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Investigations on the shock wave induced by collapse of a toroidal bubble
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When bubbles collapse near a wall, they typically experience an asymmetric deformation. This collapse leads
to the creation of a jet that strikes the bubble interface, causing the formation of a toroidal bubble and the
subsequent release of a water-hammer shock. In this study, we present a systematic analysis of the collapse of a
toroidal bubble in an open field or adjacent to a flat wall using high-fidelity numerical simulation. To maintain
the sharpness of the interface, we employ the interface compression technique and the boundary variation
diminishing approach within the two-phase model. Our findings demonstrate that shock waves emitted from the
toroidal bubble consistently propagate toward the central axis of the torus, resulting in significant pressure shocks
along the axis, similar to the water-hammer shock formed during the collapse of a spherical bubble. In contrast,
weak pressure waves are generated in the transverse directions, leading to relatively weaker pressure peaks.
Furthermore, the wall-pressure peak induced by the toroidal bubble is approximately three times higher than
that induced by the spherical bubble. Based on the directional characteristics of pressure wave propagation from
collapsing toroidal bubbles, toroidal-shaped pressure vessels can be designed as buoyancy materials for deep
submersibles. This design enables the focused release of energy in a specific direction, effectively minimizing
the destructive chain reaction caused by the implosion.
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I. INTRODUCTION

The toroidal bubble is a common phenomenon in both
natural and engineering applications, such as freely rising gas
bubbles [1,2], shock-induced collapsing bubbles [3–5], bubble
collapse near a free surface [6–10] or a solid wall [11–19], and
multibubble interactions [20–23]. When a bubble collapses
asymmetrically, the jet induced by the collapse can pierce the
bubble and break it into a toroid. Numerous studies [8,24–
27] have shown that the successive collapse and rebound
of the toroidal bubble in the late stage can emit complex
shock waves, which may cause damage to nearby structures.
Moreover, Bempedelis and Ventikos [28] demonstrated that
the existence of a toroidal bubble can strengthen the collapse
of nearby bubbles, leading to a peak pressure up to 140 GPa
in the flow field. Recently, researchers have also found that
the toroidal bubble has different acoustic properties from the
spherical bubble [29,30].

However, despite the widespread occurrence of toroidal
bubbles, there are only a few studies concerning the collapse
of a toroidal bubble. Chahine and Genoux [31] developed a
theoretical toroidal bubble dynamical equation based on an
asymptotic approach, but the cross section of the bubble ring
was confined to a circle shape. Cao and Macián-Juan [32]
simulated a spherical gas bubble rising in water, and found
that the formation of a toroidal bubble after central breakup
was heavily dependent on initial conditions. Liu et al. [15,33]
used axisymmetric incompressible Navier-Stokes equations
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and the front tracking method to study the toroidal bubble
dynamics near a solid wall, and found that initial wall-
bubble distance and liquid viscosity had significant effects on
the evolution of the toroidal bubble. In summary, while
some progress has been made in understanding the dynam-
ics of toroidal bubbles, the formation mechanism of shock
waves during the violent collapse of a toroidal bubble is
still not fully understood. Further research is needed to ad-
dress this gap in knowledge and to develop better models
for predicting the behavior of toroidal bubbles in different
applications.

Our research aims to improve the understanding of
the shock wave characteristics and morphology features of
toroidal bubble collapse using a high-fidelity numerical ap-
proach. To achieve this, we have adopted the interface
compression technique to modify the compressible two-phase
model of Kapila et al. [34]. This modification improves
the sharpness of the phase interface and confines the interface
span to a desired thickness. Additionally, we have used the
boundary variation diminishing (BVD) principle [35,36] to
construct the Weighted Essentially Non-oscillatory (WENO)-
Tangent of Hyperbola for Interface Capturing (THINC)-BVD
scheme for spatial reconstruction. This scheme, which em-
ploys the fifth-order WENO scheme [37] and the interface
capturing function called THINC [38], minimizes numerical
dissipation near any type of discontinuity, including contact
discontinuities, shock waves, and phase interfaces. By a com-
prehensive analysis of the shock wave behavior in toroidal
bubble collapse, we hope to provide insights into this complex
phenomenon, thereby contributing to the optimization design
of underwater pressure vessels.
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In the following work, we present our physical model, nu-
merical implementation, and validation in Sec. II. We discuss
the characteristics of shock waves and peak pressure induced
by shock impacting in Sec. III. Finally, we summarize our
important conclusions in Sec. IV.

II. NUMERICAL METHODS

A. Governing equations with interface sharpening terms

To improve the sharpness of a moving interface, the com-
pressible two-phase five-equation model of Kapila et al. [34]
with the interface compression technique [39] is employed.
The governing equations are given by

∂ (α1ρ1)

∂t
+ ∇ · (α1ρ1u) = −ρ1R(α2), (1)

∂ (α2ρ2)

∂t
+ ∇ · (α2ρ2u) = ρ2R(α2), (2)

∂ (ρu)

∂t
+ ∇ · (ρuu + p) = (ρ2 − ρ1)uR(α2), (3)

∂ (ρE )

∂t
+ ∇ · [(ρE + p)u]

= [0.5(ρ2 − ρ1)|u|2 + p(�2 − �1) + �2 − �1]R(α2),
(4)

∂α2

∂t
+ u · ∇α2 = α1α2

(
ρ1c2

1 − ρ2c2
2

)
α1ρ2c2

2 + α2ρ1c2
1

∇ · u + R(α2), (5)

where αk is the volume fraction, ρk the density, u the velocity
vector, E the total energy, and p the pressure. The subscript
k = 1 refers to the liquid phase and k = 2 the gas phase. The
interface compression term R(α2) on the right-hand side of
the Eq. (5) is used to sharpen the phase interface,

R(α2) = L(α2)χ0n · ∇[ε|∇α2| − α2(1 − α2)], (6)

where

L(α2) =
{

1, 10−6 < α2 < 1 − 10−6

0, otherwise
. (7)

The characteristic speed is

χ0 = 4[α2(1 − α2)|u|]max. (8)

The interface normal is

n = ∇α2/|∇α2|. (9)

The parameter ε is used to define the desired interface
thickness; we set ε = 0.75	xmin following the work of Tiwari
et al. [39], where 	xmin is the finest mesh size. The thick-
ness of the interface is maintained by a balance between the
sharpening term α2(1 − α2) and diffusion term ε|∇α2|. The
R-like terms in Eqs. (1)–(4) are designed to satisfy the need
for thermodynamical consistency within the interface region.
The stiffened gas equation of state (SG EOS) [40] is used to
close the governing equations,

p = (π − 1)ρe − π p∞, (10)

where π is the ratio of specific heats, p∞ the stiffness con-
stant, and e the density of internal energy. The states of

mixture flow is given by

α1 + α2 = 1, (11)

α1ρ1 + α2ρ2 = ρ, (12)

α1

π1 − 1
+ α2

π2 − 1
= 1

π − 1
, (13)

α1 p∞,1

π1 − 1
+ α2 p∞,2

π2 − 1
= p∞

π − 1
. (14)

In this paper, we adopt dimensionless parameters accord-
ing to previous works in the literature [3,41,42]. For the gas
phase π2 = 1.4 and p∞,2 = 0; for the liquid phase π1 = 6.59,
and p∞,1 = 4049. The sound speed is computed by the mix-
ture variables as

c2 = π (p + p∞)

ρ
, (15)

and the time step is calculated by

	t = 	xmin

||u| + c|max
. (16)

In this study, the boundary conditions are specified at the
ghost cell of the boundary face. The zero-order extrapolation
boundary conditions as follows are considered for the far field
of computational domain,

dq/dx|� = 0, (17)

where � indicates the boundary face and q =
[α1, α2, ρ1, ρ2, u, v,w, p]T . The boundary conditions for the
wall are the same as the zero-order extrapolation conditions
except for the velocity u = (un, uζ , uη ), in which the normal
component to the wall boundary, un, must be prescribed at
ghost cells to ensure

un|� = 0. (18)

The boundary condition for other velocity components, uζ

and uη, follows Eq. (17).

B. Numerical discretization

The BVD scheme replaces the reconstruction of high-
order schemes like Monotone Upstream-centered Schemes
for Conservation Laws [43] or WENO [37] with an interface
capturing function called THINC [38] to minimize variations
(jumps) of reconstructed variables at cell boundaries, thereby
effectively reducing numerical dissipation. In this paper, we
consider the fifth-order WENO scheme and the THINC func-
tion as two candidates for the spatial reconstruction, and
the so-called WENO-THINC-BVD scheme is constructed
[35]. To enhance the accuracy and avoid spurious oscilla-
tions, we reconstruct the primitive variables at cell boundaries
[3,44,45]. The numerical fluxes are evaluated using the wave
propagation method [46] and the HLLC (Harten–Lax–van
Leer contact) Riemann solver [47], which is known for its
high accuracy and ability to capture shocks. Additionally, the
source terms in the governing equations are calculated using
a centered scheme. Finally, we update the time using the
third-order Runge-Kutta scheme [48]. The detailed implemen-
tation of the present numerical algorithm can be found in our
previous work [49].
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FIG. 1. Collapse of a single bubble in an open space with initial driven pressure pinf/p0 = 100, and initial radius R0 = 3.64 × 10−4 m. (a)
Average bubble radius; (b) average bubble pressure. ( ) solutions from the KM equation [50]; ( ) present results.

C. Validations

To evaluate the effectiveness and dependability of our al-
gorithm, we simulate the collapse of a single bubble in a
free field with a driven pressure of pinf/p0 = 100, where pinf

represents the initial ambient pressure and p0 represents the
initial pressure of the bubble. We utilize a cubic computa-
tional domain with dimensions of x, y, z ∈ [0, 20R0], where

FIG. 2. Comparison of present numerical results (|∇p|) with
the laser-induced bubble experiments [52] for the collapse of a
single bubble in an open space, where the initial driven pressure
is pinf/p0 = 2083, and initial radius R0 = 3.64 × 10−4 m; the red
surface is the isosurface of α2 = 0.5.

R0 is the initial radius of the bubble. The average bubble
radius is computed by the average bubble volume using the
formula

V =
∑


(	x	y	z)iαi, (19)

and the average bubble pressure is calculated by

p = 1

V

∑


(	x	y	z)iαi pi. (20)

In these formulas, αi, (	x	y	z)i, and pi refer to the gas
volume fraction, volume, and pressure of the ith cell, respec-
tively, and  denotes the computational domain. Our results,
as shown in Fig. 1, demonstrate that the time histories of the
average bubble radius and pressure closely match the theoret-
ical solutions from the Keller-Miksis (KM) equation [50]. To
normalize time, we use the Rayleigh collapse time formula for
the spherical bubble [51]:

Tc = 0.915R0

√
ρinf

(pinf − p0)
, (21)

where ρinf is the initial ambient density.

FIG. 3. Numerical setup for the collapse of a toroidal bubble. (a)
Computational domain; the red torus denotes the toroidal bubble, and
the symmetry boundary conditions are applied on the yellow cross
sections. (b) b is the major radius of the toroidal bubble (distance
between the center of the toroidal bubble and the center of its circular
cross section) and a the minor radius.
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FIG. 4. Initialized mesh blocks of the refinement levels (a) 3–7, (b) 3–8, (c) 3–9, and (d) 3–10 for the collapse of a toroidal bubble in an
open space with ε = 5 and pinf/p0 = 100. The lower row gives the enlargement region near the bubble surface. Each mesh block is evenly
divided by 8 × 8 × 8 cells. The red surface denotes the isosurface of α2 = 0.5.

We also simulate a bubble collapse in an open space and
compare our results with the laser-induced bubble experi-
ment carried out by Johansen et al. [52]. The experimental
conditions indicate that the maximum radius of the bubble
is approximately Rmax = 3.64 × 10−4 m, and the initial bub-
ble driven pressure pinf/p0 = 2083. The collapse process is
depicted in Fig. 2, where it is revealed that the bubble col-
lapses spherically at the initial stage. As the bubble reaches
its minimum volume, it undergoes a rebound, emitting a radi-
ally propagating shock wave. Notably, both the bubble shape
and shock front closely align with experimental results; this
validation further underscores the capability of our algorithm
in providing precise simulations of bubble collapse dynamics
and shock wave propagations.

III. RESULTS AND DISCUSSION

A. Collapse in an open space

The violent implosion of underwater pressure vessels due
to a sudden loss of structural stability can give rise to a high-
intensity shock wave, which may cause significant damage to
nearby structures; therefore the geometric structure of under-
water pressure vessels should be considered to minimize the
influence of implosion. In this section, we consider the col-
lapse of a toroidal bubble in an open field as shown in Fig. 3.
The toroidal bubble is initially placed at the center of the
computational domain. For comparison, we keep the initial
volume of the toroidal bubble V0 = 1 m3, which is equivalent

FIG. 5. Grid convergence study of the collapse of a toroidal bubble in an open space with ε = 5 and pinf/p0 = 100. Time histories of (a)
average bubble radius and (b) average bubble pressure. Mesh refinement level ( ) 3–7; ( ) 3–8; ( ) 3–9; ( ) 3–10.

015103-4



INVESTIGATIONS ON THE SHOCK WAVE INDUCED BY … PHYSICAL REVIEW E 110, 015103 (2024)

FIG. 6. Collapse of toroidal bubble with ε = 5 and pinf/p0 =
100 (rendered by volume fraction α2).

FIG. 7. Pressure gradient |∇p| (left) and pressure (right) of the
collapse of a single and a toroidal bubble (ε = 5) in an open field.
The driven pressure is pinf/p0 = 100. The red surface is the isosur-
face of α = 0.5.

FIG. 8. Pressure contour on the cross section z = 0 during the
collapse of a toroidal bubble with ε = 5 and pinf/p0 = 100. The red
line is the isosurface of α = 0.5.

to a spherical bubble with initial bubble radius R0 ≈ 0.62 m.
The volume of the toroidal bubble is calculated by

V = (2πb)πa2,

and the aspect ratio is defined by

ε = b/a.

Considering the average speed of a bubble (with R0)
collapsing in water,

√
pl/ρl , and waterlike kinematic vis-

cosity, ν = 10−6 m2 s−1, the Reynolds number is 3.92 × 108;
thus neglecting viscosity in the simulation is reasonable.
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FIG. 9. Pressure distributions on the y axis (a) and x axis (b) during the collapse of a toroidal bubble with ε = 5 and pinf/p0 = 100. Here,
x = 0 refers to the location of the torus center and x = 1.74R0 refers to the center of the torus tube.

Similarly, the Weber number for the present bubble collapsing
simulation is 2.87 × 105 when the air-water surface tension is
0.072 N m−1, which also indicates the surface tension can be
neglected.

The computational domain has dimensions x, y, and z
ranging from 0 to 20L, where L is equal to 20R0. The inertial
collapse process is initiated by the driven pressure, pinf/p0. To
optimize computational resources, we implement symmetry
boundary conditions on the yellow sections, effectively reduc-
ing the resolved domain to one-quarter of its original size.

In the simulation, we adopt parameters referring to previ-
ous works in the literature [3,41,42] and the detailed initial
states are summarized in Table I.

The convergence study is conducted first. We simulate
the collapse of the toroidal bubble in an open space with
refinement levels of 3–7, 3–8, 3–9, and 3–10, where the finest
refinement levels 7, 8, 9, and 10 correspond to R0/	xmin =
25.6, 51.2, 102.4, and 204.8. The initial mesh blocks are
presented in Fig. 4; each mesh block is evenly discretized by
8 × 8 × 8 cells. It can be found that as the refinement level
increases, the region near the bubble surface is covered by
the finer mesh blocks. The time histories of average bubble
radius and bubble pressure are given in Fig. 5. The overall
evolutions of bubble radius and bubble pressure show good
agreement. However, slight discrepancies near the peak values
(the enlarged regions in the red square) are observed, and
the numerical results of refinement levels 3–8, 3–9, and 3–10
agree well with each other. To save computing resources, the
refinement level 3–9 is applied in the following work.

Figure 6 illustrates the evolution of the toroidal bubble
shape throughout the process. During the collapse stage, the
bubble undergoes noticeable shrinkage in both the major and
minor radius dimensions. At 0.53Tc, the outer rim of the

TABLE I. Initial conditions for the toroidal bubble with
pinf/p0 = 100.

ρ (kg/m3) u (m/s) p (bars) π p∞ (bars)

Liquid 1000 0 1000 6.59 4049
Bubble 1 0 10 1.4 0

bubble experiences an inward dent, leading to the formation
of two separate torus bubbles at 0.61Tc. As time progresses,
the inner circle of the torus rapidly rebounds at 0.70Tc. After
the time instant 0.88Tc, the bubble surface starts to exhibit
ruffling, and a significant and intricate deformation of the bub-
ble surface becomes apparent between the time intervals of
1.23Tc − 1.75Tc. Throughout the collapse process, it is worth
noting that the overall volume of the bubble ring consistently
moves toward the center of the torus.

Figure 7 presents a comparison of the shock wave emis-
sion processes during the collapse of a spherical bubble and
a toroidal bubble. Notably, the shock patterns observed in
these two cases exhibit significant differences. In the case
of a spherical bubble collapse, the collapse occurs spher-
ically, and as the bubble reaches its minimum volume, a
uniformly distributed high-pressure region forms around the
bubble. Consequently, upon rebounding, the emitted shock
wave propagates outward radially from the bubble center. In
contrast, during the collapse of a toroidal bubble, a distinct
high-pressure region emerges on the outer rim of the bubble.
This localized high-pressure area leads to an inward denting
of the bubble surface, generating a shock wave that propagates
toward the centerline of the torus. This behavior is reminiscent
of the collapse of a single bubble near a solid wall. At 0.96Tc,
the incident shock wave impacts the central axis of the ring in
the toroidal bubble case. Following this impact, two reflected
shocks are observed propagating in opposite directions, re-
sulting in additional complex dynamics in the shock wave
propagation process.

Figure 8 displays the pressure contour on the cross section
z = 0, showcasing the dynamics of the shock wave propaga-
tion. During 0.51–0.54Tc, the outer rim of the bubble begins
to involute and a liquid jet is observed. Shortly after, the
jet impacts on the inner rim of the bubble at 0.56Tc giving
rise to the generation of “water-hammer” shock at 0.61Tc,
which resembles the collapse of a spherical bubble near the
solid wall [18]. As the shock wave travels, a region of high
pressure forms behind its tip at 0.79Tc. Subsequently, when
the two shock waves collide with each other, a high-pressure
zone emerges in the flow field at 0.81Tc. It is worth noting
that following the collision, a persistent high-pressure region
appears at the interaction site, where the incident shock and
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FIG. 10. Pressure peaks on the y axis and x axis during the collapse of a toroidal bubble with (a), (b) pinf/p0 = 100, (c), (d) pinf/p0 = 50,
and (e), (f) pinf/p0 = 25. For comparison, we reset x = 0 at the outer rim of the toroidal bubble.

the reflected shock meet (0.86–0.96Tc). In the later stages, the
interaction between the shock waves ultimately gives rise to
the formation of a Mach stem, accompanied by the generation
of high pressure at 0.96Tc. This Mach stem represents a region
where the shock waves interact and intensify, leading to the
development of significantly elevated pressures.

To gain a deeper understanding of the dynamic behavior of
toroidal bubbles, we conducted an analysis of the shock pres-
sures exerted along both the axial and transverse directions. In
Fig. 9(a), we observe that the peak pressure decreases rapidly
as the distance from the center of the torus increases. Initially,
the pressure peak can reach approximately ∼90pinf at a lo-
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FIG. 11. Time evolutions of average bubble radius and average bubble pressure. The driven pressure is (a), (b) pinf/p0 = 100, (c), (d)
pinf/p0 = 50, and (e), (f) pinf/p0 = 25.

cation near y ≈ 0.5R0. However, as it moves further away
from the torus center, the peak pressure decreases rapidly
to ∼27pinf at y ≈ 1.4R0, and to ∼6.2pinf at y ≈ 2.7R0. In
Fig. 9(b), we also note that the maximum peak pressure in-
duced by the weak pressure wave from the bubble center is
comparatively lower. At x ≈ 1.8R0, the peak pressure due to
the weak pressure wave is only ∼3.4pinf , while at x ≈ 2.4R0,
it reaches approximately ∼2.0pinf . Despite the rapid dissi-
pation of the pressure peak in both the axial and transverse
directions, it is evident that the shock pressure in the axial di-
rection remains significantly higher than that in the transverse
direction. This highlights the importance of considering the
asymmetry and directional dependencies in the shock pressure
distribution of toroidal bubbles.

Figure 10 provides a comprehensive summary of the peak
pressures for different aspect ratios ε and driven pressures
pinf/p0, in the toroidal bubble cases. The results demonstrate
that both the aspect ratio and driven pressure significantly
influence the pressure near the center of the toroidal bub-
ble. For the cases with driven pressure, pinf/p0 = 100 and
pinf/p0 = 50, the pressure peaks at y = 1.0R0 have large
values (>40pinf ). However, in the case of pinf/p0 = 25, the
pressure peak at y = 1.0R0 decreases to be smaller than
20pinf . Interestingly, when y � 2.0R0, the pressure peak is
not notably affected by the aspect ratio or driven pressure.
The peak pressures at these distances demonstrate simi-
lar magnitudes, particularly for y � 3.0R0. In the transverse
direction, the pressure peaks induced by the weak pressure
wave are relatively small and show minimal sensitivity to
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FIG. 12. Collapse of a toroidal bubble near a solid wall with
γ = 2.5; d refers to the distance between the torus center and a solid
wall (rendered by volume fraction α2).

the driven pressure or aspect ratio. Figure 10 reveals that the
peak pressures in the axial direction consistently surpass those
generated by the collapse of a spherical bubble. Conversely,
the peak pressures in the transverse direction are significantly
lower compared to the spherical case. This finding is crucial
as it suggests that the toroidal bubble shape significantly alters
the propagation process of shock waves, confining the high-
pressure impact load primarily in the axial direction of the
toroidal bubble.

Figure 11 showcases the temporal evolution of the av-
erage bubble radius and bubble pressure, revealing distinct
differences between toroidal and spherical bubbles. Firstly, we
observe that the toroidal bubble exhibits a faster collapse com-
pared to the spherical bubble. The collapse time of the toroidal
bubble remains approximately constant at around 0.6Tc for
all test cases, while the spherical bubble reaches its minimum
collapse radius at approximately 0.94Tc. Furthermore, there is
a noticeable disparity in the strength of the collapse between
the two bubble shapes. The minimum collapse radius of the
spherical bubble is ∼0.13R0 and the maximum collapse pres-
sure reaches ∼54pinf for a driven pressure of pinf/p0 = 100.
On the other hand, the minimum collapse radii of the toroidal
bubble decrease as the aspect ratio ε increases, For ε values
ranging from 4 to 6, the minimum collapse radii range from
approximately 0.25R0 to 0.22R0. At the same time, the corre-
sponding maximum collapse pressures increase, ranging from
approximately ∼3.63pinf for ε = 4 to ∼6.30pinf for ε = 6.
This implies that larger values of ε lead to more pronounced
and violent behavior in the toroidal bubble. For the driven
pressures of pinf/p0 = 50 and pinf/p0 = 25, the collapse
radius of the spherical bubble remains smaller than that of
the toroidal bubble, and the collapse pressure of the spherical

FIG. 13. Pressure distributions on the solid wall and cross sec-
tions x = 0 and y = 0 during the collapse of spherical bubble (left
row) and a toroidal bubble (right row) near a solid wall with γ = 2.5.

bubble exceeds that of the toroidal bubble. However, although
the collapse of the toroidal bubble is not as violent as the
spherical bubble, it generates significantly higher pressures in
the axial direction.

B. Collapse near a solid wall

In this section, we present a comparison of pressure loads
resulting from the collapses of toroidal and spherical bubbles
in close proximity to a solid wall. The toroidal bubbles con-
sidered in this study have a fixed aspect ratio (ε = 5) and are
subjected to a driven pressure of pinf/p0 = 100. Figure 12
illustrates the evolution of the toroidal bubble shape near the
solid wall. To quantify the wall-bubble distance, we introduce
the nondimensional parameter γ , defined as γ = d/R0, where
d represents the distance between the center of the torus and
the solid wall, and R0 denotes the initial radius of the toroidal
bubble. Upon closer examination of the figure, it becomes
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FIG. 14. Collapse of a toroidal bubble and a spherical bubble near a solid wall with γ = 2.5. Time histories of (a) average bubble radius,
(b) average bubble pressure, (c) maximum wall pressure, and (d) maximum pressure in the computational domain. ( ) Toroidal bubble; ( )
spherical bubble.

evident that the toroidal bubble undergoes a series of distinct
stages near the solid wall. Initially, the bubble experiences a
shrinking phase, followed by a rebounding phase; in the later
stages, the bubble undergoes violent deformation. The overall
collapse process is similar to the toroidal bubble oscillating in
the open space. The only deviation is the asymmetric defor-
mation observed at 1.75Tc.

Figure 13 illustrates the pressure wave emission processes
of both the spherical and toroidal bubbles. Upon closer exam-
ination, it is evident that the spherical bubble’s overall shape
moves closer to the solid wall as it collapses, while the emit-
ted shock wave propagates outward in a radial fashion. The
impact of the downward shock front on the solid wall leads
to the generation of high wall pressure, a phenomenon that
has been extensively discussed in our previous work [18]. On
the other hand, the shock wave emitted by the toroidal bubble
moves toward the center axis, resulting in the formation of a
peak pressure at the intersection of the incident and reflected
shocks. As the shock waves focus on the solid wall, a region
of high wall pressure becomes apparent at 1.05Tc. Shortly
thereafter, the shock waves interact with the solid wall in a
circular pattern, and the shock pressure gradually dissipates
over time.

Figure 14 presents the time histories of various parameters,
including the average bubble radius, average bubble pressure,
maximum wall pressure, and maximum pressure in the flow
field. Upon analysis of Figs. 14(a) and 14(b), it becomes
apparent that the toroidal bubble undergoes a faster collapse

compared to the spherical bubble. Additionally, the minimum
bubble radius of the toroidal bubble is larger than that of the
spherical bubble, while the corresponding maximum bubble
pressure of the toroidal bubble is smaller. These observations
suggest that the collapse of the spherical bubble is more vi-
olent compared to the toroidal bubble. However, examining
Figs. 14(c) and 14(d) reveals an interesting contrast. The peak
wall pressure and peak pressure in the flow field induced
by the toroidal bubble are significantly larger, with values of
19pinf and 96pinf , respectively, whereas those induced by the
spherical bubble are comparatively smaller, measuring 6.1pinf

and 64pinf .
Figure 15 provides further insights into the collapse of

toroidal and spherical bubbles at various wall-bubble dis-
tances, ranging from γ = 1.5 to 3.0. Upon examination of
Figs. 15(a) and 15(b), it is evident that the toroidal bubble
reaches a minimum bubble radius of approximately 0.23R0,
accompanied by a maximum average bubble pressure of ap-
proximately 5pinf . In contrast, the spherical bubble exhibits
a decrease in the minimum bubble radius from 0.19R0 at
γ = 1.5 to 0.13R0 at γ = 3.0, which is smaller than that of
the toroidal bubble. However, the corresponding maximum
bubble pressure for the spherical bubble increases signifi-
cantly from 14pinf to 57pinf , surpassing that of the toroidal
bubble. Moving on to Fig. 15(c), it is interesting to note
that the peak wall pressure decreases as the wall-bubble
distance γ increases. Notably, the peak wall pressure induced
by the toroidal bubble is approximately three times higher
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FIG. 15. Collapse of a toroidal bubble and a spherical bubble near a solid wall with different initial wall-bubble distances γ . (a) Minimum
average bubble radius, (b) maximum average bubble pressure, (c) peak pressure induced on the solid wall, and (d) peak pressure induced in
the computational domain. ( ) Toroidal bubble; ( ) spherical bubble.

than that induced by the spherical bubble. Finally, as depicted
in Fig. 15(d), the maximum peak pressure in the flow field
induced by the toroidal bubble consistently surpasses that in-
duced by the spherical bubble across all wall-bubble distances
examined.

Figure 16 presents the evolution of the y coordinate of the
centroid of the toroidal bubble during its collapse near the

FIG. 16. Y coordinate of the centroid of a toroidal bubble (ε = 5,
pinf/p0 = 100) with the initial wall-bubble distances ( ) γ = 1.5;
( ) γ = 2.0; ( ) γ = 2.5; ( ) γ = 3.0.

solid wall. It can be found that for each case, the y coordinate
values yc remain almost unchanged; therefore we can con-
clude that the torus bubble does not move toward the solid
wall during collapse when the initial wall-bubble distance
γ = 1.5–3.0.

IV. CONCLUSION

In this paper, we employ high-fidelity numerical simulation
to examine the collapse of a toroidal bubble. To mitigate
numerical dissipation near the discontinuities, we utilize the
interface compression technique and the BVD reconstruction
scheme. The accuracy of our approach is validated through
theoretical analysis and experimental data. Our simulations
provide valuable insights into the characteristics of shock
waves and pressure loads during the collapse of a toroidal
bubble. The main findings are outlined as follows.

(1) The collapse of a toroidal bubble shows signifi-
cant differences compared to that of a spherical bubble.
When a toroidal bubble collapses, the resulting shock wave
consistently moves toward the axial line, resulting in sig-
nificantly higher pressure (up to ∼90pinf ) along the central
axis compared to a spherical bubble of equal volume. On the
other hand, the pressure in the transverse direction is lower
(∼3.5pinf ) during the collapse of a toroidal bubble when com-
pared to a spherical bubble.

(2) The aspect ratio ε has a significant impact on the peak
pressure along the axial line, with larger ε resulting in higher
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peak pressure, particularly at y = R0. However, the effect of
ε decreases for y � 2R0, and has minimal effect on the peak
pressure in the transverse direction.

(3) The numerical results indicate that the toroidal bubble
collapses at a faster rate compared to the spherical bubble.
Specifically, the Rayleigh collapse time for the toroidal bubble
is approximately 0.6Tc, whereas it is 0.95Tc for the spherical
bubble. However, as the bubble collapses to its minimum
volume, the spherical bubble exhibits a smaller bubble ra-
dius and a higher bubble pressure than the toroidal bubble.
Consequently, the collapse of a spherical bubble can be char-
acterized as more violent in nature when compared to the
collapse of a toroidal bubble.

(4) When a toroidal bubble collapses in the vicinity of
a solid wall, the focused shock wave propagating along the
torus center can result in high wall pressure. The presence
of the solid wall has minimal influence on the deformation
of the toroidal bubble. However, the wall pressure caused
by the toroidal bubble is approximately three times greater
than that caused by a spherical bubble with the same volume.
Furthermore, the peak pressure in the flow field induced by

the toroidal bubble also exceeds that induced by the spherical
bubble.

In conclusion, the numerical findings presented in this
study provide valuable theoretical insights for the design of an
underwater pressure vessel. These results have the potential
to make a significant contribution to the development of en-
hanced strategies aimed at minimizing the detrimental effects
of implosion events.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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