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Orientational order and topological defects in a dilute solutions of rodlike polymers
at low Reynolds number
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The relationship between the polymer orientation and the chaotic flow, in a dilute solution of rigid rodlike
polymers at low Reynolds number, is investigated by means of direct numerical simulations. It is found that the
rods tend to align with the velocity field in order to minimize the friction with the solvent fluid, while regions of
rotational disorder are related to strong vorticity gradients, and therefore to the chaotic flow. The “turbulent-like”
behavior of the system is therefore associated with the emergence and interaction of topological defects of the
mean director field, similarly to active nematic turbulence. The analysis has been carried out in both two and
three spatial dimensions.
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I. INTRODUCTION

The emergence of chaotic flows with a complex spatiotem-
poral structure at low Reynolds number (Re), i.e., when fluid
inertia is negligible with respect to viscous forces, is an in-
triguing phenomenon which occurs in various instances of
complex fluids. A celebrated example is the regime of elas-
tic turbulence [1,2], which is observed in dilute solutions of
flexible polymers (such as hydrolyzed polyacrylamide) at low
Re and large polymer elasticity [3–7]. Even though it occurs
at low Re, this regime displays turbulent-like properties, such
as increased resistance and efficient mixing, which have been
successfully described by means of viscoelastic rheological
models [8–15]. A few years later a different instance of
spontaneous chaotic flow was discovered in dense bacterial
suspensions [16]: it was the first example of active turbulence
[17], subsequently observed, with different characteristics, in
other typologies of active fluids [18–21].

A distinctive feature of these turbulent-like flows at low
Re is the emergence of irregular velocity fluctuations in a
broad range of scales, which typically manifest in a power-
law spectral distribution of kinetic energy. At variance with
the process of turbulent energy cascade at high Re, in flows
at low Re the mechanisms which cause the spectral energy
distribution depend on the details of the physical system. In
the case of elastic turbulence, the energy injected by external
forcing at large scale is redistributed at small scales by the
elastic stress generated by polymers [1,8,14]. In the case of
active turbulence the energy is directly injected in a broad
range of scales by the additional stress generated by the active
particles (e.g., by the microswimmers) [17,22]. In complex
fluids with nematic symmetry the turbulent-like motion has
been ascribed to the emergence and to the mutual interaction
of topological defects of the average microscopic orientation
(such as disclinations), generating a backflow in the coarse-
grained velocity field [23–28].
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Recently, a novel form of low-Reynolds chaotic flow has
been observed in numerical simulations of a simple rheolog-
ical model [29] of dilute solutions of rigid rodlike polymers
(such as xanthan gum) [30–32]. Despite the fact that the
stress generated by rigid polymers is substantially different
from that of flexible elastic polymers, the properties of the
resulting chaotic flow are qualitatively similar. It particular
previous studies [30–32] reported an increase in flow resis-
tance and in mixing efficiency, which are observed in both
two-dimensional (2D) and three-dimensional (3D) simula-
tions of the model.

In the present study, we pursue the investigation of the
chaotic regime in dilute solutions of rigid rodlike polymers,
focusing on the interplay between the solvent velocity field
and the orientational order of the polymer phase. We present
a detailed study of the statistics of the polymer orientation.
The latter is described in terms of the Westin coefficients
[33], which are commonly used in nematic liquid crystals
theory. Our results show that the chaotic flow is produced by
the emergence of topological defects in the average polymer
orientation. This process is qualitatively reminiscent the phe-
nomenon observed in nematic active fluids [23–28].

The rest of the paper is organized as follows. In Sec. II
we present the Doi-Edwards model for the dynamics of dilute
rodlike polymers solutions, we provide a brief description
of the Westin coefficients, and we discuss the details of the
numerical simulations. In Sec. III we present the results con-
cerning the statistics of the orientation of the rods and its
relationship with the chaotic flow. Finally, we present a com-
parison between the results of numerical simulation of the
model in 2D and 3D simulations. Section IV is devoted to
conclusions.

II. THE DOI-EDWARDS MODEL

The Eulerian model for a dilute solution of inertialess
rodlike polymers, at rotational equilibrium with the solvent
fluid, was formulated by Doi and Edwards [29]. The direction
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and the strength of the local alignment of the polymer phase
are described by the configuration tensor field Ri j (x, t ) =
〈aia j〉V , where a is the orientation vector of an individual
rod and the average is taken over an infinitesimal volume
element V , at position x and time t . The configuration tensor
is symmetric and has unit trace. Assuming that the polymers
are immersed in an incompressible velocity field u(x, t ), the
dynamics of the system is given by the following equations:

∂t ui + uk∂kui = −∂i p + ν∂2ui + ∂kσik + fi, (1a)

∂t Ri j + uk∂kRi j = (∂kui )Rk j + Rik (∂ku j )

−2Ri j (∂l uk )Rkl , (1b)

where ν is the kinematic viscosity of the solvent fluid and f
is the external body-force which sustains the flow. The pres-
sure field p(x, t ) preserves the incompressibility constraint
∂kuk = 0. The polymer stress σi j takes the form [29]

σi j = 6νηpRi j (∂l uk )Rkl . (2)

The intensity of the polymer feedback to the flow is de-
termined by the parameter ηp, taking into account the
geometrical properties of the rods and their volume fraction.
In the case of an aqueous solution of xantham gum, an experi-
mental relationship ηp = 0.011147C1.422 was found, where C
is the concentration in weight parts per million (wppm) [34].
The expression (2) is based on a simple quadratic approxima-
tion, although more sophisticated closures have been proposed
[35–38]. It has been numerically shown that the model (1) is
able to reproduce, for large values of the Reynolds number,
the phenomenon of turbulent drag reduction in wall-bounded
flows [34,39–42]. The model (1) also contains terms related
to the Brownian rotations of the rods, but these effects can
be safely disregarded in chaotic flows in which the rotational
dynamics is dominated by the velocity gradients [32,43].

It is worth noting that Eq. (1b) is analogous to the equa-
tion for the evolution of the nematic order parameter in liquid
crystals, with a free energy equal to zero [44,45]. In particular,
the configuration tensor Ri j is related to the nematic traceless
tensor Qi j by Qi j = Ri j − (1/D)δi j , where D is the number
of spatial dimensions and δi j the standard Kronecker delta.
Nonetheless, the stress associated with liquid crystals is very
different from the polymer stress (2).

A. Degree of order and Westin coefficients

The nematic symmetry of the polymer phase allows us
to adopt concepts from liquid crystals theory for the quan-
tification of its degree of order. Since Ri j is a real-valued,
symmetric unit-trace tensor, it possesses non-negative real
eigenvalues λ1, λ2, and λ3 with 1 � λ1 � λ2 � λ3 � 0, and
TrR = λ1 + λ2 + λ3 = 1. They are associated with the three
eigenvectors n, m, and l , respectively. From the eigenvalues
we can define the three Westin coefficients [33]:

cl = λ1 − λ2, cp = 2(λ2 − λ3), cs = 3λ3. (3)

The value cl ≈ 1 corresponds to local uniaxial order, i.e., the
rods are oriented in the direction given by the first eigenvector
n. The value cp ≈ 1 corresponds to local biaxial order, i.e.,
the rods are randomly oriented in the plane defined by the first

two eigenvectors n and m. Finally, cs ≈ 1 corresponds to local
isotropy, i.e., the rods are randomly oriented in the 3D space.

The identification of topological defects in 3D liquid
crystals by means of Westin coefficients is well established
[46–49]. In the case of rodlike polymers, the topological de-
fects in the orientation of the director field n can be defined in
terms of the Westin coefficients as the regions in which cl <

cp (defects with biaxial structure) or cl < cs (defects with
isotropic structure). Recalling that the nematic traceless tensor
Qi j can be expressed in terms of the scalar order parameters S
and ε as

Q = S
(
nn − 1

3 I
) + ε

(
mm − 1

3 I
)
, (4)

and that Q = R − (1/3)I, the Westin coefficients are related
to S and ε as follows [33]:

cl = S − ε, cp = 4ε, cs = 1 − S − 3ε. (5)

In the 2D case, we simply have cl = S = λ1 − λ2.

B. Numerical methods and configuration

In the numerical simulations of the model (1) the flow
is sustained by an external monochromatic force f (x) =
[F cos(Kz), 0, 0], where F is the amplitude and K is the
wave number of the forcing. In the absence of polymers,
Eq. (1a) with this forcing admits the laminar solution u(x) =
[U0 cos(Kz), 0, 0] with amplitude U0 = F/(K2ν) (the so-
called Kolmogorov flow). The laminar solution is linearly
stable when the Reynolds number Re = U0/(Kν) is smaller
than the critical value Rec = √

2 [50].
A remarkable feature of the Kolmogorov flow is that the

mean velocity profile u(z), defined as the average of the veloc-
ity field over the x and y coordinates and over time t , maintains
the symmetry of the external forcing also in turbulent or
chaotic regimes, i.e., u(z) = [U cos(Kz), 0, 0]. The amplitude
U of the mean flow allows us to define a drag coefficient
f = F/(KU 2) [51], which has been used to investigate the
asymptotic behavior of the turbulent drag in Newtonian flow
at large Re [51,52] and the phenomenon of drag reduction
in non-Newtonian flows [53,54]. In the low Re regime, this
flow configuration has been adopted to study the phenomena
of elastic turbulence [9], elastic waves [55], and other forms of
instabilities [56]. Here we exploit the symmetries of the mean
flow to investigate the differences between the statistics of the
polymer orientation in shear-dominated and flow-dominated
regions.

The numerical integration of Eqs. (1a) and (1b) with Kol-
mogorov forcing has been performed by means of a standard
dealiased pseudospectral method in a triple-periodic cubic
domain of size L = 2π , uniformly discretized in N3 = 2563

gridpoints. Time integration is carried out using a fourth-order
Runge-Kutta scheme with implicit integration of linear terms.
In order to ensure numerical stability, Eq. (1b) is supple-
mented with a diffusive term κ∂2Ri j [57].

We performed four sets of simulations varying the parame-
ter ηp ∈ {5, 6, 7, 8}. The values of the other parameters of the
model are kept fixed as ν = 1, κ = 4 × 10−3, K = 4, F = 64.
We also performed a further ensemble of simulations in a
2D squared domain with 5122 grid points and with identical
parameters, which allows us to investigate the dependence of
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the statistics on the dimensionality of the system. For this
purpose, the values of the parameter ηp in the 2D simula-
tions have been rescaled according to the dimensional relation
η2D

p = (2/3)η3D
p proposed in [32].

In all the simulations, the velocity field is initialized with
the laminar solution u(x, t = 0) = [U0 cos(Kz), 0, 0]. The
polymer configuration tensor is initialized with an uniaxial
configuration Ri j (x, t = 0) = nin j with random orientation
of the director n at each point x. For each value of of ηp

we realized three independent simulations with different ini-
tial random orientation. After an initial transient, the system
reaches a statistically stationary chaotic state [30,32]. The
results presented here have been obtained in the stationary
chaotic regime.

III. RESULTS

A. Statistics of polymer orientation and correlations
with the mean flow

The first information about the statistics of polymer orien-
tation is given by the probability density functions (PDFs) of
the three Westin coefficients (Fig. 1). We observe that P(cl )
is peaked around cl ≈ 1 (Fig. 1 top), while P(cp) and P(cs)
are peaked around 0. This shows that the large majority of
points displays an uniaxial configuration. We also note that the
right tail of P(cs) (Fig. 1 bottom) decays much faster than that
of P(cp) (Fig. 1 center), meaning that there are significantly
more points with biaxial order than the points with isotropic
configuration.

The dependence on the concentration parameter ηp is ev-
ident in Fig. 2, which shows the fraction fU of points with
prevalent uniaxial order (i.e., points where cl > cp, cs) and the
fraction fB of points with prevalent biaxial order (i.e., points
where cp > cl , cs). We observe a relevant increase of fB from
2.5% to 4% at increasing ηp, accompanied by a decrease of
fU � 1 − fB. The fraction of points with prevalent isotropic
configuration is much smaller (not shown). This result con-
stitutes a first indication that the topological defects of the
director field n(x, t ), which are defined as the region in which
cl < max(cp, cs), are related to the “turbulent-like” behavior
observed in the velocity field. The observation that the bi-
axial configuration for the defects is much more likely then
the isotropic one is reminiscent of what happens in nematic
liquid crystals, in which the core of a wedgelike disclination
possesses a biaxial structure [58].

In the regions in which the director n is unambiguously
defined (i.e., where cl > cp, cs), the statistics of the orientation
of n can be investigated in terms of the angles θ1 = arccos |nx|
and φ1 = arccos(|ny|/

√
n2

y + n2
z ). The angle θ1 represents the

angle between n and the mean flow, which is oriented along
the x axis (the streamwise direction). The angle φ1 repre-
sents the orientation of the projection of n in the y-z plane.
The value φ1 = 0 corresponds to the alignment with the y
axis (the neutral, or spanwise, direction), while φ1 = π/2
indicates the alignment with the z axis (the mean shear, or
cross-flow, direction). The PDFs of θ1 and φ1 conditioned
to the points with prevalent uniaxial order (cl > cp, cs) are
shown in Fig. 3. We find that PU (θ1) is peaked at small angles
θ ≈ π/40, indicating that n tends to be almost (although not

FIG. 1. Probability density functions of the Westin coefficients
cl (top), cp (center), and cs (bottom) for different values of concen-
tration coefficient ηp.

completely) parallel to the mean flow. The deviation from the
x axis in the y-z plane shows a preferential orientation in the
direction the mean shear (the z axis) since PU (φ1) is peaked
at φ ∼ π/2. Nonetheless, the probability of other values of
φ1 is not negligible, and it is almost constant for φ1 < π/4.
The joint PDF PU (θ1, φ1) (averaged on all the values of ηp)
confirms that the rods tend to align with the mean flow in the
regions where the director n is unambiguously defined (i.e.,
where cl > cp, cs). The weak preference for the orientation
along the z axis compared to y axis is presumably due to the
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FIG. 2. Fraction of points with prevalent uniaxial order fU (red
circles) and with prevalent biaxial order fS (green diamonds) as a
function of the concentration ηp.

fact that velocity fluctuations in the cross-flow direction are
more intense than in the spanwise direction [32].

In the regions with prevalent biaxial order (i.e., where
cp > cl , cs) the first two eigenvectors n and m are not unam-
biguously defined. In this case, it is convenient to characterize
the statistics of polymer orientation by means of the third
eigenvector l , which is perpendicular to the plan defined by
n and m. The orientation of l is described by the angles θ3 =
arccos |lx| and φ3 = arccos(|ly|/

√
l2
y + l2

z ). In Fig. 4 we show
PDFs of θ3 and φ3, as well as the joint pdf PB(θ3, φ3) averaged
on all the values of ηp. The statistics is conditioned to biaxial
regions cp > cl , cs. The PDF PB(θ3) is peaked at θ3 � π/2,
with an exponential tail PB(θ3) ∼ Aeθ3 in the range π/15 �
θ � π/2, while p(φ3) has a more complex shape, with a
maximum at φ3 close to π/2 and a secondary peak close to 0.
The 2D joint PDF PB(θ3, φ3) averaged on all values of ηp has
a clear maximum close to the corner {θ3 = π/2, φ3 = π/2}
(Fig. 4, bottom), which corresponds to a prevalent direction
of l aligned with the z axis. This shows that inside the biaxial
regions the rods are mostly oriented in the x-y plane, which is
orthogonal to the direction of the mean shear. We also find a
secondary peak in the joint PDF PB(θ3, φ3) close to the corner
{θ3 = π/2, φ3 = 0}, corresponding to rods oriented in a plane
almost parallel to the x-z plane.

Recalling that the regions with prevalent biaxial order cor-
respond to topological defects of the orientation of the director
field n, the results obtained so far can be summarized as
follows: In the regions characterized by nematic order the
polymers are mostly aligned in the direction of the mean flow;
conversely, within the topological defects they are preferen-
tially oriented in the plane orthogonal to the mean shear.

The influences of the structure of the mean flow and of
the mean shear on the statistics of polymer orientation can be
further investigated by dividing the spatial domain into f low-
dominated and shear-dominated regions. The Kolmogorov
flow is an optimal setup for this purpose, since it allows us to
identify very easily these regions due to the property that the
vertical profiles of the mean velocity ux(z) and of the mean
velocity gradient ∂zux(z) remain monochromatic also in the

FIG. 3. PDFs of the angle θ1 between the director n and the x
axis (top), and of the angle φ1 representing the orientation of the
projection of n in the y-z plane (center), for different values of
concentration coefficient ηp. Bottom: joint PDF of the orientation
of n in the θ1-φ1 plane averaging on all the values of concentration
coefficient ηp. The statistics is conditioned to regions with prevalent
uniaxial configuration (cl > cp, cs).

chaotic regime [30,32]:

ux(z) = U cos (Kz), ∂zux(z) = −KU sin (Kz). (6)

Here and in the following the overbar [·] indicates the average
over x and y coordinates and time t . The f low-dominated
regions (denoted as F ) are defined as the regions located
around the extremals of the mean flow, i.e., Kz ∈ [0, π/4) ∪
[3π/4, 5π/4) ∪ [7π/4, 2π ] (gray regions in Fig. 5). The
shear-dominated regions (denoted as S) are defined as the
regions located around the extremals of the mean shear, i.e.,
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FIG. 4. Top and center: PDFs of the angle θ3 between the third
eigenvector l and the x axis (top), and of the angle φ3 representing
the orientation of the projection of l in the y-z plane (center), for
different values of concentration coefficient ηp. Bottom: joint PDF of
the orientation of l in the θ3-φ3 plane, averaging on all the values of
concentration coefficient ηp. The statistics is conditioned to regions
with prevalent biaxial configuration (cp > cl , cs).

Kz ∈ [π/4, 3π/4) ∪ [5π/4, 7π/4) (white regions in Fig. 5).
The PDFs of the isotropy coefficient cs conditioned to f low-
and shear-dominated regions show that the points with larger
values of cs are mostly located into the flow-dominated re-
gions: P(F )(cs) is almost an order of magnitude larger than
P(S)(cs) for cs � 0.4 (Fig. 6). As expected, isotropic polymer
configurations are disfavored in the presence of a mean shear.

FIG. 5. Symbolic sketch representing the partition of the spatial
domain along the z direction into flow-dominated regions (gray back-
ground) and shear-dominated regions (white background).

Furthermore, the mean shear influences also the statistics
of biaxial regions. As is shown in Fig. 7, the joint PDF
of the angles {θ3, φ3}, which describes the orientation of l ,
is remarkably different in the flow- and the shear- domi-
nated biaxial regions. In particular, in the flow-dominated
regions P(F )

B (θ3, φ3) displays a local maximum at {θ3 ≈ π/2,

φ3 ≈ 0}, corresponding to biaxial order in the x-z plane. This
maximum is almost absent in the shear-dominated regions
(the value of the PDF is approximately an order of magnitude
smaller compared to the flow-dominated ones). Moreover,
in the portions of the {θ3, φ3} plane located at θ3 < π/4 or
φ3 < π/4, which are far from the {π/2, π/2} corner, the PDF
PB(θ3, φ3) exhibits significantly smaller values in the shear-
dominated than in the flow-dominated regions. Therefore,
the mean shear suppresses the biaxial configuration, with the
exception of biaxiality in the plane x-y, which is perpendicular
to the direction of the mean shear.

FIG. 6. PDFs of isotropy coefficient cs conditioned to flow-
(empty symbols) and shear- (filled symbols) dominated regions, for
different values of concentration coefficient ηp.
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FIG. 7. Joint PDFs of the third eigenvector l in the θ3-φ3 plane,
conditioned to flow- (top) and shear- (bottom) dominated regions.
The statistics is averaged on all the values of concentration ηp.

This phenomenon has a simple explanation. In the Kol-
mogorov flow, the most intense component of the velocity
gradients is ∂zux. A biaxial configuration of the polymers in
the x-y plane (or a generic uniaxial configuration with n lying
in the x-y plane), corresponding to Ri3 = 0, minimizes the
product ∂ juiRi j , and therefore the stress exerted by the rods
on the fluid.

B. Topological defects and chaotic flow

The existence of correlations between the chaotic flow and
the topological defects of the configuration tensor R can be
qualitatively inferred by the comparison of a section of the
streamwise component of the velocity ux with the correspond-
ing section of the uniaxiality parameter cl (Fig. 8). We clearly
observe that the regions with cl 
 1, i.e., topological defects
of the director field, are associated with deformations of the
mean flow [59].

In order to highlight these correlations, it is convenient to
decompose the velocity field u(x, t ) as the sum of the mean

FIG. 8. Vertical sections in the x-z plane of the uniaxiality pa-
rameter cl (top) and of the streamwise ux component of the velocity
field, normalized with respect to its root-mean-squared value ux,rms

(bottom), in the chaotic regime at ηp = 7.
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flow and the fluctuations field:

u(x, t ) = ux(z)êx + u′(x, t ). (7)

From the velocity fluctuation field u′ we define the vorticity
fluctuations field ω′ = ∇ × u′ as well as the fluctuating part of
the polymer stress tensor σ ′

i j = 6νηpRi j (∂l u′
k )Rkl . The global

budget of the kinetic energy associated with the velocity fluc-
tuations 1/2〈|u′|2〉 can be obtained from Eq. (1a):

1

2

d

dt
〈|u′|2〉 = −ν〈|ω′|2〉 − 〈σ ′

i j∂ ju
′
i〉, (8)

where the angular brackets 〈·〉 denote the average over the
whole volume. Similarly, by taking the curl of Eq. (1a) and
multiplying it scalarly by ω′, we obtain the global budget
of the enstrophy associated with the vorticity fluctuations
1/2〈|ω′|2〉:

1

2

d

dt
〈|ω′|2〉 = −〈(∂ jω

′
i )u

′
iω

′
j〉 − ν〈|∇ × ω′|2〉

− 〈(∂iω
′
j )(ε jkl∂kσ

′
il )〉, (9a)

where εi jk is the 3D Levi-Civita symbol. Equations (8) and
(9a) have been obtained taking explicitly into account the
periodic boundary conditions of the domain.

In order to quantify the relationship of the velocity and
vorticity fluctuations with the rods orientation we compute
the averages of the various terms which contribute to the
energy and enstrophy dissipation εν = ν|∇ × u′|2 (viscous
energy dissipation), εp = σ ′

i j∂ ju′
i (polymer energy dissipa-

tion), ζν = ν|∇ × ω′|2 (viscous enstrophy dissipation), and
ζp = (∂iω

′
j )(ε jkl∂kσ

′
il ) (polymer enstrophy dissipation) condi-

tioned to the local values of cl , cp, and cs. We note that, in
the model adopted in the current study, the polymer energy
dissipation εp is a positive-defined quantity since it can be
expressed as εp = 6νηp(Ri j∂ ju′

i )
2, hence it represents a purely

dissipative term, as well as the viscous dissipation εν and ζν .
The same is not true for ζp, which can be either positive or
negative, indicating local dissipation or production of enstro-
phy, respectively. The vortex stretching term 〈(∂ jω

′
i )u

′
iω

′
j〉 in

Eq. (9a) is negligible because of the low Reynolds number of
the chaotic flow [32].

Figures 9 and 10 show the conditional average of the con-
tributions εν and εp of the energy dissipation, normalized with
ε0 = FU0/2. The viscous dissipation εν is almost independent
on cl , cp, cs (see Fig. 9), meaning that the intensity of velocity
gradients is not significantly influenced by the local rotational
order. Conversely, the energy dissipation due to the polymers
is larger in uniaxial regions, as signaled by the conditional
average of εp which attains a maximum for cl ≈ 0.8, cp ≈
0.1, and cs ≈ 0 (see Fig. 10). Moreover, it displays a clear
monotonic dependence on the polymer concentration ηp. This
phenomenon has a simple explanation. Recalling that σ ′

i j =
6νηpRi j (∂l u′

k )Rkl and that εp = σ ′
i j∂ ju′

i we get that εp has a
quadratic dependence with respect to the velocity gradients
and to the configuration tensor [29]. Given that the intensity
of the velocity gradients is not significantly influenced by the
orientation of the polymer (as suggested by the conditional
average of εν), the intensity of εp can be estimated by assum-
ing a diagonal form of Ri j , which gives εp ∝ TrR2. The trace
TrR2 is precisely maximum in uniaxial regions. The physical

FIG. 9. Local dissipation of kinetic energy due to viscosity εν =
ν|∇ × u′|2 normalized with ε0 = FU0/2 as a function of uniaxiality
coefficient cl (top), biaxiality coefficient cp (center), and isotropy
coefficient cs (bottom).

meaning of this result is that the energy dissipation due to
the polymer stress is maximum in the regions in which the
polymer orientation displays uniaxial order.

The conditional average of the dissipative terms of the
enstrophy balance is shown in Figs. 11 and 12. The enstro-
phy dissipation due to viscosity ζν is maximum for cl ≈ 0.3,
cp ≈ 0.7, and cs ≈ 0.4, and it is much larger that the value
for cl ≈ 0.95 (see Fig. 11). This results show that strong
vorticity gradients are associated with the topological defects
(i.e., regions in which cl 
 1). In particular, we note that the
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FIG. 10. Local dissipation of kinetic energy due to polymer
stress εp = σ ′

i j∂ ju′
i, normalized with ε0 = FU0/2, as a function of

uniaxiality coefficient cl (top), biaxiality coefficient cp (center), and
isotropy coefficient cs (bottom).

maximum value of the conditional average of ζν occurs for
values of cl and cp which are close, but not exactly equal
to a perfect biaxial configuration cl ≈ 0 or cp ≈ 1. We can
therefore infer that the regions in which the vorticity gradients
are more intense correspond to the boundaries of the biaxial
regions. The conditional average of ζp displays a qualitatively
similar behavior (see Fig. 12) but with a smaller ratios be-
tween the maximum and the minimum values. This is the
result of a competition between the dependence of ζp on the
intensity of the vorticity gradients, which is maximum close

FIG. 11. Local dissipation of enstrophy due to viscosity ζν =
ν|∇ × ω′|2, normalized with ζ0 = FU0K2/2, as a function of uni-
axiality coefficient cl (top), biaxiality coefficient cp (center), and
isotropy coefficient cs (bottom).

to the regions of prevalent biaxial order, and its dependence
on TrR2, which is maximum in the uniaxial regions.

The physical implications of the results presented so far
can be summarized as follows. The local orientational order
of the rods is directly correlated with the generation of intense
vorticity gradients, rather than velocity gradients. In particu-
lar, strong vorticity gradients are observed in regions in which
the polymers rotate incoherently, and therefore their average
orientation is not well defined, i.e., the topological defects.
These rotations mostly occur in the plane perpendicular to the
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FIG. 12. Local dissipation of enstrophy due to polymer stress
ζp = (∂iω

′
j )(ε jkl∂kσ

′
il ), normalized with ζ0 = FU0K2/2, as a function

of uniaxiality coefficient cl (top), biaxiality coefficient cp (center),
and isotropy coefficient cs (bottom).

mean shear (the x-y plane), because this configuration min-
imizes the polymer stress. As a consequence, the topological
defects of the polymer director field display a prevalent biaxial
order. The disturbance flow induced by the rotational defects,
in turn, causes further rotations of the polymers, leading to the
destabilization of the laminar flow and the emergence of the
“turbulent-like” behavior.

C. The 2D model

Previous studies showed that the chaotic regime with rod-
like polymers appears to be qualitatively very similar between

2D and 3D simulations [32]. This is remarkably different
from the well-known phenomenology of classical turbulence.
In Newtonian flows at high Reynolds number, the differ-
ences between 3D and 2D turbulence arise from the absence
of the vortex stretching term in the 2D Navier-Stokes (NS)
equations, which implies the conservation of enstrophy in
the inertial range leading to the development of an inverse
energy cascade [60,61]. This phenomenon does not influ-
ence the chaotic regime considered in this study for two
reasons. First, we consider flows in the low-Reynolds number
regime in which the effects of the inertial terms are negligible
with respect to the viscous and polymer stresses. Second, in
the non-Newtonian model considered here, the enstrophy is
not anymore an inviscid invariant in the 2D case, because
the polymer stress can act as a source of enstrophy at all
scales.

Nonetheless, changing the dimensionality of the system
can influence the behavior of the flow as a consequence of the
different rotational degrees of freedom of the rods. Therefore
it is natural to investigate the interplay between the solvent
velocity field and the rotational order of the rods also in a 2D
flow. In this simplified geometry, the uniaxiality coefficient
cl = λ1 − λ2 = S is sufficient to characterize the local degree
of order, while a single angle θ = arccos |nx| describes the
orientation of the director n with respect to the direction of
the mean flow.

The statistics shown in Fig. 13 is similar to the results of
the 3D simulations: in the vast majority of spatial locations the
polymers display uniaxial order (cl ≈ 1), and they are mostly
aligned in the direction of the mean flow (θ ≈ 0). The ab-
sence of a spanwise direction, and therefore the impossibility
to have biaxial order in a plane perpendicular to the mean
shear, causes the points deviating from the uniaxial order to
be significantly reduced compared to the 3D system. This is
due to the fact that, in the presence of a strong transverse
shear in 2D flow, the only configuration that minimizes the
product ∂ juiRi j (and hence the polymer stress) is the uniaxial
one with n parallel to the x axis (cl = 1, θ = 0). As for the
3D simulations, we investigated the correlations between the
velocity and enstrophy fluctuations and the polymer orienta-
tional order by computing the conditional average of the local
terms εν , εp, ζν , and ζp (defined as in the 3D case) which
contribute to the energy and enstrophy balance. The behavior
of the conditional average of εν , εp observed in 2D simulations
is qualitatively similar to the 2D system (see Fig. 14). The vis-
cous dissipation εν is weakly affected by the degree of order
of the polymers, although the dependence on concentration
ηp is clearly observable. We recall that in the 2D simulations
the concentration parameter ηp has been rescaled according to
the dimensional relation η2D

p = (2/3)η3D
p [32]. To facilitate

the comparison, we report the 3D-equivalent value in the
figures.

The dissipation due to the polymers εp is more intense in
uniaxial regions, as shown by the maximum of εp close to
cl ≈ 0.9. For the terms related to the enstrophy balance we
find that ζν is maximum in regions with cl ≈ 0.4, which do
not display either an uniaxial order (cl = 1) or a perfect 2D
isotropic order (cl = 0) (see Fig. 15). This result shows that
the regions surrounding the topological defects are character-
ized by strong vorticity gradients.
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FIG. 13. Top: PDFs of the uniaxiality coefficient cl in 2D simu-
lations, for different values of concentration coefficient ηp. Bottom:
PDFs of the angle θ between the director n and the x axis, for
different values of concentration coefficient ηp.

Comparing the 2D and 3D cases, we observe that in 2D
flow the dependence of ζν on cl is more pronounced, as well
as the dependence on the concentration ηp. The increased
intensity of vorticity gradients around the topological defects
in two dimensions with respect to the 3D system is easily
explained in terms of the different stress associated to the
topological defects. In three dimensions the majority of the
defects has a biaxial order in the x-y plane, perpendicular
to the mean shear. This configuration which minimizes the
polymer stress is not allowed in two dimensions. The topo-
logical defects in 2D display biaxial order in the x-z plane,
causing a strong local stress. We also notice that the condi-
tional average of the polymer contribution to the enstrophy
balance ζp becomes negative in regions of strong rotational
disorder cl � 0.2. In these regions, the rotational dynamics
of polymers acts on average as a source of enstrophy in two
dimensions, a phenomenon which is not observed in the 3D
simulations.

IV. CONCLUSIONS

In this work, we presented the results of direct numerical
simulations of the Doi-Edwards model for a dilute solution
of inertialess rodlike polymers, aimed to study the interplay
between the microscopic rotational order of the polymer phase

FIG. 14. Dissipation of kinetic energy due to viscosity εν =
ν|∇ × u′|2 (top) and due to polymer stress εp = σ ′

i j∂ ju′
i (bottom),

normalized with ε0 = FU0/2, as a function of the uniaxiality coef-
ficient cl , for different values of concentration coefficient ηp, in 2D
simulations.

and the chaotic low-Reynolds flow generated by the polymer
stress. The simulations have been carried out in both 3D and
2D flows, allowing us to investigate the role of the dimension-
ality of the system.

Our findings highlight the role of the topological defects in
this “turbulent-like” regime at low Re. In the 3D simulations,
we showed that the rods are preferentially aligned with the
mean flow, while the topological defects of the director field
take the form of local regions with biaxial order in the plane
perpendicular to the mean shear. This configuration minimizes
the friction between the rods and the fluid and the polymer
stress.

We also investigated the correlation between the rotational
order of the polymer and the velocity and vorticity fluctuations
of the chaotic flow, showing that maxima of the energy dissi-
pation due to the polymer stress occur in regions of the flow
characterized by uniaxial order, while intense vorticity gradi-
ents are observed in the regions surrounding the topological
defects.

The comparison between 3D and 2D simulations reveals a
qualitatively similar scenario, with some differences. In the
2D systems, the impossibility to have biaxial order in the
plane orthogonal to the shear, minimizing the polymer stress,
leads to a reduction of the area covered by the defects and
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FIG. 15. Dissipation of enstrophy due to viscosity ζν =
ν|∇ × ω′|2 (top) and due to polymer stress ζp = (∂iω

′
j )(ε jkl∂kσ

′
il )

(bottom), normalized with ζ0 = FU0K2/2, as a function of the uniax-
iality coefficient cl , for different values of concentration coefficient
ηp, in 2D simulations.

to a strong increase of the vorticity gradients around them,
compared to the 3D system. This result poses the intriguing
question of which ordering phenomenology is expected in

quasi-2D geometry, i.e., if the flow is confined in a domain
in which one dimension is much smaller than the other two.
From a physical point of view it is natural to expect a gradual
transition from a full 3D to a predominantly 2D ordering
phenomenology as the domain is squeezed. Nonetheless, we
remind that the mathematical formulation of the 2D model
itself is singular, because it reduces the number of rotational
degrees of freedom of the polymers. Therefore, in a physical
setup confined in a thin fluid layer, the 2D ordering phe-
nomenology can be fully recovered only if the thickness of the
layer is smaller than the extension of the rods, thus preventing
the rotations in the confined direction. A definitive answer
to this question could be provided only by simulations of
the full 3D model in a quasi-2D domain, in which the rods
are allowed to rotate in the 3D space under the effect of a
quasi-2D velocity field.

In conclusion, the picture which emerges from our results
is that while the topological defects are advected by the mean
flow, they in turn generate disturbance flows around them.
These disturbances cause hydrodynamical interaction within
the defects, which ultimately results in the emergence of the
chaotic behavior of the fluid [59].

These results, and in particular the importance of the
topological defects in the average polymer orientation, are
reminiscent of active nematic turbulence [17], which is ex-
plained in terms of the interplay between the topological
defects of the director field and the geometry of the flow, both
in two [27,62,63] and in three [28,64–66] spatial dimensions.
For these reasons, further investigations on the dynamics of
the chaotic regime generated by rodlike polymers could be
carried out adopting similar techniques to those for active
nematics, such as the analytical computation of the backflow
induced by the defects [24,26,63].
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