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Nonequilibrium molecular dynamics (NEMD) computer simulations of steady shockwaves in dense fluids
and rarefied gases produce detailed shockwave profiles of mechanical and thermal properties. The Boltzmann
equation, under the assumption of local thermodynamic equilibrium (LTE), leads to the first-order (linear) contin-
uum theory of hydrodynamic flow: Navier-Stokes-Fourier (NSF). (Expansion of the LTE Boltzmann equation in
higher powers of gradients yields so-called Burnett second-order terms, etc.) NEMD simulations of strong
shockwaves with high gradients are not well modeled by NSF theory. Many years ago, a conjecture for going
“beyond Navier-Stokes” was proposed, applying the empirical observation of anisotropic thermal enhancement
in the shock front to the temperature dependence of the NSF transport coefficients, whose dissipation determines
the slope at the center of the shock profile: for weak shocks, the actual coefficients in NEMD simulations appear
to be smaller than in NSF predictions, leading to steeper gradients being observed, while for strong shocks, the
NEMD coefficients appear to be larger, leading to less steep shock rises than predicted by NSF calculations.
In this paper, we show that adding significant Burnett nonlinearity into an LTE continuum theory reproduces
the early shock rise and slope of NEMD profiles, for both weak and strong shocks in dense fluids, as well
as strong shockwaves in the ideal gas. Moreover, we show that “Holian’s conjecture” incorporates significant
Burnett nonlinearity, but like all the other LTE continuum theories, it fails to describe the slow NEMD return
to equilibrium beyond the shock front. We show that Maxwell relaxation has to be applied to the hydrodynamic
variables themselves (rather than attempting indirect relaxation of their gradients) in order to more accurately
model the entire shockwave profile. Non-LTE Maxwell relaxation is the only way to bring the entire profile into
agreement with NEMD, most noticeably for strong shockwaves.
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I. INTRODUCTION

In 1970, Alder and Wainwright discovered the hydro-
dynamic origin of the so-called “long-time tail” of the
velocity autocorrelation function using molecular-dynamics
(MD) computer experiments [1]. Before A&W’s discovery, it
was widely assumed that hydrodynamic behavior could not
possibly be seen at such tiny atomistic time and distance
scales, much less be able to adequately describe shockwave
structure with its enormous gradients of the relevant variables,
fluid velocity u, and temperature T . In other words, it would
be hopeless to apply first-order (linear in gradients) Navier-
Stokes (NS) continuum theory for momentum flux (via the
fluid-velocity gradient du/dx) and Fourier’s Law for heat flux
(via the thermal gradient dT/dx), in order to compare with
nonequilibrium molecular-dynamics (NEMD) simulations of
shockwave profiles. Burnett [2] second-order terms, such as
the square of the gradients of the hydrodynamic variables,
their second derivatives (curvature), and the larger cross term
(product of both gradients), were thought to be necessary
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additions—at minimum—to NSF hydrodynamics (NSF + B),
not to mention including even higher-order (so-called “super-
Burnett”) terms. In any event, many theorists even expressed
doubts about the convergence of this Taylor serieslike pile
on of orders, all of which were fundamentally based upon
the notion of “local thermodynamic equilibrium” (LTE), from
which the equation of state (EOS) and transport coefficients at
zero gradients, obtained from Green-Kubo (G-K) fluctuation-
dissipation integrals, could all be computed from equilibrium
MD. Later, it was found that computing transport coeffi-
cients directly from the ratios of responses to external driving
forces by NEMD computer experiments—based on macro-
scopic hydrodynamic laboratory experiments—was far less
computer intensive (even including the slight extra expense
of extrapolating to zero gradients), than integrating noisy G-K
fluctuations.

In this paper, we recapitulate the history of atomistic sim-
ulations of shockwaves [3–5] and their influence upon the
development of hydrodynamic (continuum) theory for de-
scribing fluid flow, especially since shockwaves probe the
challenges of steep gradients in density and temperature [6].
We discuss an old ad hoc prescription (“Holian’s conjecture”
from several decades ago [7]), an early attempt to improve
upon NSF theory, which relies on LTE, in order to predict
NEMD shockwave profiles for strong shockwaves. For weak
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shockwaves, NSF agrees reasonably well with NEMD simula-
tions, considering the noise level of thermal fluctuations. It is
especially for strong shockwaves that the shock rise invokes
noticeable nonlinearity, i.e., second-order Burnett terms in
density and temperature gradients; moreover, nonequilibrium,
i.e., non-LTE, deviations manifest themselves far beyond ther-
mal noise in the relaxation process following the shock front.
NEMD provides the exact results toward which continuum
theory must strive, and shockwaves provide the most stringent
challenge to theory. Holian’s conjecture, which incorporates
significant Burnett nonlinearity into an LTE continuum treat-
ment by substituting the temperature in the direction of shock
propagation, rather than the spatially averaged value, into the
NSF transport coefficients’ thermal dependence, continues to
be tested with limited success, even in recent times. Neverthe-
less, over a decade ago [8], we found a means to significantly
improve agreement with NEMD for the entire shockwave
profile, namely, a quantitative linear (exponential) relaxation
of the shock front region, using the LTE NSF + B solution as
a reference, leading to a full non-LTE hydrodynamic theory.

We will also show how Holian’s conjecture relates directly
to nonlinear Burnett theory, and yet why all such LTE con-
tinuum treatments, by themselves—even though theoretically
based upon the generalized Boltzmann’s equation,—are in-
capable of matching NEMD profiles beyond the shock front
midpoint.

II. EARLY EFFORTS IN COMPARING CONTINUUM
THEORY TO ATOMISTIC COMPUTER EXPERIMENTS

The departure from local thermodynamic equilibrium
(LTE) is most pronounced at the midpoint of a planar
shockwave in a fluid, which displays noticeable thermal
anisotropy [4]. In nonequilibrium atomistic computer simu-
lations (NEMD), the local temperature in a given molecule’s
neighborhood is measured as thermal fluctuations in molecu-
lar velocities relative to the local neighborhood average (fluid
velocity) in all three spatial dimensions [9]. In the shockwave
direction (x), the longitudinal temperature, Txx, is observed
to be higher than the spatial average, T (see Fig. 1). The
velocity distribution at the center of the shockwave transforms
from an equilibrium spherical gaussian function (Maxwell-
Boltzmann) to a nonequilibrium prolate spheroid, whose
major axis aligns along the shockwave direction, and which is
quantified by a non-Gaussian kurtosis (fourth moment minus
three times the square of the second moment) that goes from
zero in the initial equilibrium fluid, to positive on the cold side
of the shock front, to negative on the hot side, decaying back
to zero as the distribution finally returns to equilibrium [4].
Mott-Smith’s idea [10] of mixing equilibrium hot and cold
(post and preshock equilibrium) Maxwell-Boltzmann distri-
butions in the shockwave was shown to be inconsistent with
NEMD profiles, including the erroneous Mott-Smith predic-
tion of a peak in the spatially averaged temperature; in fact, the
temperature in the shockwave propagation direction exhibits
a peak at the shock front, while the average rises smoothly, as
seen in Fig. 1.

A steady planar shockwave in a fluid can be characterized
by five hydrodynamic (continuum) local variables:—density
ρ, temperature T , fluid velocity in the x-direction u, and

FIG. 1. Nonequilibrium molecular dynamics (NEMD) profiles
for a strong steady shockwave in a 3D fluid of atoms interacting
via a Lennard-Jones 6-12 pair potential [8,12] (atomic mass = m,
equilibrium separation = r0, well depth = ε), for temperature T ,
longitudinal temperature Txx , and out-of-equilibrium thermal en-
hancement (Txx − T ), in units of temperature ε/kB (kB is Boltzmann’s
constant), as functions of the profile position x/r0 (x is the shock
propagation direction) from the shock-front midpoint at x = 0, where
fluid velocity u(0) = us − up/2 for shock velocity us = 45.2(ε/m)1/2

(Mach number ≈ 9.3) and piston velocity up = 22.4 (ε/m)1/2; initial
density ρ0 = 1.0 m/r3

0 ; initial temperature T0 = 1.251 ε/kB. The
curve for the thermal enhancement closely follows the velocity gra-
dient through the profile; see Eq. (1).

zero fluid velocities in the other two transverse directions.
By mass conservation, the mass flux ρu is constant, so
that the five hydrodynamic variables reduce to two: u and
T . For the LTE continuum fluid-flow theory, NSF + B—
linear Navier-Stokes-Fourier, plus a nonlinear (quadratic)
Burnett modification of the heat flux, where the thermal gra-
dient (dT/dx) is multiplied by the fluid-velocity gradient
(du/dx),—the anisotropic enhancement of the temperature in
the direction of a planar shockwave (Txx − T ) can be approx-
imated [8] from the pressure tensor components by

Txx − T ∼=
(

∂T

∂P

)
ρ

· (Pxx − P) =
(

∂T

∂P

)
ρ

(
−ηL

du

dx

)
� 0,

(1)

where Pxx is the Navier-Stokes momentum flux (longitudinal
pressure), given by

Pxx = P(x) − ηL(x)
du

dx
. (2)

The shock profile coordinate (in the propagation direction)
is x; ηL is the longitudinal viscosity, a sum of bulk ηV and
shear ηs viscosities: ηL = ηV + (4/3)ηs.

For the ideal gas, Eq. (1) is an identity; otherwise, we
must emphasize that Txx can be measured only in NEMD
simulations;—in other words, Txx is beyond the scope of con-
tinuum theory for dense fluids [4]. The fluid-velocity gradient
is negative at the steady shockwave center (x = 0), since
the cold fluid coming from the left at velocity us stagnates
against a piston moving off to the right at us − up. In the
laboratory frame, us is the shock velocity produced when an

015105-2



GOING BEYOND AN OLD SHOCKWAVE CONJECTURE FOR … PHYSICAL REVIEW E 110, 015105 (2024)

infinitely massive piston collides with a stationary sample at
the piston velocity up. For NSF theory, the EOS (equilibrium
equation of state: pressure P and internal energy E ) and the
set of (positive) transport coefficients (bulk and shear viscosi-
ties for Navier-Stokes fluid flow and thermal conductivity for
Fourier’s heat flow) are functions of density ρ and temperature
T , evaluated at the shock profile coordinate, x.

The first NEMD simulations of a weak planar shockwave
in a dense Lennard-Jones fluid were performed in 1978 by
Klimenko and Dremin [3]. In 1979, Hoover proposed com-
paring their NEMD results with NSF continuum theory, which
showed remarkable agreement with the atomistic results, de-
spite the previously assumed inapplicability of NSF at such
small time and distance scales as exist at shock fronts [6]. The
NEMD weak-shock profiles were observed to be somewhat
steeper than calculated from continuum theory.

Soon thereafter, in 1980, Holian et al. performed NEMD
simulations of a much stronger shockwave in the same
Lennard-Jones fluid [4], to see if notable differences could
be seen between NEMD and the NSF continuum prediction.
In this case, which more closely approaches the ideal gas
limit at the middle of the shock front, the NEMD profiles
were noticeably broader than calculated by NSF. The paper
contains nonequilibrium details (i.e., beyond NSF theory)
about the anisotropy of the velocity distribution, as well as
methodology on how to sample slabs of atoms in the shock-
wave propagation direction, in order to correct the measured
shock thickness for bin size. (Notably, they showed that shock
thickness is never as narrow as one mean free path; it is always
a handful.)

The authors made the following noteworthy statement in
their paper: “There is no reason why a linear theory de-
scribing the decay of differences between longitudinal and
transverse temperatures could not be developed.” And then
they concluded by saying, “Theoretical efforts to go beyond
the Navier-Stokes level have not been completed yet.” Going
“beyond Navier-Stokes” with a deeper understanding of the
fundamental physics of fluids and gases would take the full-
ness of time—another three decades [8,11,12].

A 1988 paper, entitled “Modeling of shockwave deforma-
tion by molecular dynamics,” summarized the NEMD fluid
shockwave work up to that time [7]. For the temperature
dependence of the longitudinal viscosity and thermal conduc-
tivity at the middle of the shock front—in NSF theory, the
determinants of the steepness of shock profile gradients,—one
might be tempted to take advantage of the thermal enhance-
ment (Txx � T ) of the longitudinal temperature in the shock
direction over the spatially averaged temperature. In the weak-
shock case, if the dense fluid’s viscosity were to depend on
Txx, rather than T , it would be lower (warming up your honey
makes it flow more easily), and the resulting modified NSF
profile of u (similar for conductivity and the NSF profile of
T ) would thus be steeper and narrower, in agreement with
NEMD results. In the strong-shock case, with temperature
high enough to approach ideal-gas behavior, if the viscosity
and conductivity were to depend on Txx, rather than T , they
would be higher (contrary to dense-fluid behavior), making
the modified NSF theory’s shock rise in profiles less steep
and the shock thickness broader, in agreement with NEMD.
In other words, the density and temperature dependence of

the NSF transport coefficients could, conceivably, be modified
and therefore better represented by Txx, rather than T , for both
weak and strong shockwaves. NEMD shockwave simulations
for the ideal gas and NSF continuum comparisons, including
replacement of T by Txx in the transport coefficients’ tempera-
ture dependence (so-called “Holian’s conjecture”), reinforced
the empirical dense-fluid observations [13].

We note here—that Eq. (1) shows how replacing T by Txx

in the thermal conductivity’s temperature dependence intro-
duces the velocity gradient into the NSF heat flux, thereby
mimicking the second-order Burnett term in NSF + B; of
course, Holian’s conjecture also introduces the second power
of velocity gradient into the momentum flux. (See the Ap-
pendix for details of Holian’s conjecture’s relationship to
Burnett theory). While improving the gradients’ slopes at the
shock front, Holian’s conjecture, like other LTE continuum
theories, cannot reproduce the slow return to post-shock equi-
librium, as seen on the hot side of NEMD profiles. After the
1993 strong-shock ideal-gas paper, a number of authors began
testing Holian’s conjecture for weaker ideal-gas shockwaves
with limited success [14], and have continued their efforts
over the years, until even quite recently [15–22]. The limi-
tations of LTE continuum theories of all kinds are manifest
in poor agreement with post-shock recovery of equilibrium:
NEMD always takes a leisurely pace compared to predictions.

III. RECENT ADVANCES IN HYDRODYNAMIC THEORY

In a series of papers [8,11,12] Holian, Mareschal, and
Ravelo demonstrated that the shock profiles, for both the
ideal gas and dense fluids, could finally best be understood
as systems driven out of local equilibrium, producing thermal
anisotropy in the shock front, followed by relaxation back
to local thermodynamic equilibrium. The reference LTE con-
tinuum solution can be solved by step-wise (�x) integration
through the shock profile coordinate x, starting at the hot,
compressed side and moving toward the cold, for the NSF + B
hydrodynamic variables uref (fluid velocity) and Tref (aver-
age temperature). The exponential relaxation equation, in the
spirit of Maxwell and Cattaneo, for T (similarly for u) is
given by

T ′ = dT

dx
= −T − Tref

λ
. (3)

Cattaneo was inspired, nearly a century after Maxwell,
to add relaxation of the heat flux to Fourier’s Law of heat
flow [23], in much the same spirit that Maxwell’s viscoelas-
ticity model relaxes momentum flux (Navier-Stokes stress).
In Maxwell’s model of viscoelasticity, the total strain rate is
proportional to the elastic and viscous strain:

η
dε

dt
= σ + η

B

dσ

dt
, (4)

where stress is σ , strain is ε, viscosity is η, and elastic mod-
ulus is B. Defining a relaxation time τ = η/B and viscous
stress σref = ηdε/dt , the canonical exponential relaxation can
be expressed as

dσ

dt
= −σ − σref

τ
. (5)
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Our approach differs from Maxwell and Cattaneo in re-
laxing the NSF + B hydrodynamic variables uref and Tref

themselves, rather than relaxing the heat flux, a quadratic
function of fluid velocity, and a hard-to-untangle function
of temperature from the internal energy; on the other hand,
relaxing the longitudinal pressure, the momentum flux, is
equivalent to relaxing the fluid velocity, since they are linearly
related. The profile of uref exhibits a symmetrical shape like
the hyperbolic tangent; density ρ is derived from it, since the
mass flux in the planar, steady shock is a constant. In our
relaxation equation (above), the mean free path λ is the prod-
uct of sound velocity c and the local thermodynamic mean
collision time τ , as computed from the EOS at the shockwave
center. The observed shockwave thickness is just a few mean
free paths, making a connection between atomistic simula-
tions and continuum theory plausible, contrary to previously
accepted “wisdom.” The mean free path λ and collision time
τ can be expressed in terms of the speed of sound c, density
ρ, bulk modulus B, and kinematic viscosity ηL/ρ as

λ = cτ, τ = ηL

B
, B = ρc2, c2τ = λ2

τ
= ηL

ρ
. (6)

The Fourier heat flux, multiplied by the largest and most
significant nonlinear Burnett correction (product of velocity
and temperature gradients, with dimensionless parameter δ),
is given by

Q(x) = −κ (x)

[
1 − δ · τ (0)

du

dx

]
dT

dx
, (7)

where κ is the thermal conductivity. For the ideal gas shock-
wave, the dimensionless parameter δ = 3.6 can be computed
from Burnett equations [5] using Chang and Uhlenbeck’s
kinetic theory for hard spheres [24]; for molecules interacting
by a repulsive potential with the inverse fourth power of dis-
tance (so-called Maxwell molecules), δ = 4.25; for repulsions
steeper than inverse fourth power, such as inverse twelfth
(so-called “soft spheres”), the results fall systematically in
between these two limits. For the strong shockwave in the
Lennard-Jones dense fluid, no Burnett kinetic theory calcula-
tions have been done, so we have simply used the hard-sphere
ideal-gas parameter for our continuum NSF + B comparisons
to NEMD; for weak shocks, transport coefficients decrease
with temperature, so that δ is negative in that case. However,
we warn readers that arbitrarily setting the NSF + B δ to a
large enough negative number in the calculation could cause
heat to flow against the temperature gradient, i.e., from the
cold side of the shockwave toward the hot,—an unphysical
catastrophe [18], indeed.

The relaxation, accompanying each step in the NSF + B
integration, employs the central difference approximation,
which is shown here for the relaxed T (similarly for u):

T (x + �x) = 1

1 + �x
2λ

{
T (x) ·

[
1 − �x

2λ

]
+ [Tref (x)

+ Tref (x + �x)] · �x

2λ

}
+ O(�x3). (8)

Figure 2 shows the longitudinal pressure profile and its
deviation from isotropic pressure (Pxx − P) for a strong
shockwave in the Lennard-Jones dense fluid. The resulting

FIG. 2. NEMD shockwave profiles of longitudinal pressure Pxx

and pressure difference (Pxx − P) in pressure units of ε/r3
0 for a

strong shock in a dense Lennard-Jones fluid (see Fig. 1 caption).
Exact (atomistic) results are compared to continuum theories: linear
Navier-Stokes-Fourier (NSF), nonlinear Burnett (NSF + B), and lin-
ear (exponential) relaxation applied to NSF + B solution (Maxwell).
Note that, as predicted by non-LTE Maxwell relaxation, NEMD
returns more slowly to the final equilibrium state than any of the LTE
continuum theories.

comparison between NEMD and this relaxed continuum treat-
ment is almost quantitative; in the same paper, we also showed
quantitative agreement for a strong shockwave in the ideal
gas (Fig. 3) [8]. The early shock rise is better represented by
the nonlinear Burnett correction to the heat flow (NSF + B)
than the NSF prediction by itself [11,12] but the slower

FIG. 3. Shockwave profiles of longitudinal pressure Pxx and
pressure difference (Pxx − P) for a strong shock in an ideal gas
(Mach number = us/c0 = 134, where c0 is the bulk sound speed of
the initial state); exact atomistic results (NEMD) [5] are compared to
continuum theories [8]: linear Navier-Stokes-Fourier (NSF), nonlin-
ear Burnett (NSF + B), and linear (exponential) relaxation applied to
NSF + B solution (Maxwell). The x position is scaled by the mean
free path in the initial cold state, l0. As in dense fluid shockwaves, lin-
ear relaxation of the best continuum solution (NSF + B) is required
to match NEMD’s slower return to the post-shock equilibrium state.
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decay back to LTE that is observed in NEMD profiles requires
exponential relaxation of the NSF + B variables (in the spirit
of Maxwell-Cattaneo) [8]. We emphasize that our approach
is beyond the reach of the LTE Boltzmann equation, in that
relaxation from non-equilibrium conditions in the shockwave
front is performed upon the entire LTE continuum reference
solution; it is therefore a novel departure from all past efforts
to go beyond Navier-Stokes [13–22].

IV. CONCLUSION

The historical path for going “beyond Navier-Stokes” is
a long and winding road, full of discoveries and notable
improvements in our understanding. Local thermodynamic
equilibrium has had a long history, and the shockwave has
shown just how violation of LTE can be recovered in a pre-
dictable way–beyond any ad hoc conjectures.

The first clue to convergence in the Taylor-series orders of
continuum hydrodynamical theory was the level of agreement
between NEMD shockwave profiles (i.e., the exact classical-
mechanical results) for dense fluids and dilute gases with NSF.
The second clue was employing the largest Burnett crossterm
of gradients (NSF + B) for improving the profiles of u and
T , at least up to the midpoint of the shock front, where both
gradients reach a maximum. Higher-order terms appeared to
make no significant improvement: thus, the limit of LTE had
apparently been reached.

The final resolution for hydrodynamic theory was to apply
Maxwell-Cattaneo exponential relaxation directly to the hy-
drodynamical field variables (u and T ) themselves. That is to
say, the NSF + B LTE solutions, which drive the system to a
nonequilibrium condition (Pxx > P) in the middle of the shock
front, were used as the reference state for the relaxation back
to LTE, as seen in the exact NEMD profiles [8].

What remains to be done for the future improvements
to hydrodynamic theory? Our NSF + B solutions for u and
T , and the EOS and transport coefficients for both the fluid
and gas we studied, involved fits to MD and NEMD data
at the zero-gradient Green-Kubo limit—a potential source
of relatively tiny errors. The Maxwell-Cattaneo exponential
relaxation we carried out on the NSF + B (LTE) continuum
solution assumed a constant relaxation length λ (mean free
path), evaluated at x = 0. Instead, a better approach might be
to assume that λ is computed locally at each point x along the
shock profile. This might resolve the small remaining discrep-
ancies between our continuum approach and the NEMD shock
profiles. The major improvements made in our understanding
of hydrodynamics a decade ago [8] have led us to re-evaluate
the provisional ad hoc prescription, “Holian’s conjecture [7].
We now recognize that this conjecture,—replacing T with Txx

in the NSF transport coefficients,—modifies the NSF solution
to incorporate significant Burnett nonlinearity, and since there
is no adjustable parameter (such as the temperature-dependent
NSF + B δ), it is therefore a viable candidate for future work
as a reference solution for applying our method of Maxwell-
Cattaneo relaxation back to LTE. Without relaxation, Holian’s
conjecture suffers the same difficulty as all other LTE con-
tinuum theories in comparison to NEMD shockwave profiles:
NEMD takes considerably longer to get back to equilibrium.

Finally, the domain of non-LTE behavior is clearly a rather
narrow zone, namely, the thickness of the shock front,—a
handful of mean free paths, – nanometers in strong shock-
waves, rather than millimeters.
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APPENDIX: BURNETT NONLINEARITY
OF HOLIAN’S CONJECTURE

In this Appendix, we show that Holian’s conjecture ex-
hibits Burnett nonlinearity. Whereas our previous papers
introduced Burnett nonlinearity into the heat flux only
[Eq. (5)], Holian’s conjecture also applies to the momentum
flux [Eq. (2)].

Holian’s conjecture can be formulated as replacing the
temperature dependence on the spatially averaged temperature
T by the temperature in the shockwave direction Txx, for both
the longitudinal viscosity and thermal conductivity:

η
(0)
L = ηL(ρ, T ), η

(1)
L = ηL(ρ, Txx ), (A1)

κ (0) = κ (ρ, T ), κ (1) = κ (ρ, Txx ). (A2)

Beginning with the anisotropic temperature enhancement
[Eq. (1)], where �T = Txx − T and (x) => (ρ, T ),

�T = − BV

γCV
· τ

du

dx
, (A3)

where the Grüneisen parameter γ = V (∂P/∂E )V , the
constant-volume heat capacity CV = (∂E/∂T )V , the collision
time from Eq. (4) τ = η

(0)
L /B, and volume V (containing N

atoms of atomic mass m) is determined from the mass density
ρ = Nm/V .

For example, the longitudinal viscosity can be expanded in
powers of �T (thermal conductivity is analogous):

η
(1)
L = η

(0)
L + dη

(0)
L

dT
�T + O(�T )2 (A4)

= η
(0)
L

[
1 − BV

γCV

(
1

η
(0)
L

dη
(0)
L

dT

)
· τ

du

dx

]
+ O(du/dx)2.

(A5)

We can define a dimensionless parameter δu for the fluid
velocity u:

δu = BV

γCV

d ln
(
η

(0)
L

)
dT

, (A6)

whence the Navier-Stokes momentum-flux equation [Eq. (2)]
becomes

Pxx − P = −η
(1)
L

du

dx
= −η

(0)
L

(
1 − δu · τ

du

dx

)du

dx
+ · · · .

(A7)
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For the temperature T , a dimensionless parameter δT is
defined by

δT = BV

γCV

d ln(κ (0))

dT
, (A8)

so that the Fourier heat-flux equation [Eq. (5)] becomes

Q = −κ (1) dT

dx
= −κ (0)

(
1 − δT · τ

du

dx

)
dT

dx
+ · · · .

(A9)

Therefore, Holian’s conjecture includes major second-
order nonlinear Burnett terms in both u and T , apart from a
quadratic temperature gradient. Also, curvature in either of the
two hydrodynamic fields is neglected—these are nearly zero
at the shock front, where the gradients are linear. Despite giv-
ing better agreement with NEMD shock profiles in the early
rise, Holian’s conjecture shares a failing with all continuum
theories based on local thermodynamic equilibrium, namely,
a too-rapid return to the final equilibrium state for collision
times following the midpoint of the shock front.
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