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Directionality of gravitational and thermal diffusive transport in geologic fluid storage
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Diffusive transport has implications for the long-term status of underground storage of hydrogen (H2) fuel
and carbon dioxide (CO2), technologies which are being pursued to mitigate climate change and advance the
energy transition. Once injected underground, CO2 and H2 will exist in multiphase fluid-water-rock systems. The
partially soluble injected fluids can flow through the porous rock in a connected plume, become disconnected
and trapped as ganglia surrounded by groundwater within the storage rock pore space, and also dissolve and
migrate through the aqueous phase once dissolved. Recent analyses have focused on the concentration gradients
induced by differing capillary pressure between fluid ganglia which can drive diffusive transport (“Ostwald
ripening”). However, studies have neglected or excessively simplified important factors, namely the nonideality
of gases under geologic conditions, the opposing equilibrium state of dissolved CO2 and H2 driven by the partial
molar density of dissolved solutes, and entropic and thermodiffusive effects resulting from geothermal gradients.
We conduct an analysis from thermodynamic first principles and use this to provide numerical estimates for
CO2 and H2 at conditions relevant to underground storage reservoirs. We show that while diffusive transport
in isothermal systems is upwards for both gases, as indicated by previous analysis, entropic contributions to
the free energy are so significant as to cause a reversal in the direction of diffusive transport in systems with
geothermal gradients. For CO2, even geothermal gradients less than 10 ◦C/km (far less than typical gradients
of 25 ◦C/km) are sufficient to induce downwards diffusion at depths relevant to storage. Diffusive transport of
H2 is less affected but still reverses direction under typical gradients, e.g., 30 ◦C/km, at a depth of 1000 m.
This reversal occurs independent of the solute’s thermophobicity or thermophilicity in aqueous solutions. The
entropic contribution also modifies the magnitude of flux where geothermal gradients are present, with the largest
diffusive fluxes estimated for CO2 with a 30 ◦C/km gradient, despite the higher diffusion coefficient of H2. We
find a maximum flux on the order of 10−13 mol/(cm2s) for CO2 in the 30 ◦C/km scenario; significantly lower
than literature estimates for maximum convective fluxes in moderate to high permeability formations. Contrary
to previous studies, we find that in diffusion and convection will likely work in concert—both driving CO2

downwards, and both driving H2 upwards—for conditions representative of their respective storage reservoirs.

DOI: 10.1103/PhysRevE.110.015106

I. INTRODUCTION

Geologic formations underground offer high capacity, po-
tentially long-term storage options for fluids such as waste
carbon dioxide (CO2) and gaseous hydrogen fuel (H2), offer-
ing significant potential to mitigate climate change, provide
energy storage, and accelerate the energy transition away
from fossil fuels [1–6]. Saline reservoirs—porous host rock
formations saturated with saline aqueous phase (“brine”)—
comprise the largest resource of underground storage options
[7]. Once injected into a saline reservoir underground, the
partially soluble CO2 or H2 fluid (which will be referred
to as “gas” in this work to distinguish if from the aqueous
fluid phase) will flow through the architecture of the porous
host rock along with the brine, with configurations and flow
properties dictated by the local (pore-scale) capillary behavior
of the rock-brine-fluid multiphase system. Because CO2 or
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H2 are typically nonwetting relative to the aqueous liquid,
much of the injected gas may become “snapped off” into
small disconnected ganglia as aqueous wetting phase reim-
bibes into the solid structure, and then held by capillarity
within pore bodies of the host rock [8–11]. This is known
as capillary or residual trapping [12]. For capillary-trapped
ganglia of injected fluid, it is then expected that transport will
occur primarily through the aqueous phase: advection with
the aqueous flow field, convection due to density gradients
(e.g., Refs. [13,14]), and diffusion due to concentration, grav-
itational, and thermal gradients (e.g., Ref. [15]).

This work focuses on the diffusive transport processes
and how these may manifest in a multiphase system where
concentration gradients of dissolved gas are imposed due to
the presence of these residually trapped ganglia. For par-
tially soluble fluids in a multifluid porous media system,
bubbles or ganglia of bulk gas may exist at different pres-
sures [16–19], inducing solute concentration difference in
the aqueous solvent following partitioning relationships (e.g.,
at ambient pressures, partitioning follows Henry’s law). For
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ganglia trapped within porous media, the capillary pressure
difference between the ganglia and the aqueous phase (Pg −
Pw) is reflected by the interface curvature (κ) following the
Young-Laplace equation:

Pg − Pw = 2κσ, (1)

where σ is the fluid-fluid interfacial tension. Because these
ganglia will exist in relatively large vertical spans of the
storage reservoir, the ganglia pressure will be related to the
hydrostatic pressure gradients of the reservoir, and the parti-
tioning relationships will be subject to both hydrostatic and
geothermal gradients (temperature increasing with depth).
Similarly, the final steady-state distribution of injected fluid
molecules in the aqueous phase (after diffusion has acted)
must also be determined as a function of the gravitational and
geothermal gradients. Determination of the direction and rate
of diffusive flux of injected fluid molecules from a residual
state to an equilibrium state is thus nontrivial and subject to
molecule-specific thermodynamic properties and behavior.

Recent work has identified “Ostwald ripening” as a dif-
fusive mechanism with potential to drive mass redistribution
due to the varying pressure distribution (and thus concen-
tration gradients) of injected gas ganglia. Ostwald ripening
is hypothesized to drive mass transport from the high- to
low-pressure ganglia (high to low local concentration) as the
system evolves towards its ultimate equilibrium state. In the
absence of hydrostatic and geothermal gradients, Ostwald
ripening can drive fluid from high-pressure, high curvature
bubbles to lower pressure, lower curvature bubbles. Multiple
recent studies have highlighted that over long time frames,
this could potentially drive injected gases to move upwards
from small, isolated, capillary trapped ganglia to reconnect
with the larger mobile gas plume sitting in place under the
caprock [20–28]. For H2 storage, this could be a benefit, as
it would reduce the likelihood of gas loss due to capillary
trapping; however, this scenario could reduce the long-term
safety of CO2 storage schemes, as migration of CO2 into the
plume will increase the capillary pressure below the caprock,
causing lateral expansion of the plume and increasing the
likelihood that the plume will break through the caprock.
However, direct observations of diffusive transport due to
Ostwald ripening are limited, and the existing analysis of
potential long-term impacts is theoretical. Furthermore, the
impact of geothermal gradients has been scarcely addressed
and remains unresolved.

Throughout the existing literature on Ostwald ripening and
diffusive transport in subsurface gas storage, there are some
persistent inconsistencies with respect to several important
assumptions:

(i) CO2 and H2 do not exist as ideal gases in high pressure
subsurface storage reservoirs—both will most often be present
as a nonideal supercritical fluid. Consequently, the partial
molar volumes and fugacities of the gases must be considered;
and the partitioning between ganglia and aqueous phase with
depth is nonlinear (i.e., does not follow Henry’s law) in both
cases.

(ii) The effective density of dissolved H2 is lower than that
of pure aqueous phase; however, the opposite is true for CO2:
The aqueous phase with CO2 dissolved in it is more dense than
pure aqueous phase. This indicates opposite directionality in

the concentration gradient of gravity-driven thermodynamic
equilibrium states for these two solutes.

(iii) In subsurface environments, geothermal gradients
exist along with hydrostatic gradients; this affects all the vari-
ables that affect the diffusive flux and induces transport by
thermodiffusion, with recent work suggesting that geothermal
effects may be much larger than the effects of buoyancy
and capillarity on diffusive transport in many subsurface
conditions [24,29,30].

Xu et al. [22] and Blunt [23] provided good conceptual
descriptions of the Ostwald ripening process as well as es-
timates of relevant timescales of fluid ganglia redistribution
due to Ostwald ripening; however, both neglected geothermal
gradients and aspects of the nonideality of the injected fluid
phase. Ripening equilibration timescales have been further
investigated from pore [27] to Darcy [28] scales, also un-
der isothermal conditions. Li et al. [24] provided a more
complete thermodynamics-based analysis which incorporated
many impacts of nonideality and a simplified treatment of
geothermal gradients for the case of CO2 sequestration but
explicitly neglected the role of thermodiffusion. Coelho et al.
[29,30] calculated thermodiffusion coefficients for CO2 but
conducted a partial analysis and incorrectly assumed that CO2

thermophobicity would automatically drive it upwards under
geothermal gradients.

This work seeks to extend previous work by providing
a more generalized thermodynamic description of Ostwald
ripening and general diffusive flux in subsurface systems,
considering the above-noted factors, for the important cases
of CO2 and H2 storage in saline reservoir formations. We
incorporate the nonideality of the gas phase from ganglia
initialization to equilibrium. We argue that the Krichevsky-
Kazarnovsky law [31] should be used to determine phase
partitioning in geologic systems (rather than Henry’s law)
and demonstrate how this applies to systems where gas-phase
fugacity coefficients differ significantly from unity and in the
presence of thermal gradients. Our presentation adds to pre-
vious analysis by making explicit the impacts of nonideality
in terms of fugacity, molar volume, partial molar volume (and
thus, effective density), molar entropy, and Soret coefficients
in quantifying concentration gradients and the directionality
and magnitude of diffusive fluxes.

For application to the important gas storage technologies
of CO2 sequestration and underground hydrogen storage, we
show that, in agreement with previous work, diffusion does
indeed drive dissolved H2 and CO2 upwards to reconnect with
the bulk gas-cap plume under isothermal condition. How-
ever, we show for the first time that, for low to moderate
geothermal gradients, the direction of diffusive transport is
reversed—acting downwards—at storage-relevant depths. For
CO2, even small geothermal gradients, present in almost every
potential storage site, will overwhelm capillary and buoyancy
effects to drive CO2 downwards for all CO2 storage-relevant
depths; in the case of H2, upper regions of the reservoir favor
upwards transport, but this is reversed for sufficient depths and
geothermal gradients.

Our analysis is derived from thermodynamics first prin-
ciples and is generalizable to porous underground storage
reservoirs regardless of petrophysical details. We show that
with this more complete consideration of these systems, the

015106-2



DIRECTIONALITY OF GRAVITATIONAL AND THERMAL … PHYSICAL REVIEW E 110, 015106 (2024)

direction of diffusive flux is downwards in many cases, con-
trary to the current body of literature [20–26,28–30]; our
analysis thus completely reverses understanding of the impli-
cations for the long-term security of storage applications. In
Sec. II we present the analysis of the isothermal case (which
generally supports the findings of existing literature) and then
treat the geothermal gradient case in Sec. III. Section IV
provides some estimates of flux under both cases.

II. THERMODYNAMICS OF THE ISOTHERMAL CASE

For clarity, we refer to bulk CO2 and H2 as “gas” phases
(using the subscript g) throughout the text and in equations,
despite the fact these fluids will exist as supercritical fluids at
most depths of interest for geologic storage projects. The pure
or bulk gas phase is distinguished from the dissolved “solute”
phase (subscript s) and the aqueous solvent (subscript w).

Chemical potential, μ, is the change in Gibbs free energy of
a system with respect to a change in amount of the component
of interest at constant pressure and temperature and can also
be considered as partial molar Gibbs free energy. Chemical
potential is a useful metric for multiphase systems because it
provides a direct comparison of the component in bulk and
solute form: Equality of chemical potential for the component
in two forms implies chemical partitioning and diffusive equi-
librium. Furthermore, since chemical potential is a measure
of free energy, the impacts of pressure (P), temperature (T ),
location in a gravitational field (z), and concentration in a solu-
tion (x) can all be incorporated directly; i.e., μ = f (P, T, z, x).
We begin by stating the general dependence of μ on pressure
P. From the thermodynamic identity:

∂μ

∂P
= Vm, (2)

where Vm is the molar volume of the fluid. In contrast to
liquids (including those with dissolved solutes), where Vm can
be considered constant over wide pressure ranges, for gases
and supercritical fluids, Vm cannot be considered constant
(Fig. 1). This points to the fundamental source of disequilib-
rium between dissolved and pure gas components as pressure
increases moving deeper underground. In Sec. III we con-
sider disequilibrium caused by temperature as well as pressure
gradients.

In practice, empirical equations of state (EoS) are used to
obtain values of Vm as a function of pressure for the bulk gas
phases. Herein, we utilize the Peng-Robinson EoS [32] for
CO2 and the Abel-Noble EoS for H2, using parameter values
presented in Ref. [33]; results are shown in Fig. 1. We note
that although H2 is a small molecule, as total system pressure
increases, the molar volume of H2 is significantly larger than
CO2, due to stronger attractive Van der Waals interactions
between CO2 molecules at a given pressure and temperature.

A. Bulk gas and aqueous phases

For any static fluid or fluid component in a gravitational
field g, conservation of energy gives the dependence of chem-
ical potential μ on height z (at constant P, T ) through

∂μ

∂z
= mmg, (3)

FIG. 1. Molar volume values calculated via equations of state for
CO2 and H2 under isothermal temperature of 50 ◦C. Molar volumes
are identical at low pressures where both can be considered ideal
gases.

where mm is the fluid component’s molar mass and g is the
acceleration due to gravity (herein, g takes a positive value in
the downwards direction and height z positive upwards). Note
that chemical potential is sometimes defined to exclude the
influence of external fields such as gravity (e.g., Ref. [24]),
while in Ref. [34], this inclusive form of chemical potential is
called the physicochemical potential.

For a fluid column in equilibrium, the chemical potential
is the same at all heights: μ(z) = μ(zo), leading to the hydro-
static pressure gradient [35]:

∂P

∂z
= −ρ(z)g. (4)

For an ideal gas (“ig”) this is integrated to give the
barometric equation

Pig

P0
= e

−mmg(z−zo)
RT . (5)

Conversely, the aqueous phase can be considered an in-
compressible liquid with density ρw, independent of pressure,
so the hydrostatic pressure Ps for the aqueous solution can be
calculated:

(Ps − Po) = −ρwg(z − zo). (6)

Here we define zo to be the height where there is mechani-
cal equilibrium between the aqueous solution (s) and and bulk
gas (g) fluid components: Ps(zo) = Pg(zo) = Po. The differ-
ence in hydrostatic pressure gradient for the gas and aqueous
solution results in mechanical disequilibrium between the
fluids: Pg(z) �= Ps(z) for z �= zo. In unconstrained geometries,
this leads to gravitational separation; however, in a porous
medium, the two phases can coexist in mechanical equilib-
rium over a finite height range due to Young-Laplace pressure
differences [Eq. (1)] arising from the nonwetting fluid form-
ing bubblelike ganglia with positively curved interfaces. This
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results in a height-dependent capillary pressure Pc(z) = Pg −
Ps that can compensate for the hydrostatic pressure gradient.

The bulk solute (gas phase) will generally be less dense
than the aqueous phase and is assumed to be the non-
wetting fluid in a geologic porous medium. This has been
established for typical conditions and geologic materials
of subsurface storage projects [10], although shifts towards
intermediate-wetting have been observed [36–38], particu-
larly when organic carbon constituents are present [39,40].
Nonetheless, we assume water-wet conditions, and therefore a
ganglion of bulk gaseous (or supercritical) fluid can only exist
in contact with aqueous phase above the equilibrium height,
z � zo, where Pg > Ps and capillary pressure can restore me-
chanical equilibrium. The capillary pressure must increase as
the height above zo increases, indicating smaller and smaller
radii of curvature; in pore sizes typical of storage reservoirs,
mechanical equilibrium can only be maintained by capillarity
for a few tens of meters. This implies that as height above
zo increases, the water is increasingly pushed into crevices
until its presence is negligible and the pore space can be
considered to be filled with bulk gas phase. At depths below
the equilibrium height (z < zo) the capillary pressure would
need to be negative to support coexistence—this indicates that
bulk gas cannot reside z < zo unless supported by a reversal of
wettability.

The assumption of water-wet conditions also establishes
the boundary conditions for our model: Gas dissolved in the
aqueous phase can migrate upwards or downwards to infinite
extent. The presence of caprocks or low permeability layers
may restrict movement of bulk gas; however, these water-
wet layers will still permit diffusion of solute gas molecules
through the aqueous phase.

We now consider dissolved gas solute within the aqueous
phase; of principal interest is the behavior of solutions with
CO2 or H2 dissolved in water. CO2 and H2 are only partially
soluble in water, and we treat them as dilute solutions, which
greatly simplifies the analysis as the solute can be treated in-
dependently of the solvent. The dilute solution approximation
is equivalent to assuming unity activity coefficients and is a
standard approach for nonelectrolyte solutions. For H2 this as-
sumption should be accurate given its low solubility (max 0.1
wt%); but for CO2, with a max solubility of over 10 wt%, the
activity coefficients may be substantially larger than 1, partic-
ularly for high salt concentrations [41]. Nonetheless, for lower
salt concentrations (i.e., 1.0 mol/kg) and the temperature and
pressure ranges investigated herein, estimated CO2 activity
coefficients are relatively constant at around 1.25 [41]. In
addition, it has been shown that the Krichevsky-Kasarnovsky
equation (further explored in the next section), which is based
on the dilute solution approximation, accurately predicts CO2

solubility in water up to 100◦C and up to 60 MPa [42]. The
dilute solution approximation is used throughout this work.

The dependence of the chemical potential of the dissolved
solute phase, μs on pressure (other variables held constant) is
the equivalent of Eq. (2) for a solute rather than bulk phase:

∂μs(P)

∂P
= V m, (7)

where V m is the partial molar volume of the dissolved solute,
i.e., the volume occupied by a mole of gas dissolved in the

aqueous phase (defined formally as the increase in volume of
the solution associated with addition of a mole of solute). Note
that while pure gas molar volume Vm is clearly not constant
with pressure, the partial molar volume V m refers to gas dis-
solved in the liquid phase. While CO2 partial molar volume
has been shown to be a function of dissolved concentration
and temperature [43–45], the data compilation of Garcia [45]
shows that V m,CO2 varies only between 30 and 40 cm3/mol
for temperatures from 0–100 ◦C, and the data in Ref. [44]
shows only a weak dependence on aqueous composition in
the concentration range of approximately 1% (molar percent-
age); for simplicity, we do not model variability in V m,CO2 in
the calculations in this work. These values imply a density
higher than the aqueous solvent; this negative buoyancy is the
driver for downwards convection of CO2 as well as the grav-
itational diffusive fluxes discussed here. To our knowledge,
the variation of H2 partial molar volume under geologically
relevant pressure, temperature, and concentration is not well
documented.

For dilute solutions, it is assumed that the properties of
the solution are not affected by the presence of the solute and
that interactions between solute molecules can be neglected.
These assumptions (which also imply that V m is independent
of concentration, and that activity coefficients are 1) lead to
the standard expression for the chemical potential of a dilute
solution [35]:

μs(P, x) = μs(P, xo) + RT ln
x

xo
, (8)

where x is the molar concentration and xo is an arbitrary
reference solute concentration.

To derive a relationship between μ, P, T , z, and x, we begin
with the definition of the total differential dμ(P, T, z, x):

dμ(P, T, z, x) = ∂μ

∂P
dP + ∂μ

∂T
dT + ∂μ

∂z
dz + ∂μ

∂x
dx. (9)

We first apply this for dissolved gas, so that μ is the chemical
potential of the solute μs. The partial derivatives of μs with re-
spect to pressure P, height z, and concentration x are obtained,
respectively, from Eqs. (7) and (3) and from differentiating
Eq. (8); then taking the isothermal case dT = 0 gives the
thermodynamic identity for dilute solutions in a gravitational
field:

dμs(P, z, x) = V m dP + mmgdz + RT

x
dx. (10)

This can be rewritten in a more convenient form, using dP =
−ρwgdz [from Eq. (4) for the aqueous phase] and mm = V mρs

(recall that ρs is the effective density of the dissolved solute):

dμs(P, z, x) = V m(ρs − ρw ) gdz + RT

x
dx. (11)

At equilibrium, μs does not change with height; thus,
if ρs �= ρw, then the equilibrium concentration of dissolved
solute (i.e., gas solubility) must vary with depth in order
to compensate for the effect of a gravitational field. Thus,
the equilibrium concentration profile of solute xe(z), is ob-
tained by imposing constant chemical potential dμs(z) = 0 in
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TABLE I. Parameters used in numerical estimates.

Parameter

Aqueous density (kg/cm3)a 1.050 × 10−3
Aqueous molar volume (cm3/mol) 18.07
Acceleration of fravity (m/s2) 9.81
Isothermal temperature ( ◦C)a 50
Nonisothermal surface temperature ( ◦C) 25
Vapor pressure of water (MPa) 0.012b

Parameter CO2 H2

Henry’s law constant, 50 ◦Cc (MPa) 281 7683
Partial molar volume (cm3/mol) 35.1d 26.7e

Molar mass (kg/mol) 0.044 0.002
Diffusion coefficient (pure water,

25 ◦C) (m2/s)
2.2 × 10−9f 5.11 × 10−9g

Critical temperature (◦C) 30.978 −239.95
Critical pressure (MPa) 7.38 1.30
Acentric factorh (—) 0.228 −0.220

aAssumed, following Ref. [23].
bReference [50].
cCalculated from values presented in Ref. [51] and converted to
pressure units using presented values for brine.
dReference [45].
eReference [52].
fReference [53].
gReference [54].
hReference [55].

Eq. (11):

1

xe

dxe

dz
= d (ln xe)

dz
= −V m

RT
(ρs − ρw )g. (12)

Approximating V m to be independent of pressure (dis-
cussed below), this equation can be integrated by defining a
reference height zo such that x(zo) = xo, and integrating from
zo to z and xo to x, revealing that the gradient in concentration
depends on the relative density of the dissolved phase and the
water [35]:

xe(z) = xe(zo)e−V m (ρs−ρw )g(z−zo)/RT . (13)

Diffusive flux will act to establish this equilibrium distri-
bution in the aqueous phase. Li et al. [24] provide additional
description and dynamic analysis of this process (often called
“sedimentation”) for CO2 in geologic reservoirs.

The equilibrium distribution of solute concentration in the
aqueous phase as a function of depth, calculated from Eq. (13)
and using parameter values as indicated in Table I, is shown
in solid lines in Fig. 2. As discussed above, we assume a
constant partial molar volume for both CO2 and H2, while
noting that this is an approximation only, with likely accuracy
of around 25%. There is a single unavoidable free parameter
in Eq. 13: The final equilibrium concentration at the reference
height xe(zo), which cannot be known a priori for a reservoir
gas storage scheme. In this analysis, in order to estimate an
upper bound on mass transport due to diffusion, we apply the
assumption that xe(zo) is equal to the solubility limit at the
pressure in the aqueous phase at a depth of 2000 m. However,
this assumption is highly unlikely to be achieved in the context

of CO2 storage; instead, it is more likely that there will be no
depth at which the equilibrium concentration is equivalent to
the fully saturated condition, as this would imply that enough
CO2 has been injected to fully saturate the formation or that
downwards mass transfer due to convective dissolution has
been somehow negated.

Here we highlight an important result: because dissolved
CO2 is more dense than water under typical subsurface condi-
tions, the equilibrium CO2 concentration increases with depth,
whereas the reverse is true for H2. Some previous work has
overlooked this [23] or (assuming an ideal solution) used Vm

in place of V m [22] leading to erroneous conclusions that
the equilibrium CO2 concentration gradient decreases with
depth (the error in Ref. [22] has been pointed out already in
Ref. [24]).

Equation (13) describes the final equilibrium state of the
aqueous solution in a gravitational field, while Eqs. (4), (5),
and (6) give the equilibrium state of a continuous gas col-
umn (the “gas cap”). Since in both cases equilibrium derives
from imposing uniform chemical potential, we can therefore
also infer the equilibrium state of a multiphase fluid-porous
media system consisting of both bulk and dissolved gas; if
the bulk and dissolved phases are in equilibrium at any one
depth, then they must be in equilibrium at all depths. As depth
increases, the pressure of the column of H2 increases and is in
equilibrium with the aqueous phase which contains a decreas-
ing concentration of H2. For CO2, the increasing bulk phase
pressure is in equilibrium with water containing an increasing
concentration of CO2. Note that, as explained earlier, since
the aqueous and gaseous phases have different densities, the
phase pressures are not equal at all heights. In the presence
of thermal gradients, there is no longer diffusive equilibrium
between solute and continuous gas phase, as discussed in
Sec. III.

B. Gas ganglia

Now consider the nonequilibrium case where there exists
a continuous aqueous liquid with dissolved solute (in a di-
lute solution) as the wetting phase in a porous medium, in
contact with disconnected (trapped) ganglia of the solute at
a height-independent capillary pressure. This scenario may
arise following CO2 or H2 injection into an aquifer, after
some reimbibition has occurred to disconnect the gas phase.
We assume that enough time has elapsed since injection for
the dissolved solute to be in equilibrium with nearby trapped
ganglia at the same depth but not enough time for equilibrium
between depths within the column.

This hypothetical “local equilibrium” scenario (also the
initial condition in Li et al. [24]) is feasible considering
that the pore-to-pore equilibration time of gas ganglia ripen-
ing is estimated to range from milliseconds to decades of
years for pore sizes spanning realistic geologic porous me-
dia [27]; meanwhile, equilibration across meter-long heights
in a gravitational field is estimated to require several thou-
sand years [28]. Thus, a residual, ganglia-initialized state
occurs between these two equilibration times and it is our
“initial” condition, with concentration indicated as xi(z). We
note that while complete pore-to-pore equilibration in a given
height may require timeframes up to years [27], our initial
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FIG. 2. Initial ganglia-initialized and equilibrium aqueous concentration profiles for CO2 and H2 under isothermal assumption. Ganglia-
initialized concentrations are calculated from the Krichevsky-Karzarnovsky equation [Eq. (15)]. Values interpolated from literature tabulations
are included for comparison for both CO2 [46,47] and H2 [48] under pure water and saline conditions. Long-term equilibrium shown for
μi = μe (based on the KK-concentration estimates) at z1 = 2000 m (and depth = 2000 m). Note the difference in scale between CO2 and H2.

condition does not require complete equilibration. Instead,
the largest capillary-pressure driven concentration gradients
will dissipate relatively quickly, and horizontal concentration
variations will be reduced to levels that are insignificant,
on the meter scale, relative to gravity-induced vertical
concentration differences. The system therefore effectively
attains the ganglia-initialized state well before equilibration is
complete.

We first consider pressure dependence. Equilibrium be-
tween solute and ganglia implies that μs(P, x) = μg(P) for all
P, where μg is the chemical potential of the pure gas ganglia.

Therefore, integration of Eq. (11) from Po to P, assuming
constant V m and T , gives:

μg(P) − μg(Po) = RT ln
xi(P)

xi(Po)
+ (P − Po)V m. (14)

Using the fact that chemical potential μg and fugacity
fg of the bulk phase in the ganglia are related through
μg = RT ln fg + const, we see that this is the Krichevsky-
Karzarnovsky equation [31], a high-pressure generalization of
Henry’s law:

RT ln
fg(P)

x(P)
= RT ln K + (P − Pvapw

)V m, (15)

where K is the Henry’s law coefficient, generalized for real
gases:

K = lim
x→0

fg

x
,

and Pvapw
is the vapor pressure of the solvent (water); it

is insignificant for our system—and neglected elsewhere in
this work—but necessary in general because in the limit of
zero solute concentration x → 0 the ganglia are composed
entirely of water vapor, so (P − Pvapw

) → 0. We note that the
Krichevsky-Karzarnovsky equation was originally derived to
describe the H2-water (and N2-water) system [31]; addition-
ally, previous analysis of experimental data has concluded
that the CO2-water system is accurately modelled by the
Krichevsky-Karzarnovsky equation for temperatures less than
100◦C; at higher temperatures the activity of dissolved CO2

must also be taken into account [42].
With fugacity calculated from the EoSs noted above, we

use Eq. (15) to determine the partitioning relationship be-
tween concentration and fugacity of the pure gas phase over
our considered range of depths (Fig. 3). Fugacity coefficient
is defined as the ratio of fugacity to system pressure, φ = f

P .
Partition coefficients (ratios quantifying how a species will
be distributed in two phases at equilibrium) calculated from
Eq. (15) are presented as gas phase fugacity to aqueous solu-
bility, with units of MPa/(mol gas/mol aq. phase), simplified
to MPa.
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FIG. 3. Calculation of gas fugacity coefficients from EoSs
and gas-solution partition coefficients from the Krichevsky-
Karzarnovsky equation [Eq. (15)] under isothermal temperature
conditions of 50 ◦C.

Note that fugacity—in this case, the equivalent pressure
exhibited by the gas for phase partitioning purposes—shows
opposing behavior for H2 and CO2. For H2, the bulk gas phase
behaves as though it is at higher pressure than the system
pressure; the opposite is the case for CO2. H2 shows a much
stronger affinity to partition into the bulk gas phase (i.e., it has
a much lower dissolved concentration at the same pressure);
and a more extreme variation in partitioning with depth.

By applying Eq. (9) for the chemical potential of the bulk
gas phase μg, we can use Eqs. (2) and (3) to obtain a thermo-
dynamic identity for a column of bulk gas phase (assuming
pure phase—i.e., neglecting the small fraction of water vapor)

dμg(P, z) = VmdP + mmgdz. (16)

Relating (11) and (16) by imposing equilibrium between
the ganglia and the dissolved solute at all depths, μs(z, x) =
μg(z), and simplifying gives the vertical concentration
gradient

RT
1

xi

dxi

dz
= RT

d (ln xi )

dz
= −(Vm − V m)ρwg, (17)

which is determined by the density difference between the
bulk and dissolved phases. In all typical scenarios, the dis-
solved phase will be more dense than the bulk gas phase
(Vm − V m > 0), so this initial concentration gradient will in-
crease downwards.

To illustrate the ganglia-initialized aqueous solute concen-
tration distribution, we first estimate that ganglia pressure
is 100 kPa higher than the hydrostatic pressure (to account
for Laplace pressure of the gas ganglia); this is significantly
higher than would generally be expected based on capillary
pressure-saturation relationships for model quarry sandstones
(e.g., Refs. [18,49]) but this overestimate has no impact on our
findings. Then, converting the ganglia pressure to fugacity, f ,
through the EoSs and applying the Krichevsky-Karzarnovsky
derived partition coefficient, we arrive at an aqueous con-
centration value that would be present in the local aqueous

phase equilibrated with these ganglia (Fig. 2). Note that the
same result is obtained by numerical integration of Eq. (17)
using values for Vm from the EoS. In Fig. 2 we also plot
concentration values derived from interpolation of literature
tabulations; including CO2 solubility in pure water [46], CO2

solubility in seawater-type brine [47], and H2 solubility in
pure water and 1 mol/kg NaCl [48]. In the isothermal case,
the concentrations estimated via Eq. (15) are quite similar
to the literature results, despite the fact that the Krichevsky-
Karzarnovsky equation includes no correction for activity.

This “ganglia-initialized” condition represents the initial
condition of this model. The residual gas saturation is not
explicitly parameterized: We only assume that the aqueous
phase is in equilibrium with bulk gas at hydrostatic plus cap-
illary (100 kPa) pressures.

Comparison of the ganglia-initialized and equilibrium con-
centrations shows the direction of the concentration difference
driving diffusive transport. Diffusion will drive the system
from the concentration gradient described by Eq. (17) (the
ganglia-initialized state) to the global equilibrium gradient of
Eq. (13) (the final state). Setting a reference height z1 to be the
point where the initial and final concentrations are the same
(labeled “Equilibirum Depth” in Fig. 2); then, above z1, the
initial concentration is lower than the final state—there must
be an influx of dissolved gas. Below z1 the initial concentra-
tion is higher than the final state—gas must be depleted to
reach equilibrium. This implies upward migration of solute in
all isothermal cases, even though the equilibrium concentra-
tion is increasing downwards for CO2.

This conceptual description of the system in terms of con-
centrations is intuitive, and it is accurate in the isothermal case
regardless of selection of equilibrium height z1 because con-
centration profiles are monotonic with depth. This highlights
that the final condition (i.e., the choice of the reference height
z1, and corresponding final concentration) is arbitrary in this
case. However, we caution that this logic can only be applied
when both initial and equilibrium concentration profiles are
monotonic. We will show in Sec. III that for nonmonotonic
concentration gradients, the direction of diffusion cannot eas-
ily be inferred, because the concentration difference between
initial and equilibrium states depends on the choice of z1.
Instead, it is more useful to directly interrogate the chemical
potential of the system. From Eq. (11):

dμsi

dz
= (ρs − ρw )gV m + RT

d

dz
ln(xi ). (18)

This can be simplified by writing the concentration gradi-
ent term using Eq. (17) and using the fact that ρsV m = mm =
ρgVm:

dμs

dz
= (ρg − ρw )gVm. (19)

This reveals that the chemical potential gradient is con-
trolled by the difference in density between the bulk gas
and the aqueous solution, and since ρg < ρw for CO2 and
H2, the chemical potential of dissolved solute in the ganglia-
initialized state decreases with z (i.e., increases with depth).
Under global equilibrium, μs is the same everywhere and
dμs/dz = 0—comparison of these two gradients demon-
strates that diffusion must act upwards, as described earlier. In
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general, in the isothermal case: For any fluid that is less dense
than the aqueous phase, the concentration in local equilib-
rium with trapped ganglia increases with depth more quickly
than the global equilibrium concentration. Therefore Ostwald
ripening will occur upwards for isothermal dilute solutions of
all fluids less dense than brine.

In summary, under the assumptions of dilute solution, con-
stant partial molar volume, and isothermal conditions; we find
that:

(1) In global equilibrium, μs(z) = const, and the dissolved
concentration gradient is proportional to −(ρs − ρw ); thus xH2

and xCO2 have opposing gradients.
(2) For a solution in local equilibrium with trapped ganglia

μsi(z) = μg(z); chemical potential gradient is proportional to
(ρs − ρg); i.e., μsi increases downwards for both H2 and CO2,
driving upwards diffusive mass transport of both H2 and CO2

under isothermal conditions.
This analysis thus echos previous studies finding upwards

transport due to Ostwald ripening in isothermal systems
[20–24,28].

III. IMPACT OF TEMPERATURE GRADIENTS

Geologic storage will, of course, be affected by geothermal
gradients. The nonisothermal case adds significant challenges
to the analysis and relatively few works have analysed the
impact of typical geothermal gradients. Li et al. [24] provide
an initial treatment of nonisothermal conditions; while they
pointed out that this treatment requires taking into account
thermodiffusion (the Soret effect), they did not include it in
their models due to the scarcity of data on thermodiffusion
in CO2-water system; instead their model only accounted for
thermal gradients by incorporating the change in solubility
with depth. Their results showed thermal gradients suppress
diffusive fluxes; and under certain rare conditions, have the
potential to reverse their direction, i.e., for CO2 to flow down-
wards. As we show later, the simplified analysis in Li et al.
[24] greatly underestimates the effect of geothermal gradi-
ents; in fact, fluxes reverse direction for low to moderate
geothermal gradients (diffusive transport is downwards for
both gases) and rates may increase by an order of magnitude
when the entropic impacts on chemical potential are properly
considered.

Following the work of Li et al. [24], Coelho et al. [29,30]
conducted nonequilibrium molecular dynamics (NEMD) sim-
ulations to determine the Soret coefficient of CO2 in water
and brine at reservoir conditions. Their values for pure water
corroborate experimental results from Guo et al. [56]; while
there is still significant uncertainty, the effects of thermodif-
fusion on CO2 storage can now be estimated quantitatively.
Coelho et al. [29,30] also conducted a partial analysis of CO2

diffusive fluxes, incorrectly assuming that CO2 thermophobic-
ity would necessarily drive CO2 upwards under geothermal
gradients. To our knowledge, Soret coefficients for H2 under
reservoir-relevant temperatures and pressures are still not well
characterized.

There has been significant debate about whether ther-
modiffusion must be treated as a nonequilibrium kinetic
phenomenon, or can be treated by local thermodynamic equi-
librium [57,58]. Kocherginsky and Gruebele [34,59,60] have

made significant progress on developing local equilibrium
theory of thermodiffusion and conclude that it is valid given
the following assumptions [60]:

(1) transport is diffusive without hydrodynamic
contributions;

(2) particle numbers Ni in a volume δV (z) under consider-
ation are large enough (Ni � √

Ni).
(3) local average thermodynamic variables remain mean-

ingful; and the shortest time scale δt is long enough so that the
local equilibrium may be assumed: a local temperature T (x)
and concentration c(z) can be defined in each volume δV .

Condition 1 is a fundamental assumption of this work due
to its focus on diffusive transport: we assume that there is no
advective or convective transport within the storage reservoir.
The remaining two conditions will clearly be valid for subsur-
face storage environments where thermal gradients are some
decades of degrees per kilometer.

Therefore, we treat the nonisothermal case by assuming
the reservoir consists of vertical subsections in local thermo-
dynamic equilibrium. Return to Eq. (9), where, rather than
assuming dT = 0, we assume a thermal gradient T ′(z) such
that dT = T ′dz.

First, considering the dissolved gas phase and us-
ing the definition of partial molar entropy Sm from the
thermodynamic identity:

∂μs

∂T
= −Sm,

gives the generalization of Eq. (11) for nonconstant T :

dμs = −V m(ρs − ρw )gdz − SmT ′dz + RT

x
dx. (20)

Within the above-stated assumptions we can associate the
partial molar entropy with the Soret coefficient ST [60]:

ST = − Sm

RT
. (21)

As mentioned above, the value of ST for supercritical CO2-
water systems has only recently been determined, through the
experimental work of Guo et al. [56] and computational works
of Coelho et al. [29,30]. These works agree on the magnitude
and trend of the Soret coefficient, finding that ST for CO2

in pure water is positive with values between 0.01 and 0.03
K−1 at lower temperatures and transitions to negative values
in the region 370–400 K; note that a positive Soret coefficient
implies a tendency to migrate to lower temperature regions.
The impact of salts has been estimated by Coelho et al. [30],
who show a less positive ST , transitioning to negative values
at lower T . Earlier, Windisch et al. [61] had not found a Soret
coefficient significantly different than zero, but this work had
a very large uncertainty so is consistent with the values of refs
Guo et al. [56] and Coelho et al. [29,30].

The concentration gradient in the final equilibrium state for
nonconstant T , obtained by setting dμs = 0 (global diffusive
equilibrium) in Eq. (20), is as follows:

d (ln xe)

dz
= −V m

RT
(ρs − ρw )g − ST T ′. (22)
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FIG. 4. Contributions of gravitational and thermal terms to the gradient of natural logarithm of CO2 concentration at equilibrium [Eq. (22)].
Note that the y axis for the isothermal condition is an order of magnitude smaller than the cases with a geothermal gradient. The gravitational
contribution is present in all cases but too small to be visible under scenarios with a geothermal gradient.

As discussed, for CO2 where ρs > ρw, the first term is neg-
ative, leading to negative concentration gradient (increasing
with depth) for the isothermal case T ′ = 0.

However, the additional term is positive at lower tempera-
tures (where ST > 0), since T increasing with depth implies
T ′ < 0. In Fig. 4 we display the relative size of the gravita-
tional and thermal contributions to Eq. (22) for a range of
depths, using the Soret relationship for CO2 in 1 mol/kg NaCl
brine from Coelho et al. [30], for isothermal conditions as well
as typical geothermal gradients of 10 ◦C/km and 30 ◦C/km.
The Soret effect does not exist in isothermal conditions, and
hence the 0 thermal term in the leftmost column. The gravi-
tational term exists as a negative term under all temperature
conditions; however, its magnitude remains on the order of
10−5 m−1—too small to be seen—and its contribution is
completely overwhelmed by the Soret effect in nonisothermal
cases. We note that similar estimates are not available for
H2 due to the absence of published Soret coefficient data for
aqueous solutions of H2.

The thermodiffusion term will be sufficient to invert the
concentration gradient in regions of the reservoir: Equilibrium
CO2 concentrations will decrease with depth in middle-upper
regions of reservoirs that have a typical geothermal gradient,
before increasing again once the Soret coefficient transitions
to negative values. While these qualitative statements can be
made, quantitative estimates of the equilibrium concentration
profile have very high uncertainty, since numerical integration
of Eq. (22) amplifies the uncertainties in ST . As we show
below, the equilibrium concentration profile is, in fact, not sig-
nificant in determining the direction of diffusive flux for either
CO2 or H2, because it is not the gradient of concentration that
determines the direction of diffusive flux, but the gradient of
chemical potential.

For the gas phase, Eq. (16) is modified by a similar addi-
tional term for the nonisothermal case:

dμg(P, z) = VmdP − SmT ′dz − mmgdz, (23)

where Sm is the molar entropy of the gas phase.
As for the isothermal case, the ganglia-initialized (residual-

state) concentration gradient in equilibrium with the gas
ganglia is obtained by equating the gas and solute chemical
potential from Eqs. (20) and (23):

RT
d (ln xi )

dz
= −(Vm − V m)ρwg − (Sm − Sm)T ′. (24)

Differentiating Eq. (20) and using Eq. (24) gives the
chemical potential gradient for gas molecules in the
ganglia-initialized solution:

dμsi

dz
= (ρg − ρw )gVm − SmT ′. (25)

This will be proportional to the diffusive flux of a
ganglia-initialized system, which will be discussed further in
Sec. IV.

Equation (25) relies only on the assumptions of dilute so-
lution and local thermodynamic equilibrium. It is noteworthy
that the diffusive flux of dissolved gas from a ganglia-
initialized residual state is independent of the Soret coefficient
of the dissolved gas. Since the temperature profile is the same
for the ganglia-initialized and equilibrium states, the Soret
effect, which depends only on temperature, cancels out as it
makes an equal contribution to the concentration profiles in
both cases. With the Soret effect not playing a role, the flux
is determined by how chemical potential varies with depth in
the bulk gas ganglia. Sufficient contribution by the entropic
term −SmT ′ causes a positive gradient in μg = μsi, due to
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FIG. 5. Variation of CO2 and H2 bulk molar entropy with depth
for various geothermal gradients.

the positive entropy of the bulk gas and negative T ′. For
large-enough −SmT ′, this leads to free energy decreasing with
increasing depth because the temperature dependence of the
−T S term outweighs the pressure dependence in the PV term.
Thus, we find that both H2 and CO2 in the ganglia-initialized
state have a tendency to migrate towards higher temperature
and that this is independent of whether they are thermophobic
or thermophilic.

In order to calculate the impact of thermal gradients, we
obtain values for molar entropy Sm for CO2 and H2 under
our considered pressure and temperature conditions via the
following steps. The molar entropy for an ideal gas (Sig) at
a given temperature (Sig

T ) is found using the Shomate equa-
tion with parameters tabulated in Ref. [51], calculated from
data originally from Chase [62], and modified for pressure
through Sig = Sig

T − Rln(P/PR) (PR is the reduced pressure
P/Pc where Pc is the pressure at the critical point). Deviation
from the ideal gas value is found using a departure func-
tion [63,64], calculated using the compressibility factor and
constants calculated in the Peng-Robinson EOS [32]. Under
our considered conditions, CO2 molar entropy ranges from
approximately 140 to 220 J/(mol-K) and H2 from 80 to
110 J/(mol-K); these calculated values are consistent with
tabulated data [65] to approximately 2%. Higher pressure de-
creases the molar entropy while higher temperature increases
molar entropy; the relationship of entropy to depth is thus
nontrivial and dependent on geothermal gradient (Fig. 5).

The real-gas calculated entropy values are sufficient to
reverse the chemical potential gradient for CO2 at relatively
shallow depths, even for low geothermal gradients; for H2, a
gradient of 10 ◦C is insufficient to reverse the gradient, but
30 ◦C suffices (Fig. 6). Recall that positive dμsi/dz indicates
chemical potential increasing upwards and therefore induces
downwards-driven diffusion. Larger geothermal gradients
generate higher positive gradients and shift the crossover point
to shallower depths. At shallow depths <1000 m, the molar
volume of the gas phase varies significantly, leading to large
negative gradients. Upwards diffusive transport is thus favored

FIG. 6. Variation of the vertical gradient of chemical potential
with depth for the ganglia-initialized state under different thermal as-
sumptions, indicating the direction of diffusive flux. A positive value
indicates that chemical potential is increasing with z (i.e., decreasing
with depth)—resulting in downward net diffusion of dissolved gas
molecules.

in very shallow regions; however, these depths are generally
not relevant for gas storage schemes.

In Fig. 7, we present curves of the ganglia-initialized chem-
ical potential (μsi) vs. depth, calculated through numerical
integration of Eq. (25) where μs = 0 at depth = 0 (z =
4000). This corresponds to a dissolved gas concentration of
essentially 0 at the surface and at (ideal mixture) solubility
everywhere else; this is conceptually the same initial condition

FIG. 7. Variation of chemical potential μsi of the ganglia-
initialized system with depth. The equilibrium condition would be
represented by constant μ (vertical line). The direction of diffusive
flux is thus given by the sign of the gradient dμs/dz = 0: For μs

increasing with z (decreasing with depth), diffusion acts downwards,
according to Eq. (27).
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with respect to concentration as for the isothermal case but
also now includes entropic contributions to μsi.

With these figures, we return to the conceptual model
presented in Sec. II. At equilibirum, the chemical potential
μse will be equal at all depths, i.e., present as a vertical line
in Fig. 7. The precise value at equilibrium does not need to
be determined a priori, it is sufficient to know that it will
be between the minimum and maximum values of μsi. For
regions where μsi > μse, the chemical potential must decrease
to reach equilibrium and molecules will diffuse away; where
μsi < μse, there must be an influx to reach equilibrium. For
curves where μsi monotonically increases with depth (CO2

and H2 under isothermal conditions, and H2 at −T ′ = 10 ◦C),
there must be diffusive transport upwards. However, for non-
monotonic curves, it is possible for transport to be both
upwards (for shallow depths above the inflection point) and
downwards (for all depths below the inflection point). For car-
bon storage, reservoirs at depths below 1000 m are targeted;
thus, only downwards diffusion is expected for any realistic
carbon storage situation.

It is also worth mentioning the behavior in the upper part of
the reservoir where there is continuous gas. In the presence of
geothermal gradients, it is not possible for a column of gas in
mechanical equilibrium (dP = −ρggdz) to also be in diffusive
equilibrium; Eq. (23) gives for the “equilibrium” chemical
potential μge :

dμge

dz
= −SmT ′. (26)

Again we see a positive gradient with z. This will tend
to cause ex-solution at the bottom of the ganglion (lower
chemical potential in the gas phase) and dissolution at the top,
creating a cyclic transport of gas molecules: Hydrodynamic
upward flow within the gas phase and downward diffusive
transport of dissolved molecules within the aqueous phase.
This is effectively the same as the process described by Blunt
[23] for the isothermal case (erroneously, as there is equilib-
rium in that case). Energy for the continual motion of gas
molecules comes from the continual heat flux through the
reservoir.

IV. KINETICS OF DIFFUSION

Flux in this diffusion-controlled system will be described
by:

J (z) = −Dx(z)

RT (z)

dμsi

dz
. (27)

This expression is different from the empirically derived
Fick’s first law (i.e., J = −D dx

dz ) because in this system, the
gradient of chemical potential μs driving diffusion is not only
a function of concentration x(z) but also has a significant
contribution due to the gravitational field and temperature
gradient.

Here we assume that the diffusion coefficient, D, is inde-
pendent of concentration and pressure but does increase with
temperature following the Stokes-Einstein equation:

DT (x) = DT =25◦C
T (x)

298K

μT =25◦C

μT (x)
, (28)

where μT is the dynamic viscosity of water; viscosity ratios
were calculated via the correlation presented in Kestin et al.

FIG. 8. Diffusive flux as a function of depth for the ganglia-
initialized state. Positive flux indicates upwards transport, negative
flux indicates downwards.

[66]. Diffusion coefficients were thus calculated based on the
values presented in Table I; for the 10 ◦C/km and 30 ◦C/km
geothermal cases, diffusion coefficients increase by a factor of
approximately 2.3 and 6.3, respectively, over the depth range
investigated. Following the analysis of Blunt [23], diffusion
coefficients are multiplied by an assumed porosity value of 0.2
to adjust for diffusion within porous media; this also should be
an upper bound as it neglects any reduction in diffusion due to
tortuosity.

The maximum diffusive flux will occur when the chemical
potential gradient dμ/dz is largest, i.e., at the ganglia-
initialized state. In Fig. 8, we provide estimates for flux of
CO2 and H2 based on Eqs. (27) and (19). Here, to provide
an upper bound on flux estimates, we assign x(z) to be the
gas solubility in pure water at the depth-defined temperature
and pressure, with xCO2 (z) interpolated from data reported by
Duan and Sun [46] and xH2 (z) interpolated from Zhu et al.
[48]. The units of x(z) in Eq. (27) are mol/volume, in contrast
to the rest of the paper.

As shown in Fig. 8, diffusive flux in the isothermal case
is always positive (diffusion transports molecules upwards),
and estimated values for CO2 and H2 are similar (in the region
relevant to storage of both gases), on the order of 10−15–10−14

mol/(cm2s). As observed above, flux quickly becomes nega-
tive (diffusive transport is downwards) for CO2 under even the
low geothermal gradient of 10 ◦C/km; H2 shows a more subtle
dependence, only achieving negative fluxes below 1000 m for
the 30 ◦C/km case. In the geothermal gradient case (30 ◦C),
downwards CO2 flux is several times larger than the flux of
H2; its magnitude is an order larger than the isothermal CO2

case, on the order of 10−13 mol/(cm2s).
This simplified analysis provides estimates of maximum

flux, only reflective of the hypothetical ganglia-initialized
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state. Further work is needed to establish more compre-
hensive time-resolved kinetics, including the impacts of
density-driven convection and thermal diffusive processes
(e.g., Haugen and Firoozabadi [67]).

A. Comparison with mass transport via convective dissolution

To provide an order-of-magnitude comparison, we refer
to Neufeld et al. [13] who estimated a convective CO2 flux
equaling 20 kg m−2 yr−1 for the Sleipner site in the North sea,
which is equivalent to 1.44 × 10−9 mol CO2/(cm2s). Com-
pared to the upper limit of the diffusive CO2 flux estimated
above, the convective flux is ≈4 orders of magnitude larger
(depending on temperature assumption). The estimate of
Neufeld et al. [13] represents an upper bound for storage
reservoirs, due to the high permeability (5000 mD per Michael
et al. [68]) of the storage reservoir at Sleipner. Emami-
Meybodi et al. [14] show that the maximum of time-resolved
dissolution flux for CO2 (i.e., prior to convective shutdown)
decreases by ≈2 orders of magnitude when Rayleigh number
(a dimensionless number describing convection, proportional
to permeability) is decreased by that same factor. This in-
dicates that even for the maximal assumptions considered
above, diffusive transport of CO2 will be a minor factor in
moderate to high-permeability formations. Li et al. [24] pro-
vide a more thorough analysis of convective transport rates
for a range of scenarios and similarly conclude that convec-
tive transport is likely to initiate and complete well before
diffusive transport becomes significant, for all scenarios con-
sidered, except in low permeability (�1 mD) formations. For
both diffusion and convection, flux is time dependent, and
this simple order-of-magnitude comparison of the maximal
cases does not apply for all time periods. In particular, the
low-permeability case where both convection and diffusion
act on similar timescales and with similar fluxes requires
further study to determine the combined effect on transport.
However, it is important to note that in situations with positive
geothermal gradients (i.e., all likely storage reservoirs), we
predict that diffusion will drive CO2 downwards, thus increas-
ing storage security even in the low permeability case—in
the geothermal case, diffusion and convection of CO2 are not
acting in competing directions.

As noted in Sec. II above, the partial molar volume of
H2 dissolved in water is larger than pure water, while the
opposite is true for CO2; i.e., water containing dissolved CO2

is more dense and water containing dissolved H2 is less dense
than pure water. This indicates that while convective dissolu-
tion will drive mass transport of CO2 downwards, the same
process should drive H2 upwards . Estimates of upward H2

flux due to this process are outside the scope of this study;
however, our analysis shows that in more shallow and lower-
temperature reservoirs, diffusive transport will drive hydrogen
upwards, again demonstrating that convection and diffusion
act in the same direction. Our analysis indicates that it would
require significantly deeper and warmer reservoirs to invert
the H2 diffusive flux directionality. Additional study is needed
to determine the comparative importance of convective and
diffusive processes for application to underground hydrogen
storage.

V. CONCLUSIONS

We have presented an analysis of diffusive transport in
geologic storage scenarios. We detail the thermodynamic
derivation of the phenomenon, taking into account the non-
ideality of supercritical fluids (i.e., H2 and CO2) stored under
high pressure in geologic formations. We show that under the
assumption of isothermal conditions, diffusion drives injected
gas molecules upwards, echoing previous analysis of the pro-
cess of “Ostwald ripening” [20–24].

However, our main contribution is in the incorporation of
temperature variation via geothermal gradients. We demon-
strate that with more complete consideration of entropic
constributions to free energies, diffusive transport reverses
direction under low to moderate geothermal gradients at
storage-relevant depths; furthermore, the magnitude of flux
can increase by up to two orders of magnitude. Because the
entropic contribution relative to the gravitational contribution
is larger for CO2 than H2, this reversal happens at lower
temperature gradients and shallower depths for CO2, with
practical impacts to storage operations. Our analysis indi-
cates that in CO2 storage scenarios, diffusive transport will
invariably be downwards, along with convective transport;
thus both mechanisms increase the storage security of CO2

storage. In H2 storage systems, which are likely to be more
shallow and less warm, diffusive transport will likely move
gas upwards (again, in concert with convective dissolution).
Under short timescales, this could make H2 recovery more
favorable as disconnected H2 would be transported upwards
to reconnect with the connected, recoverable plume under the
caprock. However, this also represents a potential loss route
for stored H2 fuel, as diffusion upwards through the caprock
is not limited by low permeability, but only the porosity and
tortuosity of the confining media.

We provide an upper estimate for flux rates, using assump-
tions favorable to faster diffusion. The maximum diffusive
flux estimated for CO2 occurs under our largest investi-
gated geothermal gradient of 30 ◦C and is on the order of
10−13 mol/(cm2s); four orders of magnitude smaller than the
downwards convective flux estimated for CO2 under high-
permeability conditions by Neufeld et al. [13]. We note that
under low permeability conditions and for later times, the
fluxes of convection and diffusion may become comparable.
Regardless, our analysis indicates that for all typical CO2

storage scenarios, regardless of permeability, both diffusion
and convection act in concert to drive CO2 downwards.

Our analysis has relaxed many of the assumptions prior
studies have made; particularly with respect to the isothermal
temperature assumption and the ideality of the gas (super-
critical) phases. However, the analysis does employ two
key assumptions: (1) dilute solutions, implying unity activity
coefficients, and (2) local thermodynamic equilibrium in non-
isothermal cases. For CO2 (with a maximum solubility of over
10 wt%) activity coefficients may be substantially larger than
1, particularly for high salt concentrations [41]; the impact of
these effects on our results are worthy of further investigation.
We have also used a single representative value for partial
molar volume in all our calculations. At depths greater than
those considered here, it is possible for CO2 partial molar
volume to increase to a point that the effective density of the
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solution is no longer greater than pure aqueous phase density,
at which point the gravitational driver may reverse. Our results
show that this is unlikely to impact diffusive transport of since
the entropic contributions overwhelm the gravitational contri-
butions in all storage-relevant conditions for CO2. However,
this density inversion at extreme depths will have a major
overall impact as it will cause a reversal of convective fluxes,
likely creating a barrier to convection.

Under these assumptions, we find that (contrary to pre-
vious studies) diffusion and convection will tend to work
in concert—both driving CO2 downwards and both driving
H2 upwards—for conditions representative of their respective

storage reservoirs (i.e., CO2 in deeper reservoirs and H2 in
more shallow formations). While still slow, diffusive transport
is thus predicted to be beneficial for carbon storage; for hydro-
gen storage, upwards diffusion may enable reconnection of
capillary trapped ganglia but may also represent a mechanism
for gas leakage.
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