity on the principal (inci-
dent shock wave) and secondary (reflected shock wave) Hugoniot
curves. Comparison between our results without magnetic field,
with a magnetic field B = 5 T, and the calculated values of Shilkin
et al. [7].
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FIG. 7. Electrical conductivity versus shock velocity on the prin-
cipal (incident shock wave) and secondary (reflected shock wave)
Hugoniot curves. Comparison between our results without magnetic
field, with a magnetic field B = 5 T, and the experiments of Shilkin
et al. [7].

downstream the shock waves was not measured by Shilkin
et al. The values (crosses) presented in Fig. 6 are theoretical
and noticeably higher than our own theoretical values. These
discrepancies are due to different equation-of-state models,
the temperature being particularly sensitive to them.

C. Electrical conductivity and Hall coefficient of shocked argon:
Comparison between experiment and theory

Figure 7 represents conductivity calculations of argon for
incident and reflected shock waves compared to the mea-
surements by Shilkin et al. The calculated conductivities are
the inverse of the resistivities obtained with Eq. (2.1), us-
ing the phase shifts and mean ionic charges given by the
average-atom code PARADISIO for argon at the densities ρH

and temperatures TH given in Table II. The color code is the
same as in Figs. 4–6. We observe global good agreement with
experimental values, both for the incident and reflected shock
waves. For the latter ones, we present results obtained when
the magnetic field is taken into account or not in the shock
equations. They differ only slightly, despite fairly different
upstream densities (see Fig. 4).

Hall effect in plasmas has been investigated using
transport-equation theories, mainly in the nondegenerate
limit. These approaches consider interaction between individ-
ual species composing the plasma, while our average-atom
one describes electrons interacting with others and with mean
ions through a mean field. The most accurate models include
electron-electron and electron-neutral atom collisions in addi-
tion to electron-ion ones. Table III gives the Hall constant val-
ues obtained in the nondegenerate limit according to the colli-
sion terms taken into account by the transport-equation mod-
els, and compares them with our mean-atom result. More
details on these models are given in the following text.

The electrical and thermal conduction of fully ionized
plasma, (i.e., a plasma formed of electrons and ions, with
no neutral atoms) has been studied by Spitzer and Härm in
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TABLE III. We compare our calculated Hall constant value to the
ones obtained with transport-equation approaches in the case of non-
degenerate electrons. The crosses indicate the collision terms taken
into account in different models. Our average-atom (AA) result is
close to the Braginskii and the LRT (linear response theory) number
2 ones accounting for direct electron-electron interactions, as well as
to the LRT 3 one that also includes electron-neutral atom collisions.

NONDEGENERATE LIMIT

Included collision terms Hall constant

Model e-i e-e e-n rHall

Braginskii [48] × × 1.207
Lee and More [49] × 1.9328
Stygar et al. [50] × 1.9328
LRT 1 [11,13] × 1.933
LRT 2 [11,13] × × 1.199
LRT 3 [11] × × × � 1.5

Our paper mean collision time 1.25
(� = 1000) (AA and T matrix)

the classical low density limit within kinetic theory [47]. The
linearized Fokker-Planck kinetic equation is solved with a
Landau collision integral including both electron-ion (e-i) and
electron-electron (e-e) collisions.

Braginskii introduced the magnetic field in this approach,
extending it to the Hall effect [48]. An expression has been
established for the Hall resistivity ηHall = RHallB in terms of
powers of (ωcτ ):

ηHall = B

ene
+ me

e2neτ

[
(ωcτ )(α′′

0 + α′′
1 (ωcτ )2)

δ0 + δ1(ωcτ )2 + (ωcτ )4

]
. (4.6)

At the limit ωcτ  1, the Braginskii Hall constant rHall reads

rHall = ene × RHall = 1 + α′′
0

δ0
. (4.7)

The Lorentz plasma is a plasma with highly ionized ions, no
neutral atoms, and in which electron-electron collisions can be
neglected. For that plasma, Braginskii calculates α′′

0 = 0.094
and δ0 = 0.0961, yielding rZ�1

Hall = 1.978. When the atoms are
only once ionized: α′′

0 = 0.7796, δ0 = 3.7703, and rZ=1
Hall =

1.207.
Braginskii as well as Spitzer-Härm theories are rigorously

valid only for fully ionized, (i.e., all atoms are at least ionized
one) nondegenerate plasmas.

Lee and More’s model of transport properties [49] takes
into account the electron degeneracy by using the Fermi-
Dirac distribution function for the electrons. Boltzmann’s
equation is solved within the relaxation-time approximation
(RTA). Electrical and thermal conductivity, thermoelectric
power, and also Hall, Nernst, Ettinghausen, and Leduc-Righi
coefficients, essential to the study of plasmas in presence of
electromagnetic fields, are considered. The transport proper-
ties are expressed in computationally simple forms and apply
to any electron degeneracy. In the completely nondegenerate
limit (μβ → −∞), the Hall constant value is rLM

Hall = 1.9328,
and is close to Braginskii’s one for the Lorentz plasma, which
assumes that all atoms are strongly ionized. The standard

rHall = 1 value for solids is recovered in the totally degenerate
limit μβ → ∞.

Stygar et al . [50] developed a quantum-mechanical ap-
proach for the electrical conductivity tensor for a Lorentz
plasma in a weak magnetic field within the linearized Boltz-
mann transport approach. Stygar et al. evaluated the Coulomb
logarithms in the second Born approximation. They read

ln �(ve) =
(

ln χ − 1

2

)
+
[(

2Z∗e2

λmev2
e

)(
ln χ − ln 24/3

)]
,

(4.8)
with χ = 2meveλ/h̄, λ = max(λD, Rws), λD being the Debye
length, given by

λD =
[(

4πnee2

kBT

)
+
(

4πZ∗nee2

kBT

)]−1/2

. (4.9)

ve denotes the electron velocity. Finally, Stygar et al. obtained
the following expression for the Hall constant:

rSGF
Hall = 315π

512

(
ln �(ve1)

ln �(ve2)

)2

, (4.10)

with

ve1 =
(

7kBT

me

)1/2

,

ve2 =
(

10kBT

me

)1/2

. (4.11)

315π
512 ≈ 1.9328, i.e., Lee and More’s value for rHall in the

nondegenerate limit. Predicted values of the Hall constant
applying Lee and More’s model and Stygar et al.’s are, re-
spectively, represented in Fig. 9 by the black dashes and the
black line.

The plasma ionization downstream the shock waves gen-
erated in argon in the experiments of Shilkin et al. is far
too weak for the application of Lee and More as well as
Stygar et al.’s models, which both assume Lorentz plasmas.
These models and, more generally, any RTA approach, do not
recover Spitzer and Härm’s result for electrical conductivity
in the nondegenerate limit. This is attributed to the fact that
e-e collisions, not taken into account in the RTA, grow in
importance when the atoms are less ionized and that they
can then no more be neglected. Interpolation procedures have
been proposed to correct the RTA electrical conductivities
[50,51], but there is no equivalent for correcting RTA Hall
constants.

Adams et al. used an approach based on LRT within the
Zubarev formalism [8,9] that allows for a systematic treatment
of e-e collisions at any degeneracy [13]. LRT is a quantum
statistical approach based on the grand canonical ensemble,
linearized with respect to nonequilibrium perturbations such
as external fields [9,52,53]. LRT takes into account all inter-
actions, including e-e ones, through equilibrium force-force
correlation functions. Electron-neutral-atom (e-n) collisions
are also taken into account. Transport coefficients are cal-
culated using a converging expansion in terms of so-called
generalized moments. When e-e collisions are neglected in
the theory, Adams et al. recovered the rHall = 1.9328 RTA
value in the nondegenerate limit, and obtained rHall = 1.1994
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FIG. 8. rHall = RHall × ene as a function of electron density ne.
Red squares and black dashes: The experimental and theoretical
(using LRT) values of Adams et al. [11]. Black full line: Our results.

when e-e collisions are accounted for. The latter value is
very close to the one rZ=1

Hall = 1.207 calculated by Braginskii
for atoms ionized once. When e-n collisions are taken into
account, the Hall constant is enhanced up to rHall ≈ 1.5 for the
less degenerate argon plasmas, according to Ref. [11]. Since
that work, the authors presented in Ref. [13] an extension
of LRT to include the effects of an external magnetic field,
which results in a value only slightly higher than the standard
rHall = 1 Hall constant.

Figure 8 compares our calculated rHall constants (black
line) with the experimental ones (red squares) deduced by
measured Hall voltages by Shilkin et al. Hall voltage is pro-
portional to RHall, and the experimental rHall are obtained using
theoretical electron densities ne from SAHA IV code. The
figure also presents the theoretical values obtained by Adams
et al. using the linear response theory approach [53]. Our
Ziman average-atom approach takes into account interactions
between mean ions and electrons, and the interactions be-
tween electrons through their total charge density and through
the exchange-correlation potential. At high degeneracy pa-
rameters �, we calculate values for the Hall constant rHall

close to Adams et al.’s LRT and Braginskii’s one for a low
density plasma composed of ions with the lowest possible
charge Z = 1, no neutral atoms and electrons, where the e-e
collisions between are considered (see Fig. 9, where the arrow
points on that value).

As electron degeneracy increases, (i.e., as � decreases),
Adams et al. predicted, within the LRT approach, the decrease
of rHall in shocked argon in Shilkin et al. experiments as shown
by the black dashes in Fig. 8 (the degeneracy parameter �

varies inversely to ne). At the opposite, we obtain increased
rHall values as electron degeneracy rises, getting closer to the
RTA values, which are considered as becoming more relevant
as degeneracy is stronger. Oppositely, at the highest electron
density obtained in the experiments, for which we estimate
degeneracy parameters of the order of 15, Adams et al. calcu-
lated rHall values, decreasing with �, and becoming very close
to the standard rHall = 1 value expected for highly degenerate
plasmas (�  1) and for solids.

10 100 1000
electron  degeneracy parameter θ
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Stygar et al.
Lee and More

non degenerate plasma
(Adams et al. : LRT model)

FIG. 9. rHall versus electron degeneracy parameter �. Red cir-
cles: Our results, in conditions reached downstream the principal
shock waves. Black circles: Our results, behind the reflected shocks.
Black dashes: Lee and More model [49]. Black line: Stygar et al.
model. The arrow points to the value predicted by Adams et al. in
the totally nondegenerate limit when electron-electron collisions are
taken into account in collision integrals for the fully ionized Z = 1
plasma [13].

As in the nondegenerate case, we summarize, in Table IV,
the results obtained with transport-equation methods accord-
ing to the included collision terms, in the case of the partially
degenerate argon plasma (� = 20), and compare them to our
average-atom result.

In next section, we are going to take a closer look at our
comparisons with the LRT calculations of Adams et al.

V. DISCUSSION: AVERAGE-ATOM VERSUS LRT
APPROACHES FOR THE HALL CONSTANT

For solids, as well as for low density hot plasmas, the Hall
constant has the so-called standard value rHall = 1. Our calcu-
lated values in the conditions of the experiments of Shilkin
et al. are significantly different from the ones obtained by

TABLE IV. We compare our calculated Hall constant value to
the ones obtained with transport equation approaches in the case of
partial electron degeneracy parameter � = 20. Our result is close to
the ones of Lee and More and of Stygar et al., which are becoming
more relevant since electron exchange-correlation effects are becom-
ing increasingly important compared with e-e direct collisions. In
the text, we suggest a possible explanation for the fact that the LRT
is already tending towards the expected rHall = 1 value for the fully
degenerate case.

PARTIAL ELECTRON DEGENERACY � = 20

Included collision terms Hall constant

Model e-i e-e e-n rHall

Lee and More [49] × 1.93
Stygar et al. [50] × 1.69
LRT [11,13] × × × � 1
Our paper mean collision time 1.69

(AA and T-matrix)
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Adams et al. [10–13] using LRT approach within Zubarev’s
method, which raises questions.

The LRT approach takes into account electron-ion,
electron-neutral, and electron-electron collisions, enabling for
a complete description of partially ionized plasmas, for which
the value of rHall is unknown. One limitation to its use could
be the difficulty to build cross sections for the scattering of
electrons by neutral atoms. Because of the lack of theoretical
electron-atom cross sections for argon at the date of their
work, Adams et al. [11,13] used experimental data, obtained
for argon at ambient temperature. The method used for the cal-
culation of the plasma composition (density of neutrals, ions
and electrons) also introduces some uncertainty. In the case
of the largest argon densities in the experiments of Shilkin
et al., Adams et al. reported as much as 40% differences in the
theoretical electron densities obtained according to whether
the SAHA IV code of Gryaznov [54] or the COMPTRA program
[55] is used for that purpose [11] (both codes are based on
similar chemical pictures for the plasma equations of state,
but use different thermodynamical models).

The average-atom approach used in the present paper
presents its own difficulties. First, the separation between
bound and free electrons may be problematic [19,28].
However, this does not concern argon in the density and tem-
perature ranges reached in the experiments of Shilkin et al.
The bound-free separation is unambiguous, and all possible
definitions for the mean ion charge Z∗ [19] converge to the
same value. The question remains of properly accounting for
e-n and e − e interactions with average-atom methods.

Let us start looking at the way that average-atom methods
handle the scattering of electrons by neutral atoms. In the
experiments of Shilkin et al., kinetic models considered that
argon plasmas are composed, outside the electrons, of neutral
and ionized argon atoms, and use two distinct approaches, on
the one hand for the e-n collision times and on the other for all
e-i ones. The average-atom approach used in the present paper
avoids the problem of distinguishing ions and neutral atoms,
which are replaced by identical ions with the same mean
charge Z∗. In the considered experiments, the neutral atoms
are about 102 up to 106 times more numerous than ionized
argon atoms. Thus, the mean ion is almost a neutral argon
atom, and the average-atom model actually provides an e-n
collision time that extrapolates the average-atom e-i collisions
time to the limit Z∗ → 0. Posterior to Adams et al.’s works,
Quan et al. derived e-n and e-i model potentials with the aim
to build theoretical e-n and e-i scattering cross sections [56].
For e-n scattering, the model potential reads

V (r) = Vs(r) + Vp(r) + Vx(r), (5.1)

where Vs(r) is the sum of the electron-nucleus Coulomb
potential and of the free electron-bound electrons Coulomb
interactions, Vx(r) an exchange potential, and Vp(r) a polar-
ization potential. The e-i model potential only differs from the
e-n one by a screening factor e−r/rD , rD = √

kBT/4πne being
the Debye screening length, which applies to the Coulomb
term Vs(r). Quan et al.’s e-i model potential tends then to
the e-n one in the limit Z∗ → 0 (since ne → 0), and the e-n
scattering cross section appears as the Z∗ → 0 limit of the e-i
one, as in the average-atom approach.
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FIG. 10. Momentum transfer cross section for electron- neutral
argon collisions. Red crosses: Experiments of Milloy et al. [57].
Black line: The average-atom code is used to calculate the cross
section for an electron scattered by an almost neutral argon atom
(case of argon at density ρ = 6.7 × 10−3 g/cm3 and temperature
T = 4000 K, for which Z∗ < 10−5).

The average-atom effective potential includes the same
two Coulomb contributions and electron exchange potential
too. Polarizability does not appear explicitly, but is, in some
way, present through electron exchange and correlations. The
problem is whether this is sufficient to reproduce the exper-
imental cross sections, given that the polarization potential
makes a significant contribution to the model of Quan et al.
[56]. Unfortunately, we were not able to calculate the cross
section for the scattering of electrons by almost neutral atoms
for argon at ambient temperature with our average-atom code.
We only obtained converged results for somewhat higher den-
sities and temperatures. Figure 10 compares the average-atom
momentum transfer cross section for electron collisions with
almost neutral atoms obtained for ρ = 6.7 × 10−3 g/cm3 and
T = 4000 K (represented by the black line) to the experimen-
tal cross section for electron-neutral atom collisions measured
for argon at ambient temperature by Milloy et al. (red crosses).
Qualitatively, the average-atom calculation is in fairly good
agreement with the experiments. In particular, a Ramsauer-
Townsend-like minimum is also predicted with the average-
atom approach, albeit at a somewhat higher collision energy
than experimentally. One must also keep in mind that the ac-
tual plasma temperatures are about 104 K in the experiments.
For this reason, we think that our average-atom approach,
which allows for electron density and temperature changes,
is relevant for e-n interactions, despite the fact that the neutral
atoms are approximated by ions carrying low charges Z∗.

To explain any discrepancies with other theoretical ap-
proaches, like the LRT one, the possibility remains that the
average-atom models do not properly take into account the e-e
interactions. The inclusion of e-e direct collisions in density
functional theory (DFT) approaches for transport properties
is the subject of discussions in the literature. In a paper
published in 2006 [58], Dharma-wardana advanced strong
arguments in favor of DFT-based approaches for e-e inter-
actions. Indeed, he pointed out that the electron current is
conserved under e-e interactions, since the electron current
operator commutes fully with the e-e interaction Hamiltonian,
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and that this holds at any electron degeneracy. The e-e in-
teractions only contribute indirectly to the resistivity through
the e-i effective potential. Dharma-wardana developed these
arguments further in a very recent article (see Sec. II in the
Supplemental Material of Ref. [59]). The counterargument
put forward against DFT-based approaches is that the latter
consider the electrons as an aggregate, through their total
charge density, rather than as individuals interacting with
each other as is done in kinetic theories such as the Boltz-
mann equation [53,60]. It is, however, expected that both
DFT-based methods and kinetic approaches will converge
as electron degeneracy grows, resulting from the increasing
compensation of e-e interactions by the exchange-correlation
potential.

The nondegenerate limit � → ∞ is the most largely stud-
ied by kinetic methods, mainly for totally ionized plasmas in
which all ions are at least ionized once. Braginskii’s value
rHall = 1.207 when all atoms are ionized once is confirmed by
Adams et al.’s LRT value rHall = 1.199 obtained assuming the
same plasma composition. Both approaches include e-e direct
interactions. When the latter are neglected, rHall = 1.9328
[49,50], which is clearly higher. In the electron degeneracy
range 100 � � � 2 × 103, corresponding to Shilkin et al.’s
experiments in incident shocks, in which the mean ion charge
Z∗ remains small, our average-atom approach yields the value
rHall ≈ 1.25, close to the one expected when e-e interactions
are properly taken into account. This result backs up the argu-
ments put forward in the literature in favor of the suitability of
DFT-based methods for the study of transport properties.

But, accounting within LRT for scattering of electrons by
neutral atoms besides a low concentration of atoms ionized
once, Adams et al. obtained very different results, presented
in two articles, Refs. [11,12]. In both works, e-n scattering
times were derived from the experimental scattering cross sec-
tions measured at ambient temperature presented in Fig. 10. In
the second paper, the LRT was extended to explicitly include
the magnetic field, which was not the case in the first one.
Within the extended LRT, the B = 5 T field applied by Shilkin
et al. was found to reduce the theoretical rHall value (see Fig. 4
in Ref. [12]), whereas, using the nonmodified LRT approach,
the value is raised up to rHall ≈ 1.5 in the less degenerate
cases. In the modified LRT approach, transport coefficients
are written as ratios of polynomials in X = (ωcτ0)2, where
τ0 is given by the one-moment LRT mean scattering time.
The authors observed that, for weakly coupled plasmas, even
magnetic fields below B = 5 T impact the values of transport
coefficients (including electrical, thermal conductivities, as
well as Hall constant).

As electron degeneracy grows, (i.e., as � diminishes), we
observed, within our average-atom approach, a strong depen-
dency of the Hall constant rHall on the electron density and
the temperature. This is clearly not predicted by Adams et al.,
which found that the Hall constant value tends rapidly towards
rHall = 1, as expected for degenerate plasmas, whether or not
the standard or extended LRT model was used. A possible
source for the observed discrepancy between LRT results
and ours is the use, within LRT, of an experimental ambient
temperature scattering cross section for e-n scattering while
the temperatures exceed 104 K. Indeed, it can easily be shown
that, using the same cross section regardless of the increase of
temperature, rHall decreases as the T grows.

Using the following relation between the cross-section Qen

for scattering of electrons by neutral atoms and the collision
time τen,

h̄k nn Qen(ε) = 1

τen(ε)
, (5.2)

yields, at temperature T0:

r0
Hall = (3π2ne) ×

∫∞
0

k3

(kQen )2

(− ∂ f
∂ε

)
0
dε[ ∫∞

0
k3

(kQen )

(− ∂ f
∂ε

)
0dε
]2 . (5.3)

In the temperature and density conditions considered in this
paper: −( ∂ f

∂ε
)0 ≈ β0e−β0(ε−μ0 ). Let us increase the temperature

by a small quantity δT  T0. At first order of the expansion
in δT/T0, the resulting variation in the derivative of the Fermi-
Dirac distribution function reads(

−∂ f

∂ε

)
≈
(

−∂ f

∂ε

)
0

eβ0
δT
T0

(ε−μ0 )

≈
(

−∂ f
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)
0

(
1 + β0

δT

T0
(ε − μ0)

)
, (5.4)

and the Hall constant at T = T0 + δT is

rHall ≈ r0
Hall

⎧⎨
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In the thermodynamical conditions reached in the experiments
of Shilkin et al., the chemical potential has a large negative
value −9 � μ0 � −4.5 (atomic units), and only the lowest
energies ε contribute to the integrals. Therefore, taking (ε −
μ0) ≈ −μ0, the previous equation is simplified to

rHall ≈ r0
Hall

(
1 + δT

T0
[1 − β0μ0]

)
, (5.6)

and, finally, using the relation, valid for electron degeneracy
parameters � > 1,

eβ0μ0 = 4

3
√

π
�

−3/2
0 , (5.7)

one gets, after having replaced ln[4/(3
√

π )] by its numerical
value:

δrHall

r0
Hall

≈ −δT

T0

(
0.285 + 3

2
ln �0

)
. (5.8)

Therefore, if one uses the same experimental cross section for
the scattering of electrons by neutral atoms regardless of tem-
perature changes, the calculated Hall constant decreases when
temperature grows.

VI. CONCLUSION

We presented calculations of the resistivity of shocked
argon within Ziman formalism combined with the relativistic
quantum average-atom method. We have compared our re-
sults with measurements performed in experiments involving
both incident and reflected shock waves in the presence of a
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magnetic field of 5 Tesla. Beyond the experimental electric
conductivities, the other important objective of these experi-
ments was to measure the Hall resistivity, in view of deducing
the experimental electron density, or, equivalently, the mean
ionic charge.

The average-atom code PARADISIO was used for the calcu-
lation of the equation of state for argon, as well as for the
scattering phase shifts needed for the scattering amplitude
of electrons by the mean ions, and for the mean ion charge
Z∗. We took into account the magnetic field in the Rankine-
Hugoniot relations and derived, starting from the Boltzmann
equation, the resistivity tensor in terms of the mean electron-
ion collision time τ (ε) = �(ε)/v (see Sec. III E), i.e., the
inverse of the collision frequency used in the Ziman resistivity
formula.

It turns out that the effect of a 5 Tesla magnetic field on
the calculation of electrical conductivity is rather limited in
the conditions of the experiments. This also justifies the small
magnetic field assumption ωcτ  1 made for the deriva-
tion of the resistivity tensor η. The off-diagonal element η12

giving the Hall resistivity then reads RHallB = rHallB/(ene),
where the dimensionless Hall constant rHall is the ratio rHall =
〈τ 2〉
〈τ 〉2 .

We presented Hall constant rHall calculations based on the
use of the average-atom code PARADISIO for the relaxation
time τ (ε), in the conditions reached in the shock experi-
ments of Shilkin et al. carried out on argon. In our approach,
τ (ε) = �(ε)/v is the inverse of the mean electron-ion col-
lision frequency used for the Ziman resistivity calculation.
We compared our results to experimental values derived from
the Hall voltage measurements by Shilkin et al., as well as
to theoretical ones from Adams et al., based on the quantum
statistical linear-relaxation-time approach within the Zubarev
formalism.

Both sets of results are in the (large) experimental error
bars, but within our approach, rHall values rise with electron
densities and are closer to the central experimental values.
Our results are in good agreement with Adams et al.’s in
the case of the less degenerate plasmas, for which the rel-
evance of DFT-based models is nevertheless questionable.
A growing discrepancy with Adams et al. appears as both
electron density and temperature rise, which we explain by
the fact that Adams et al. used an ambient temperature
experimental scattering cross section for electron scatter-
ing by neutral atoms when the actual temperatures exceed
104 K.
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