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Mixing in two-dimensional shear flow with smooth fluctuations
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Chaotic variations in flow speed up mixing of scalar fields via intensified stirring. This paper addresses the
statistical properties of a passive scalar field mixing in a regular shear flow with random fluctuations against
its background. We consider two-dimensional flow with shear component dominating over smooth fluctuations.
Such flow is supposed to model passive scalar mixing, e.g., inside a large-scale coherent vortex forming in
two-dimensional turbulence or in elastic turbulence in a microchannel. We examine both the decaying case and
the case of the continuous forcing of the scalar variances. In both cases dynamics possesses strong intermittency,
which can be characterized via the single-point moments and correlation functions calculated in our work. We
present general qualitative properties of pair correlation function as well as certain quantitative results obtained
in the framework of the model with fluctuations that are short correlated in time.
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I. INTRODUCTION

Mixing is a process of homogenization of a scalar field
in fluids, such as temperature or a concentration of impu-
rities, accelerated by means of advection. The acceleration
is especially effective in chaotic flows which are character-
ized by irregular fluctuations of the flow velocity in space
and/or time. This random part speeds up stirring process for
the scalar, which causes stretching of its blobs into lamellae
with their subsequent folding. The thinning of lamella in its
transverse direction initiates the molecular diffusion that final-
izes the mixing. The mixing process has nontrivial statistical
properties (see, e.g., [1,2]), and a problem of passive scalar
considers the limit when the field’s back reaction to the flow is
negligible.

After ascertainment of the statistical properties of devel-
oped isotropic three-dimensional [3] and two-dimensional [4]
turbulence, the theory of mixing in a statistically isotropic
flow within inertial interval [5,6] and at scales below the
Kolmogorov (viscous) one [7] became its natural develop-
ment; see also reviews [8,9]. The isotropic turbulence is an
idealized model of the small-scale pulsations imposing on
time-averaged large-scale flow component. However, the gra-
dient of the mean flow entails anisotropy that varies statistical
properties of both the pulsations and the mixing process.

The degree of the variation depends on the ratio of gradi-
ents magnitudes in the mean flow to those in the turbulent
part. In case of the near-wall turbulence [10,11] in three-
dimensional flow they are of same order. Along with the
Kolmogorov scaling for velocity lasting at the small scales
within inertial range [12], anisotropy of flow spreads down
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there as well. It produces so-called ramp-cliff structures [9]
and anisotropy in the scalar gradient [13] in the case of
Schmidt number Sc = ν/κ ∼ 1, where ν is the kinematic
viscosity of the fluid and κ is the diffusion coefficient of the
scalar. Another case, the limit where mean flow is prevailing
over turbulent pulsations, takes place under some conditions.
Axisymmetric vortical flow and near-wall flow are the sim-
plest forms in a geometrical sense. In both velocity gradient
around a Lagrangian trajectory established by the mean flow
remains unchanged thus forming a shear flow. An example
of the first type is large-scale coherent vortex emerging in
two-dimensional turbulence due to the inverse energy cascade
[14–17] that motivated the current study. An elastic turbulent
flow of a polymer solution in a microchannel [18] is of the
second type. For all of them velocity energy spectra are steep
enough [19–21], so one can assume the fluctuations on the
background of the shear flow are large scale as well and thus
are smooth. Suppression of small-scale turbulent pulsations
means that the effective Schmidt number Sc is increased.
Indeed, the Kolomogorov scale should be replaced by the flow
scale R, so the Schmidt number Sc ∼ R2/r2

κ [8], where the
Batchelor (diffusion) scale rκ ∼ √

κ/λ̄ and λ̄ is the Lyapunov
exponent of the flow. The same assumption should be appli-
cable to describe mixing in laminar vortex flow of Newtonian
fluid [22,23], where the source of the flow fluctuations are
imperfect boundary conditions as well as deviations of force
driving the flow.

In this work we provide an analytical study of a passive
scalar field ϑ mixing in the flow with a spatially smooth
divergent-free velocity field with strong static shear compo-
nent and relatively weak fluctuations at large Schmidt number.
We consider either the decay of the passive scalar or its
continuous forcing. For the decay problem, one starts with
certain initial distribution of the passive scalar and examines
the evolution of its statistical characteristics. Experimentally,
decay of the passive scalar was observed in channels [24],
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microchannels [25], and soap films [26,27], where the passive
scalar supply is organized at the input to the flow. The decay
problem for a spatially smooth velocity field with isotropic
statistics of turbulent fluctuations in the absence of the mean
flow was treated analytically in Refs. [28,29], where moments
of the passive scalar were considered. The examination was
extended to high-order correlation functions in Ref. [30]. The
case of scalar mixing in constant shear flow, which makes
the advection deterministic, was considered in Ref. [31]. The
case when a random component is imposed on the shear flow
was considered numerically in Ref. [32] within the Kraich-
nan model. The continuous statistically homogeneous in time
stochastic forcing of passive scalar leads to a statistically
steady state providing statistics of the random flow is homoge-
neous in time as well [8,9]. In the large Schmidt number limit,
passive scalar cascade develops the Batchelor spectrum in a
wide range from the Kolmogorov scale down to the Batchelor
scale [5–7].

The general picture of passive scalar evolution can be con-
sidered in terms of a separate blob. The molecular diffusion
effects can be neglected at scales larger than the Batchelor
length, where scalar mixing reduces to its advection by the
flow. In a stationary shear flow, any vector � connecting two
close Lagrangian trajectories grows linearly as time goes,
aligning along the streamlines. However, random component
of the flow causes the tumbling processes, when the direction
of � is inverted [33,34], so it deviates from the streamlines at
time average. As a result, the flow’s random component en-
ables the blob to stretch exponentially in time in one direction
and yet to shrink in transverse direction, permanently experi-
encing tumblings. In experiment, tumblings can be visualized
by observing the polymer elongations; see Refs. [35,36]. Such
processes of passing through an unstable stationary point by
virtue of fluctuations take place in various nonequilibrium
physical systems [37]. The diffusion effects are switched on
when the lateral size of the blob is diminished down to the
Batchelor scale. Then the lateral size of the blob is stabilized
at this scale, whereas the longitudinal size of the blob con-
tinues to grow exponentially. This means dissolution of the
blob via mixing due to the concentration inside it is inversely
proportional to the its area.

The paper is organized as follows. In Sec. II we discuss the
general properties of passive scalar dynamics and study statis-
tics of Lagrangian trajectories that describe mixing without
diffusion. Some analytical results are obtained in the frame-
work of model where the random flow is short correlated in
time. After that we include diffusion effects into our consid-
eration and examine moments and correlation functions of
the passive scalar. The decay problem is analyzed in Sec. III,
where the passive scalar evolution starts from initial distribu-
tion in a form of axially symmetric blobs’ ensemble. The key
component in the investigation of the passive scalar statistics
is averaging over the flow statistics. Since the random flow is
assumed to have the correlation length much larger than the
sizes of the blobs, it coherently influences many blobs. This
leads to strongly non-Gaussian statistical properties of the
passive scalar that are studied in present work. The continuous
forcing of scalar is considered in Sec. IV; it is realized via
bringing new statistically independent blobs into the system
by an external source in our model, and after that each evolves

as in the decay case. Part of the results about the single-
point moments was presented in [38]. In the present work we
choose an expedient technique, which includes rescaling in
the streamwise direction, that reformulates the problem and
enables us to compare it directly to the isotropic turbulence
case. Moreover, here we analyze spatial correlation functions
dependency at different points. Some technical details are
presented in Appendixes.

II. GENERAL RELATIONS

In this section we introduce basic relations required to
examine passive scalar statistics. We consider the scalar field
ϑ (t, r) carried by an incompressible fluid flow while being
diffused and supplied by an external source (pumping). The
equation governing passive scalar dynamics is

∂tϑ + (v · ∇)ϑ = κ�ϑ + f , ∇ · v = 0, (1)

where v is the flow velocity, f is the external source of the
scalar, κ is its molecular diffusion coefficient, and � desig-
nates the Laplacian. We assume that the flow velocity v has a
random component that is small compared to its constant part
and forcing f is a stochastic quantity which has characteristic
scale L in space. We assume that the influence of the diffusion
at scale L is weaker not only than one from the constant part
of the velocity, but also than the effect of stirring acceleration
caused by the random part of the velocity. All the criteria are
formulated below [see (8) and (45)].

For our limit of weak diffusion, it is reasonable to study
first separately the evolution of the passive scalar in the ab-
sence of it. If one neglects the diffusion term in Eq. (1), then
its solution can be written in terms of Lagrangian trajectories
q(t ) that are governed by the equation

∂t q(t ) = v(t, q). (2)

The solution of the diffusionless equation (1) with the initial
condition ϑ (0, r), taken at t = 0, is

ϑ (t, r) = ϑ[0, q(0)] +
∫ t

0
dt1 f [t1, q(t1)]. (3)

Here q is the Lagrangian trajectory passing through the point
r at the time t , q(t ) = r.

Further in the work we examine the case where the velocity
field v is smooth, i.e., it can be expanded into Taylor series
with the convergence radius larger than all scales characteriz-
ing the passive scalar evolution. The scalar spatial distribution
is influenced mainly by the smooth component of the flow,
whereas the effect of its relatively weak small-scale fluctu-
ations can be included into renormalization of the diffusion
coefficient κ [39].

A. Statistics of Lagrangian trajectories

Let us examine statistical properties of the difference � =
q1 − q2 between two Lagrangian trajectories. Our interest
is the probability density function (PDF) for � at different
times assuming some fixed initial value of � or its initial
probability distribution. For a scalar as an ensemble of blobs
with homogeneous spatial statistics the PDF can be thought
of as probability for both starting and ending points of �
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getting inside of it. Vectors � and −� are equivalent for the
description of the scalar spatial distribution in this sense, thus
� can be called a director. First, we formulate the dynamical
equation for �, and then extract its statistical properties by
averaging over the statistics of the random flow.

Assuming that the difference � lies inside the region of the
smoothness of the velocity field, we find from Eq. (2)

∂t�i = �k∂kvi, (4)

where we kept the main term of the expansion of the velocity
field v in the Taylor series. The velocity gradient ∂kvi in
Eq. (4) is a function of time, determined by structure of the ve-
locity field in the vicinity of the close Lagrangian trajectories
q1 and q2. The flow incompressibility condition, ∇ · v = 0,
leads to the property that the gradient matrix is traceless:
∂kvk = 0.

Further we focus on the two-dimensional dynamics. We
examine the case where the velocity field v contains both
the regular (deterministic) contribution and the fluctuating
(random) one. The regular contribution is assumed to be a
shear flow. We chose the axes X,Y of the reference frame to
fix the shear flow velocity as vx = 	y, where 	 is the shear
rate which is presumed to be positive for definiteness. Then
we obtain from Eq. (4)

∂t�x = 	�y + �x∂xux + �y∂yux, (5)

∂t�y = �x∂xuy + �y∂yuy, (6)

where u is the fluctuating part of the velocity. Its statistical
properties are assumed to be homogeneous in time and space.

The fluctuating part of the velocity u is supposed to be
relatively weak. To characterize the weakness, one introduces
the tensor

Di jkl =
∫ ∞

0
dt 〈∂iu j (t )∂kul (0)〉, Dj jkl = Dkl j j = 0. (7)

All elements of the tensor D are assumed to be of the same
order. The angular brackets in Eq. (7) and subsequently de-
note averaging over statistics of the random flow u. In an
experiment, the averaging should be implemented over the
volume where the velocity statistics is spatially homogeneous
and/or over realizations in experimental runs. As is shown
in Appendix B, starting from (B4), the only element of our
interest is D = Dxyxy due to the anisotropy dictated by the
shear flow. The weakness of the random flow in comparison
with the shear flow means

D � 	. (8)

The dynamics of the vector � is peculiar [33] due to fluc-
tuations of �y, caused by the random part of the velocity; see
Eq. (6). The main term in right-hand side of Eq. (5) is 	�y.
Therefore, if �y > 0 then �x grows towards positive values.
However, if �y becomes negative, �x starts to diminish and
then changes its sign and grows towards negative values. This
process when �x changes abruptly its sign is called tumbling.
Precise streamline alignment of � is an unstable stationary
point for the vector direction in dynamics with constant shear
only. The fluctuating component of the flow enables tumbling
processes by changing �y sign. Tumblings occur aperiodically
in a characteristic time D−1/3	−2/3.

Between the tumblings �x � �y. The ratio �y/�x can be
estimated as (D/	)1/3 � 1 then, being the characteristic an-
gle between the director and the streamlines. However, during
each tumbling �x diminishes by a large factor. To avoid par-
ticular analysis of the tumbling processes, we exploit the
following parametrization of the vector �:

(D/	)1/3�x = l0 e
 cosφ, �y = l0 e
 sin φ, (9)

where l0 is a constant determined by the initial value of �.
Then the inequality (D/	)1/3�x � �y is satisfied most of the
time. Therefore, the quantity 
 does not experience strong
changes unlike �x. The angle φ + π corresponds to inversion
of vector � and thus is equivalent to φ, so it will be enough
to consider angle on the interval −π/2 < φ < π/2, treating
functions of φ (say, PDF of φ) as periodic with a period π .

Substituting the expressions (9) into Eqs. (5) and (6) one
concludes that due to the inequality D � 	 (8) the only rele-
vant component of the gradients of the random velocity is ∂xuy

[the detailed estimation of the neglected terms is presented
in Appendix B; see Eqs. (B4)–(B6)]. Thus, we come to the
stochastic system:

∂τ
 = (1 + ζ ) cosφ sin φ, (10)

∂τφ = ζ cos2 φ − sin2 φ, (11)

where ζ (τ ) = 	−1/3D−2/3∂xuy and we have introduced the
dimensionless time

τ = 	2/3D1/3t . (12)

Further, we present all relations in terms of the dimensionless
time τ . The stated above scalings for the tumbling time and
ratio �y/�x are justified by the fact that the rescaling (9)
and (12) carried out on their basis led to Eqs. (10) and (11)
with coefficients of the order of unity and with noise of unit
intensity,

∫ ∞
0 dτ 〈ζ (0) ζ (τ )〉 = 1.

In Eqs. (10) and (11), the regular and the random terms
in right-hand sides are comparable, which was our motiva-
tion to introduce the parametrization (9). Note that Eq. (11)
is a closed stochastic equation for the angle φ, that is, a
consequence of linearity of Eqs. (5) and (6). Thus, one can
independently examine statistical characteristics of the an-
gle φ, based on Eq. (11). The variable 
 grows on average
as time goes. The growth can be characterized by the di-
mensionless Lyapunov exponent λ = 〈∂τ
〉 [the dimensional
Lyapunov exponent is λ̄ = λ(D	2)1/3]. The averaging 〈·〉 can
be understood either over time or over the ensemble of ζ (τ )
realizations. One can also introduce the quantity ω = −〈∂τφ〉,
i.e., the dimensionless frequency of the tumbling processes,
so tumblings occur an average of π	2/3D1/3t/ω times in the
system for a large t . Both quantities, λ and ω, are of order
of unity.

The general structure of the stochastic equations (10) and
(11) enables one to find a relation for PDF of 
, �(
) if
the statistics of ζ is invariant under the time inversion. The
property is assumed below. Then one relates the values of
�(
) for different signs of 
:

�(−
) = exp(−2
)�(
). (13)

The relation (13) implies that at τ = 0 the angle φ is fixed
and that 
 = 0. In Appendix A we present proof of (13)
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and indicate it is an expression of the Fluctuation Theorem
[40,41].

Asymptotically, at τ → ∞, PDF P(φ) turns to a stationary
distribution, if ζ has statistical properties homogeneous in
time. As for PDF �(
), it does not turn stationary at large
times τ since 
 grows in average. Instead, in accordance with
the theory of large deviations [42,43] at τ � 1,

�(
) ∝ exp [−τS(
/τ )], (14)

where S(ξ ) is the so-called Cramér (or entropy) function,
which is convex. The function has a minimum at ξ = λ, that
corresponds to the most probable realization 
 = λτ = λ̄t .
Hence,

S′(λ) = 0, (15)

where S′ ≡ dS/dξ . The normalization in Eq. (14) is deter-
mined by a close vicinity of the minimum point. We assume
that S(λ) = 0. Then the normalized function

�(
) =
√

S′′(λ)

2πτ
exp [−τS(
/τ )] (16)

is valid at τ � 1.
The general law (13) leads to the relation

S(−ξ ) = S(ξ ) + 2ξ, (17)

as follows from Eq. (14). Taking the derivative of the relation
(17) one obtains

S′(−ξ ) = −S′(ξ ) − 2. (18)

Substituting here ξ = 0, one obtains

S′(0) = −1. (19)

Another consequence of Eq. (18) is S′(−λ) = −2, which can
be established using Eq. (15).

It is instructive to introduce the Fourier transform of �(
),

�̃(η) =
∫

d
 exp(−η
)�(
). (20)

In the conventional Fourier transform η is purely imaginary.
However, we treat η as an arbitrary complex number. In the
limit τ � 1 we can use the expression (14) and the integral
(20) can be taken in the saddle point approximation. As a
result, we find

�̃(η) ∝ exp[−γ (η)τ ], (21)

where the function γ (η) is related to the Cramér function S(ξ )
via the Legendre transform

S = γ − ηξ, (22)

∂ηγ = ξ, ∂ξS = −η. (23)

Solutions of Eqs. (22) and (23) correspond to real η. Taking
into account the relation (18) one concludes that (17) is equiv-
alent to

γ (η) = γ (2 − η). (24)

Such symmetry was obtained, e.g., in [44] for their flow model
with no mean component in periodic system.

The dimensionless Lyapunov exponent λ is equal to the
ratio ξ = 
/τ , taken at the minimum of the Cramér function

S(ξ ). As follows from Eq. (23), the minimum of S is achieved
at η = 0. Thus, we find from Eq. (23)

λ = ∂ηγ (0). (25)

Since γ is invariant under the transformation η → 2 − η, the
derivative of γ over η at η = 1 is equal to zero, ∂ηγ (1) = 0.
Thus, we conclude from Eq. (22), that point η = 1 (
 = λτ )
corresponds to the value ξ = 0.

B. Random flow short correlated in time

To demonstrate the main features of the statistics of the
Lagrangian trajectories, we examine the model where the
random flow is short correlated in time. The model enables
one to draw a number of analytical results [34]. In terms of
our parametrization (9), the model is determined by the pair
correlation function

〈ζ (τ1)ζ (τ2)〉 = 2δ(τ1 − τ2), (26)

where the factor in the right-hand side agrees with Eq. (7),
considering passage to dimensionless τ [see below (12)].

We find, as a consequence of Eqs. (10) and (11) that the
dimensionless Lyapunov exponent and the dimensionless fre-
quency of the tumblings are equal to

λ = 〈∂τ
〉 = 〈cosφ sin φ + cos(2φ) cos2 φ〉, (27)

ω = −〈∂τφ〉 = 〈sin2 φ + sin(2φ) cos2 φ〉. (28)

The first terms in the angular brackets in Eqs. (27) and (28) are
related to the regular terms in the right-hand sides of Eqs. (10)
and (11), whereas the second terms in the angular brackets
are related to the terms with random variable ζ there. To find
the latter contributions, one should find increments of 
, φ,
caused by ζ , and take into account the increments in the right-
hand sides of Eqs. (10) and (11) and then average the products
of the increments and ζ , using Eq. (26). The quantities (27)
and (28) are expressed in terms of the statistics of the angle φ
and can be calculated irrespective to the statistics of 
.

The Langevin equations (10) and (11) with the random
variable governed by Eq. (26) enable one to establish the
Fokker-Planck equations either for the PDF of the variable
φ only or for the joint PDF of the variables 
, φ. The cor-
responding technique is well known [45,46]. Therefore, we
do not present the derivation of the Fokker-Planck equations,
focusing on analyzing their solutions.

We begin with the Fokker-Planck equation for PDF of φ,
P(φ). The equation follows from Eqs. (11) and (26):

∂τP = ∂φ (sin2 φ P) + ∂φ[cos2 φ ∂φ (cos2 φ P)]. (29)

Equation (29) has to be supplemented by the periodicity con-
dition in terms of the angle φ and by some initial condition,
e.g., the initial angle has some fixed value φ0, that leads to the
initial δ function, P = δ(φ − φ0) (continued periodically with
the period π ).

At τ → ∞ a stationary PDF of φ is achieved. The station-
ary solution Ps of the equation (29) is written as

Ps(φ) = N

cos2 φ

∫ π/2

0

dψ

cos2 ψ
e[(tan φ−tanψ )3−tan3 φ]/3, (30)
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FIG. 1. Stationary PDF Ps of the angle φ in the case of the short
correlated in time flow fluctuations (26).

where the constant N = 35/6/[21/3√π�(1/6)] is found from
the normalization condition

∫
dφ Ps = 1. The function Ps is

plotted in Fig. 1. Calculating numerically the averages (27)
and (28) as integrals over φ with the weight Ps(φ), one obtains

λ = πN√
3

≈ 0.36, ω = πN ≈ 0.63. (31)

The numerical values (31) are in agreement with the analysis
given in Ref. [34]; see also Appendix B for more detailed
comparison of our mathematical approach with the one used
there.

Next, we turn to the joint PDF for 
, φ, P (τ, 
, φ). The
Fokker-Planck equation for the quantity is

∂τP = ∂φ (sin2 φ P ) − ∂
(cosφ sin φ P )

+ ∂φ[cos2 φ ∂φ (cos2 φ P )] + cos2 φ sin2 φ ∂2

P

+ ∂φ (cos3 φ sin φ ∂
P ) + cosφ sin φ∂φ (cos2 φ ∂
P ),

(32)

as a consequence of Eqs. (10), (11), and (26). The PDF of 
,
�(
), can be found as

�(
) =
∫ π

−π

dφ

2π
P (
, φ).

Note that no closed equation for � can be derived from
Eq. (32).

We see that Eq. (32) is homogeneous in 
; it is a direct
consequence of the linearity of the initial Eqs. (5) and (6).
Therefore it is worth analyzing the equation in terms of the
Fourier transform of P (
). We introduce it by analogy with
Eq. (20):

P̃ =
∫

d
 exp (−η
)P, (33)

where η is some (complex) parameter. The analysis of the
object P̃ can be found in Appendix D. As a result, one can
extract the function γ (η) introduced by Eq. (21) and check
directly the property (24).

The function γ (η) can be calculated numerically. One
can check that the value of λ, calculated in accordance with
Eq. (25), coincides with one given by Eq. (31). Converting

γ (η) into S(ξ ) in accordance with Eqs. (22) and (23), one
finds that in the minimum of S(ξ ), where ξ = λ,

S′′ ≈ 2.46, S′′′ ≈ −1.56. (34)

The values (34) enable one to approximate the Cramér func-
tion S near its minimum and to find the factor in Eq. (16).

III. DECAY OF THE SCALAR

Here we consider decay of the passive scalar, which is de-
scribed by the basic equation (1) with f = 0. We are interested
in evolution of correlation functions of the passive scalar ϑ
that have to be obtained by averaging over the statistics of
the random flow. The statistical properties of ϑ appear to be
extremely non-Gaussian at τ � 1, where the dimensionless
time τ is introduced by Eq. (12). We establish some features
of the statistics.

Further we examine quantities obtained by averaging over
an ensemble of the realizations of the initial distributions
ϑ (0, r). We consider each one as the aggregation of similar
blobs of the scalar fluctuations placed in the flow at t = 0,
keeping zero total amount of scalar. Assuming the limit of
their high concentration, i.e., overlapping of many blobs in
each point, the value of ϑ (0, r) is a sum of large number of
independent variables. Thus, as a consequence of the central
limit theorem, the field ϑ (0, r) possesses Gaussian statistics
with zero mean [30].

Let us introduce the object F (t, r1, r2) that is the prod-
uct ϑ (t, r1)ϑ (t, r2) averaged over the statistics of the initial
values of ϑ . To find any correlation function of the scalar,
one should take the product ϑ (r1)ϑ (r2) . . . and average it
first over the initial statistics and then over the statistics of
the random velocity field. The first step reduces the product
ϑ (r1)ϑ (r2) . . . to the product of F with some combinatoric
factor in accordance with Wick theorem [47]. To make the
second step, one should establish statistical properties of F .
We proceed to the problem.

If the ensemble of the initial values is statistically homoge-
neous in space, then F (t, r1, r2) is a function solely of the
difference r = r1 − r2, F = F (t, r). In this case, one finds
from Eq. (1) [see the derivation in Appendix C, Eq. (C1)]

∂tF +	y∂xF + (∂βuα )rβ∂αF = 2κ∇2F , (35)

where we have presumed like above (5) that the velocity field
v of the flow is smooth and consists of the shear flow with
the velocity vx = 	y and the random flow with the velocity
u. Let us stress that the object F is a functional of the random
variable ∂βuα , entering Eq. (35).

By analogy with the analysis of the Lagrangian trajec-
tories (see Sec. II A), we move to the rescaled coordinate
w = (D/	)1/3x and the dimensionless time (12). Then one
finds from Eq. (35)

∂τF + y∂wF + ζw∂yF = r2
κ∂

2
y F , (36)

where ζ = 	−1/3D−2/3∂xuy. We have kept in Eq. (36) the only
relevant component of the random velocity gradient, ∂xuy, the
main derivative ∂y in the Laplacian, and have introduced the
diffusive scale

rκ = (2κ )1/2	−1/3D−1/6. (37)

015102-5



IVCHENKO, LEBEDEV, AND VERGELES PHYSICAL REVIEW E 110, 015102 (2024)

The Batchelor scale rκ is assumed to be much smaller than
characteristic scales of the initial scalar field and of the
forcing one.

It is instructive to examine a Gaussian shape of F : such a
profile of spatial distribution, formed by the initial statistics,
is preserved in Eq. (35). We suppose that initially F (0, r) =
exp(−r2/L2), where L is the characteristic initial scale. Then
the quantity F at any time t is expressed as

F =
√

det �̂√
det �̂|t=0

exp(−�αβbαbβ ), (38)

where the b is a coordinate vector in rescaled space, bα =
(w, y), the symmetric matrix �̂ is a function of time, which
dynamics is consistent with Eq. (36), and we have normalized
the scalar intensity so F (0, 0) = 1. The time-dependent factor
at the exponent in Eq. (38) is determined by the fact that
total amount of the passive scalar

∫
d2bϑ is conserved in time

according to Eq. (36); see Ref. [48].
We use the following parametrization of the matrix �̂

figuring in Eq. (38):

�̂ =
(

c −s
s c

)(
L−2

+ 0

0 L−2
−

)(
c s

−s c

)
, (39)

where c = cosφ, s = sin φ. The eigenvalues of the matrix
(39) are L−2

+ , L−2
− , where L± can be interpreted as sizes of the

scalar blob in b space. Therefore the factor
√

det �̂ entering
Eq. (38) is equal to √

det �̂ = (L+L−)−1, (40)

i.e., the inverse area occupied in b space by the blob. In
accordance with Eqs. (38) and (39), for the initial profile
∝ exp(−r2/L2), we have φ(0) = π/2,

L+(0) = L, L−(0) = L�, L� = (D/	)1/3L. (41)

Thus, initially L+ � L−. We will see that the ratio L+/L−
typically grows with time and will neglect very rare events
when the ratio becomes of order unity. Thus, we assume
L+ � L− is fulfilled further all the time.

Substituting the parametrization (39) into Eq. (38) and then
using Eq. (36), one finds the equations for the angle φ and the
parameters L±. In the limit L+ � L− one reproduces Eq. (11)
for the angle φ and the equations for L± are

∂τ ln L+ = cosφ sin φ (1 + ζ ), (42)

∂τ ln L− = − cosφ sin φ (1 + ζ ) + 2
r2
κ

L2−
cos2 φ. (43)

Our interest is statistics of the solutions of Eqs. (42) and (43)
at times τ � 1 where PDF of the angle φ achieves stationary
distribution.

Equation (42) coincides with Eq. (10) for 
. Consequently,
ln(L+/L) has the same statistical properties as 
; see Sec. II.
Typically, ln(L+/L) is estimated as λτ . As to the quantity
L−, its statistical properties depend on its value. If L− � rκ
then the last term in Eq. (43) is irrelevant, and we find L− =
LL�/L+. Therefore L− typically diminishes exponentially as
time goes. If L− reaches rκ , then its statistical properties
become stationary, and the estimate L− ∼ rκ is valid.

The duration of the first (advective or diffusionless)
stage is

τκ = 1

λ
ln

L�

rκ
= 1

2λ
ln

DL2

κ
. (44)

We assumed here

DL2/κ � 1. (45)

More precisely, below we assume that ln(DL2/κ ) is large,
so τκ � 1. Otherwise, if DL2/κ � 1, the mixing process is
determined only by the mean shear flow 	 and the molec-
ular diffusion; the limit 	L2/κ � 1 was considered in [31].
Inequality (45) implies that at scale L the influence of the
molecular diffusion is weaker than both the influence of shear
flow and the stirring acceleration by the flow’s random com-
ponent. Note that the limit of the large Péclet number Pe =
L2/r2

κ ∼ (D	2)1/3L2/κ � 1 in our system does not provide a
sufficient criterion. The amplitude (40) remains constant at the
advective stage and behaves ∝ L−1

+ at the second (diffusive)
stage. Since initially L+L− = LL� we conclude that L+ ∼
LL�/rκ in the transition region between the stages, which
leads to the condition

ln(L+/L) > λτκ (46)

at the diffusive stage.
Let us stress here that the only term ∂xuy taken into ac-

count in (6) produces the leading contribution into the stirring
process. As a result of joint action of the constant shear
and this random component, the Lyapunov exponent becomes
nonzero. Indeed, other models with random shear flow having
the only nonzero x-velocity component vx(t, y) lead to only
algebraic in time divergence of Lagrangian trajectories over
long times, i.e., to zero Lyapunov exponent. This concerns,
e.g., [49], where vx(t, y) contains a part which is random in
both time and space. Within the model, a finite Lyapunov
exponent was obtained in Ref. [50], which, however, tends
to zero as the system size grows. One more example is an
extended model [51] where the random component is taken
into account only in ∂zux and z is the third coordinate.

A. Single-point statistics

Let us analyze moments of the passive scalar that are
single-point means 〈|ϑ |2α〉. To find the moments we use the
expression

〈|ϑ |2α〉 = Cα〈[F (t, 0)]α〉, (47)

where Cα = 2α�(α + 1/2)/
√
π . The expression (47) is a con-

sequence of the initial Gaussian statistics of ϑ (0, r). Although
the expression (47) implies a particular statistics of initial
values of ϑ , the results concerning the behavior of the mo-
ments at large times τ � 1 are universal, because they are
determined by the flow statistics.

Substituting the expression (38) with the factor (40) into
Eq. (47) one arrives at the following expression for the
moments:

〈|ϑ |2α〉 = Cα〈(L+L−/LL�)−α〉. (48)

Thus, the passive scalar moments can be calculated using the
statistical properties of L± established above. At the advective
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stage, where τ < τκ , the product L+L− remains constant and
the mean 〈|ϑ |2α〉 is independent of time τ . For the case of
statistically isotropic turbulence, the advective stage is ob-
served both in experiments for large Schmidt numbers [52]
and in numerical simulations [53]. Qualitatively, the spatial
distribution of the scalar is expressed via stretched and folded
blobs. Both stretching and folding are results of stirring by
flow only, so the scalar amplitude inside the blobs stays the
same as at the initial moment. In other words, the volume
occupied by each blob remains unchanged at the advective
stage.

Further we focus on the subsequent stage: at τ > τκ the
diffusion becomes relevant. This is the mixing stage, when
the area occupied by a blob grows exponentially with time by
means of its largest dimension stretching, while the smallest
transverse size cannot diminish below the diffusion scale.
This increase of the blob’s area leads to the decrease of the
scalar amplitude inside it. Calculating the scalar statistics,
one should also take into account that the number of blobs
overlapping in a single point grows with time at the stage.
Let us start with calculations. The diffusive stage corresponds
to the inequality (46), which is equivalent to the requirement

 > λτκ . Here we estimate the lowest blob dimension L− as
the diffusion scale rκ so the ratio L�/L− ∼ exp(λτκ ) in (48)
according to (44), whereas L+ is determined by PDF (16) with

 = ln(L+/L) so its typical value depends on α and τ . Now
one can write for (48)

〈|ϑ |2α〉 ∼
∫ ∞

λτκ

d
 exp [−α(
 − λτκ ) − τS(
/τ )], (49)

where we have exploited Eq. (16), omitting its pre-exponential
factor as well as Cα in (48) since this is a multiplier with
relatively weak dependence on α.

In the case 0 < α < 1 at large enough times, the integral
(49) for the moment 〈|ϑ |2α〉 is determined by the saddle point,
which is the solution of

α + S′(ξ ) = 0, 
 = ξτ. (50)

The value of ξ found in accordance with Eq. (50) belongs to
the interval 0 < ξ < λ, since S′(λ) = 0 and S′(0) = −1; see
Sec. II A. To ensure the saddle point lies in the integration
interval, one should require 
 > λτκ , so time τ should satisfy
the inequality τ > λτκ/ξ . Now, we substitute ρ from (50) into
(49) and obtain

〈|ϑ |2α〉 ∼ exp[αλτκ − γ (α)τ ], (51)

where γ (η) is found in accordance with the Legendre trans-
form (22) and (23). Since ξ < λ, there is an intermediate time
asymptotic τκ < τ < λτκ/ξ within the diffusion stage: in this
time interval, the integral (49) is determined by the smallest
possible value 
 = λτκ under the condition that the diffusion
does not affect scalar dynamics. So we find

〈|ϑ |2α〉 ∼ exp[−τS(λτκ/τ )]. (52)

Note that (52) is independent of α (up to the dropped Cα) since
it gives the probability that 
 process reaches fixed value λτκ
just in time τ and has been in advective stage of dynamics up
to that moment. For such random flow velocity realizations,
the scalar amplitude in each blob is equal to its initial value,
whose order is of unity.

If α > 1, the condition 
 > 0 is violated for the sad-
dle point, determined by Eq. (50), for any τ . Indeed, the
equation leads to ξ < 0 and, consequently, to 
 < 0. In this
situation, again, the integral (49) is determined by the value

 = λτκ , which is the largest possible one under the condition
that the diffusion does not play any role in the scalar dynam-
ics. We conclude that the relation (52) is correct at any time
τ > τκ for α > 1.

Further, we reformulate the results for the one-point mo-
ments in terms of the one-point PDF Pϑ . At a fixed realization
of the velocity, the PDF of the scalar is Gaussian,

P̃ϑ (ϑ, 
) = 1√
2πF (t, 0)

exp

(
− ϑ2

2F (t, 0)

)
. (53)

Until the time τ reaches the diffusion time, τ < τκ , the ob-
ject F (t, 0) = 1 for most probable velocity realizations, so
the scalar PDF Pϑ (ϑ ) coincides with the initial one. After
that at times τ > τκ , the averaging over the velocity statistics
leads to

Pϑ =
∫ ∞

λτκ

d
 P̃ϑ (ϑ, 
)�(
) ∼ 1

|ϑ | exp[−τS(
∗/τ )],

(54)

where the scalar intensity is assumed not to exceed the
characteristic initial value, |ϑ | � 1, and the optimal velocity
fluctuation is determined by 
∗ = λτκ − 2 ln |ϑ |. The ob-
tained PDF (54) corresponds to the relation (49) and is
applicable for the intensities |ϑ | which are greater than the
scalar intensity at the most probable velocity realizations,
|ϑ | > e−λ(τ−τκ )/2. In this region the PDF can be characterized
by its logarithmic derivative ∂ϑ lnPϑ = (2S′(
∗/τ ) − 1)/ϑ .
At large times it results in power-law dependence on |ϑ |
with exponent [2S′(0) − 1] = −3 up to the scale of the scalar
maximum possible amplitude |ϑ | ∼ 1. This means that all
moments with α � αc, αc = 1 are determined by the peaks
in the scalar intensity. Such peak events correspond to the
nontypical flow realizations, where the 
 process reaches fixed
value λτκ just in time τ , so the lowest dimension of the scalar
blob was not affected by the molecular diffusion during all the
observation time up to τ .

In the case of the isotropic turbulent flow, the critical value
αc = 1 for the 2D model of short-correlated velocity gradi-
ent in time [29] as well. The corresponding algebraic tail of
PDF Pϑ ∝ |ϑ |−3 had been confirmed by numerical simulation
[53]. Analytically, the single-point statistics (51) and (52) was
established in [28,29]; before that, the asymptotic (51) was
separately found for scalar variance 〈ϑ2〉 in [54].

The results are obtained within the Lagrangian stretch-
ing theory that has limiting factors. In an experiment or a
numerical simulation, the significant limitation of Eq. (52)
applicability is lack of statistical data for sampling that in-
evitably raises at large times. The right-hand side of the
expression means probability of the flow realizations preserv-
ing the L− dimension no lower than diffusion one. It decreases
in time exponentially, so one needs an increasingly large sta-
tistical population in order to restore the tail of theoretical
distribution (16) from the data. Instead of this at large times,
due to the data amount being finite, the restored empirical
distribution is determined on the basis of the most probable
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flow realizations that provide ρ ∼ τ . Such collapse to nar-
row distribution was proposed in Ref. [55], leading to linear
dependence γ (α) at α > αc, which authors observed; see also
[53]. We can also address to the review [56] for extensive
discussion of the single-point scalar statistics in a random
smooth flow for the decay problem.

B. Pair correlation function

The pair correlation function F of the passive scalar ϑ can
be written as the average

F (t, r) = 〈F (t, r)〉. (55)

We suppose that the initial statistics leads to the Gaussian
initial spatial form of F , so it has the form as in Eq. (38) at
any time. The parametrization (39) implies that averaging in
Eq. (55) is performed over the statistics of φ,L+,L−, exam-
ined above.

Passing to polar coordinates in the rescaled space:

w = (D/	)1/3x = b cosψ, y = b sinψ, (56)

we find for the argument in the exponent in Eq. (38)

�αβbαbβ = b2L−2
+ cos2(φ − ψ ) + b2L−2

− sin2(φ − ψ ). (57)

Thus, if b � L− then the quantity (57) is much less than unity,
and the pair correlation function is reduced to the second mo-
ment of ϑ examined in Sec. III A. Hence, below we examine
the case b � L−. Note that the criterion depends on time at the
advective stage of the passive scalar evolution and is reduced
to b � rκ at the diffusive stage.

If b � L−, then the quantity (57) has a deep minimum at
φ = ψ . Correspondingly, exp(−�αβbαbβ ) has a sharp peak
at this point. Thus, averaging over φ statistics brings us to the
factor proportional to the peak’s width,

F ∼
〈

L�L

bL+
exp(−b2L−2

+ )

〉
+
, (58)

as a consequence of Eqs. (38) and (40). Remarkably, L− falls
out of consideration and we stay with averaging solely over
the statistics of L+ in Eq. (58). The factor in the propor-
tionality law (58) depends on the angle ψ . Its exact value is
determined by details of the φ distribution and, consequently,
is not universal, since that depends on the statistics of ζ

(11). As we have implemented the rescaling (9) and (56), the
distribution is anticipated to be nearly isotropic; an example
for a short correlated case is given in Fig. 1. For this reason
we focus on the dependence of the pair correlation function
on the length b.

The average in (58) can be written as the integral over 
 =
ln(L+/L) with the weight (16). Due to the strong dependence
on 
 of exp(−b2L−2

+ ), the last factor restricts the integration
region to 
 > ln(b/L), so we arrive at

F ∼ L�

b

∫ ∞


min

d
 exp [−
 − τS(
/τ )] (59)

if b � L− and 
min = max(ln(b/L), ln
√

L�/L). The integral
above is of the same type as in Sec. III A and can be analyzed
similarly.

If ln(b/L) < 0 (b � L) then the integral in Eq. (59) is
determined by the saddle point 
 = 0 in accordance with (19),

and we obtain

F ∼ L�

b
exp [−τS(0)]. (60)

If ln(b/L) > 0 (b � L) then the integral in Eq. (59) is deter-
mined by the allowed minimal value ρmin = ln(b/L) of 
, and
we find

F ∼ LL�

b2
exp

[
−τS

(
ln(b/L)

τ

)]
. (61)

Note that the function (61) diminishes monotonically as b
increases. Indeed, the derivative

∂ ln F

∂ ln(b/L)
= −2 − S′

(
ln(b/L)

τ

)
is negative since S′(ξ ) > −1 for ξ > 0.

The derivation above, as mentioned earlier, implies the in-
equality b � L−. It is correct if b is much larger than the initial
value of L− (41), i.e., b � L�. However, if rκ � b � L� then
the optimal value of L− is L− ∼ b that violates the condition
of the sharp peak in averaging over φ statistics, so the latter
just produces a factor of order unity. Since L− ∼ b � rκ , the
diffusion term in Eq. (43) is irrelevant, and we come to

L+ = LL�/L− ∼ LL�/b.

Therefore, providing times are large enough, λτ > ln(L�/b),
we conclude

F ∼ exp

[
−τS

(
ln(L�/b)

τ

)]
. (62)

Otherwise, λτ < ln(L�/b) means L− � b, which brings us to
the mean square F = 1.

Let us return to the fact that the pair correlation func-
tion does not depend on the diffusion coefficient above the
Batchelor scale rκ ; see (58). Hence, it is determined only by
the statistics of Lagrangian trajectories. As it is demonstrated
in Appendix C, there is a relation between the joint PDF
P (τ, 
, φ) (32) and pair correlation function F (55) in this
region: F ∝ P/b2. Dependency (61) agrees with this relation
as well as with (60) and (62) if one employs symmetry (17)
and the Cramér function expansion near zero. The relation
between the Cramér function and the pair correlation function
F can be thus considered as general and be employed as a way
to extract the Cramér function via experimental measurements
of passive scalar spatial statistics.

C. Higher order correlation functions

The pair correlation function F does not reflect the pres-
ence of folding in the passive scalar spatial distribution. This
is due to the function being also the result of averaging over
angle, which makes the statistics near-isotropic. The folded
structure can be revealed with the aim of higher-order correla-
tion functions. As was demonstrated in Ref. [57], higher order
correlation functions of the passive scalar F2n(r1, . . . , r2n) in
the Batchelor regime have sharp maxima in collinear geom-
etry where the points r1, . . . , r2n are separated in pairs with
parallel differences. One can think that the folded structure
is caused by overlapping of scalar blobs which are strongly
stretched. The collinear geometry provides the vectors in each
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pair can be covered simultaneously by a blob during the aver-
aging over angle.

Let us consider such collinear geometry. It corresponds
to the following leading contribution to the 2n-th correlation
function:

F2n = 〈F (b1, ψ ) . . .F (bn, ψ )〉, (63)

where F are determined by Eqs. (38), (40), and (57) and
the angular brackets mean averaging over the statistics of
φ,L+,L−.

For definiteness, we consider the case b � L where b2 =
b2

1 + · · · + b2
n. Then we obtain

F2n ∼
∫ ∞

ln(b/L)

Ln
�d


bLn−1
−

exp [−n
 − τS(
/τ )] (64)

instead of Eq. (59). The integral in Eq. (64) is determined
by the lower limit, i.e., L+ ∼ b. If b � LL�/rκ then we obtain
the same proportionality law as in Eq. (61), F2n ∼ F , since
the optimal velocity fluctuation corresponds to the suppressed
diffusion so L+L− = LL�. Otherwise, at b � LL�/rκ , one has
L− ∼ rκ and

F2n ∼ (LL�)n

rn−1
κ bn+1

exp

[
−τS

(
ln(b/L)

τ

)]
. (65)

In both cases, the correlation function F2n much exceeds its
naive expectation, F2n � F n(b/

√
n) for moderate n.

IV. CONTINUOUS FORCING OF SCALAR

Now we consider the problem where fluctuations of passive
scalar field ϑ are excited in the system for a long time via
random supply f ; see Eq. (1). If its correlation time is shorter
than scale 	−2/3D−1/3 of scalar evolution, excitation can be
represented as an aggregation of statistically independent con-
tributions (blobs), which results in Gaussian statistics of ϑ
before averaging over the flow statistics, as for the decaying
case; see Sec. III.

By analogy with the decaying case we introduce the object
F (t, r1, r2) that is the product ϑ (t, r1)ϑ (t, r2) averaged over
the statistics of the forcing f at a given random velocity u.
Since the statistics of ϑ is Gaussian (before averaging over the
statistics of u), any product ϑ (t, r1) . . . ϑ (t, r2n) averaged over
the statistics of f is expressed via the products of n factors F
in accordance with Wick theorem [47].

For definiteness, we assume that the forcing f is short
correlated in time. Then its statistics is determined by the pair
correlation function

〈 f (t1, r1) f (t2, r2)〉 = δ(t1 − t2)�(r1 − r2). (66)

The expression (66) implies homogeneity of f statistics in
space and time. We assume that � has the characteristic scale
L much smaller than the correlation length of the flow. How-
ever, L is assumed to be much larger than the diffusion length
rκ (37).

In our case F (t, r1, r2) is a function solely of the difference
r = r1 − r2, as a consequence of spatial homogeneity of the
forcing statistics. One finds from Eqs. (1) and (66)

∂tF +	y∂xF + x(∂xuy)∂yF = 2κ∇2F +�(r). (67)

Here, as previously, we have kept the only relevant gradient of
the random velocity u, ∂xuy. One can also substitute ∇2 → ∂2

y
in Eq. (67).

The solution of (67) can be carried out from previous
calculations for the decay problem in Sec. III. Indeed, one can
take solution (35) with the initial condition F (t, r) = �(r)
at a preceding time moment and consider its evolution till
the current time—so we get the contribution from one time
moment of forcing t , the result will be obtained by integration
over time interval of f activity. In sense of our model, each
blob brought into system has been evolving from that moment
in flow and F is a cumulative result of all blobs over all time
till now, while they could have been brought.

As for the decay case, it is instructive to analyze the
Gaussian profile of the forcing correlation function � ∝
exp(−r2/L2). Then we find the solution of Eq. (67) in the
large time limit:

F (r) =
∫ ∞

0
dτ

LL�

L+L−
exp(−�αβbαbβ ), (68)

where the matrix �̂ is determined by Eq. (39). The quanti-
ties φ,L+,L− are introduced in Sec. III, and their statistical
properties are established there as well.

A. Single-point statistics

Here we consider moments of the passive scalar, i.e., the
single-point means 〈|ϑ |2α〉. As in the decaying case, be-
fore averaging over the flow fluctuations the passive scalar
possesses Gaussian statistics. Therefore at a given flow the
moment is equal to Cα (F )α where Cα is the same as in (47),
F is a value of (68) at the origin, and r = 0. Thus, the moment
is equal to

〈|ϑ |2α〉 = Cα〈(F )α〉. (69)

At the condition L� � rκ the main contribution to the
single-point F is caused by the first stage where the product
L+L− remains constant; the contribution is proportional to the
duration of the advective stage τ . Taking into account the
probability of the event where L− reaches rκ , we find from
Eq. (69)

〈|ϑ |2α〉 ∼ Cατ
α exp

[
−τS

(
ln(L�/rκ )

τ

)]
. (70)

Here the parameter τ is a subject of optimization.
At moderate α the maximum of the expression (70) is

achieved where the Cramér function S is minimal, i.e., at τ =
ln(L�/rκ )/λ. This obviously leads to the Gaussian single-point
statistics of ϑ . In the case the moments (69) are expressed via
the second moment as follows:

〈|ϑ |2α〉 = Cα〈ϑ2〉α, (71)

〈ϑ2〉 = �(0)

λ̄
ln(L�/rκ ), (72)

where λ̄ is the dimensional Lyapunov exponent and �(0) is
the scalar variance production rate. The result corresponds to
one established in Ref. [58].

However, for large exponents, α � ln(L�/rκ ), the mo-
ments strongly deviate from the relation (71). Optimizing the
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expression (70) over τ , one finds the condition γ τ = α where
γ is determined as Legendre transform of S; see Eqs. (22)
and (23). If α � ln(L�/rκ ) then γ is small and we return to
Eq. (71). If α � ln(L�/rκ ) then α = S(0)τ , so τ � ln(L�/rκ )
as well. The regime corresponds to the exponential tail of PDF
for ϑ , exp(−θ/θ0), where θ2

0 = �(0)(D	2)−1/3/S(0).

B. Pair correlation function

Now we move on to examine correlation functions of the
passive scalar ϑ . We begin with the pair correlation function.
As in the decay problem, the averaging over flow statistics
is required: F (r) = 〈F (r)〉. In the limit of long-lasting supply
F (r) is independent of time, as a consequence of homogeneity
of the forcing statistics in time. Therefore, we examine 〈F (r)〉
where F (r) is given by Eq. (68).

For b � rκ we return to the second moment (72). Let us
consider the opposite case, rκ � b � L�. Then the same logic
as for the second moment does work. The main contribution to
F is produced by the advective stage where the product L+L−
is a constant and the exponent in Eq. (68) can be substituted
by unity. The regime is finished where L− reaches b. The time
of the process is proportional to the corresponding logarithm,
and we obtain an expression that is independent of the b
vector’s direction:

F = �(0)

λ̄
ln(L�/b). (73)

Formulas (72) and (73) are analogous to the well-known re-
sult for the isotropic case, and (73) describes the Batchelor
cascade of passive scalar variations towards smallest scales
[1,7,8] in coordinate representation. The dependence (73) can
be directly obtained by solving the equation for the pair cor-
relation function F , as shown in Appendix C.

For b � L�, so L−/b � 1 at any time, after angle averag-
ing we obtain similar to (59) the expression

F ∼ L�

b

∫ ∞

0
dτ

∫ ∞

ln(b/L)
d
 exp [−
 − τS(
/τ )]. (74)

If b � L, i.e., ln(b/L) < 0, the integral over τ is determined
by τ ∼ 1, hence the approximation (74) is, strictly speaking,
incorrect. However, one can assert that F ∼ (�(0)/λ̄)L�/b in
the region due to the averaging over angles. If ln(b/L) > 0
(b � L), then 
 > 0 in the whole region of the integration.
Then the integral over τ in Eq. (74) is determined by a narrow
vicinity of τ = 
/λ. After integration over τ the integration
over 
 will be determined by the lower limit, and we find
F ∼ (�(0)/λ̄)LL�/b2. The dependence is in agreement with
the stationary solution of Eq. (C4) for the pair correlation
function F ; see Appendix C and in particular (C3).

C. Higher order correlation functions

Next, we continue our examination to high-order correla-
tion functions F2n. They can be represented as the sum of the
n(n − 1)/2 products of F in accordance with Wick theorem
[47], where each product in the sum should be averaged over
the statistics of the random flow. Below we analyze a product
in the sum.

In situation where all the separations between the points are
much smaller than L�, the main contribution to the average

of the product of n multipliers F is related to the advective
stage. Each F gives the factor determined by the duration of
the regime where the product L+L− remans constant and there
is no suppression related to averaging over the statistics of
the angle. For moderate n the evolution of L− is determined
by the typical processes: ln(L�/L−) = λτ . Then the duration
for each F is proportional to the same logarithm (73) and
average of the product of F’s is reduced to the product of the
averages. In other words, we arrive to the Gaussian statistics
for moderate number n of multipliers in product, where F2n

can be expressed via F in accordance with Wick theorem [47].
However, if n is large enough, the main contribution to F2n

is related to rare events in which the L− decrease is much
slower than typically, as it was for high moments of θ . In this
case the value of F2n is determined by the duration of the event
and is insensitive to the logarithms. We conclude that in this
limit F2n coincides with the moment 〈(ϑ )2n〉; see Sec. IV A.
This non-Gaussian regime implies that n exceeds logarithms
for each pair correlation function (73) in the product. Note that
the regime can be realized for lower n than in the one-point
moments case, since logarithms for the correlation functions
are smaller than ln(L�/rκ ).

In the limit where separations are much larger than L,
the situation is more complicated. As was demonstrated in
Ref. [57], higher order correlation functions of the passive
scalar F2n(r1, . . . , r2n) in the Batchelor regime have sharp
maxima in collinear geometry where the points r1, . . . , r2n

are separated into pairs with parallel differences. Let us con-
sider such collinear geometry. It corresponds to the average
(63), where now F is determined by Eq. (68). Averaging
over the statistics of the angle φ, one finds the extra factor
(L−/b) exp(−b2L−2

+ ), as in Eq. (64), where b2 = b2
1 + · · · +

b2
n. The factor exp(−b2L−2

+ ) implies that the effective mini-
mum value of 
 = ln(L+/L) is ln(b/L). The integral over 

is gained near its minimum value. Therefore further one can
substitute L+ = b.

As for the pair correlation function, the distribution over
times, determined by the factor exp[−τS(
/τ )], has a peak at
λτ = ln(b/L). Therefore we find after integration over times

F2n ∝ 1

bn+1Ln−1
−

. (75)

Since the expression (75) is determined by typical events,
we can say that L− = LL�/b if λτ < ln(L�/rκ ) and L− = rκ
otherwise. Thus, we arrive at

F2n ∝
{

b−2, L � b � LL�/rκ ,
b−n−1, b � LL�/rκ .

(76)

The expressions (76) cover the pair correlation function as
well. For the pair correlation function, where n = 1, there are
no differences in the regimes of Eq. (76), in accordance with
the above analysis.

It is possible to include in our consideration a linear damp-
ing of scalar of rate γ , which can be interpreted as chemical
decay of concentration. For the isotropic turbulence case it
was considered theoretically in [59], and in addition numer-
ically in [60,61] via study of spatial correlations. For our
flow the mathematical treatment should be similar to the one
presented in the last reference. In particular, it is anticipated
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that the filamental-smooth transition should occur when the
decay rate is equal to the Lyapunov exponent, γ = λ̄.

V. CONCLUSION

In the present paper we examined statistical characteristics
of the passive scalar, like its moments and correlation func-
tions, when it is mixed by shear flow with the addition of
relatively weak smooth random flow in incompressible fluid.
In accordance with the established criteria, we limit our con-
sideration to the situation when the random flow is relatively
weak compared to the mean flow (8) but is strong enough to
produce the stirring, which is more intense than the molecular
diffusion at the scale of the forcing; see (45). We considered
both the problem of the passive scalar decay and the problem
of its statistically homogeneous in time supply. As was ex-
pected, the statistical properties of the passive scalar appear to
be far from Gaussian. Therefore, study of parameters of the
passive scalar distribution cannot be reduced to the analysis
of the mean square and the pair correlation function and
requires examination of moments and correlation functions
of higher order. We have developed the technique enabling
to perform the analysis. Obtained results are expressed via
the Cramér function (14) for the statistics of stretching in the
given random flow and thus have rather general applicabil-
ity. It turns out that after the proper rescaling in space the
results have properties similar to characteristic ones from the
isotropic case, being written in terms of the Cramér function
for their random flow. For this reason, a statistical analysis
of passive scalar advection provides information about the
flow statistics itself. In our work we have established proper-
ties of the Cramér function under some general assumptions.
Besides, we have provided its numerical approximation and
certain analytical results in the case of a flow model with short
correlated-in-time fluctuations.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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APPENDIX A: SYMMETRY OF PDF
FOR THE SCALING FACTOR

In this Appendix we consider a consequence of the stochas-
tic equations (10) and (11) for a random variable ζ with
homogeneous in time statistics that is invariant under time
inversion. The symmetry means that all correlation functions
of ζ are invariant under the transformation t → −t . Then the
relation (13) is valid for the probability density function �(
).

We consider the stochastic evolution of the variables 
, φ
on some finite-time interval (0,T ) and denote as 
 the value
of the variable 
 at the final moment of time, 
(T ). The

function 
, as a consequence of Eq. (10), can be written via
time integration,


 =
∫ T

0
dτ (1 + ζ ) cosφ sin φ, (A1)

where we assumed that initially 
(0) = 0. The random pro-
cess ζ is supposed to possess homogeneous in time statistics.

Using Eqs. (10) and (11), one can represent �(
) as the
following path integral [62]:

�(
) =
〈 ∫

DφDp exp(iI )

× δ

[

 −

∫
dτ (1 + ζ ) cosφ sin φ

]〉
, (A2)

I =
∫

dτ p(∂τφ + A), (A3)

A(φ) = −ζ cos2 φ + sin2 φ, (A4)

where p(τ ) is an auxiliary field, angle field φ(τ ) with domain
on a real axis, thereby containing information about rotations
of �, and angular brackets mean averaging over statistics of ζ .
The integration over p in Eq. (A2) ensures validity of Eq. (11),
and the δ function in Eq. (A2) reflects the relation (A1).

Let us apply the transformation

τ → T − τ, φ → −φ, 
 → −
, (A5)

where the last one means interchange 
(0) ↔ 
(T ). It is
reduced to the substitution ζ (τ ) → ζ (T − τ ) in the effective
action I and in the δ function in Eq. (A2). For the statistics of
ζ , which is invariant under the time inversion, the averages
over ζ (τ ) and ζ (T − τ ) coincide. Naively, one could con-
clude from Eq. (A2) that �(
) = �(−
). However, caution
is needed here, since the integral giving the effective action I
should be imposed by causality. Therefore, the time inversion
is not an innocuous transformation. To clarify the point we
move to time-discretized version of the integral (A3).

The integral (A3) can be written as the limit of the sum

I =
N∑

n=1

[pn(φn − φn−1) + εpnAn−1], (A6)

An = −ζn cos2 φn + sin2 φn, (A7)

where ε is the time spacing and the parameters pn, φn corre-
spond to the values of the variables p, φ at the time τn = nε.
The value of φ0 is fixed as the initial condition. In accordance
with causality, the factor at pn in Eq. (A6) corresponds to the
relation φn = φn−1 + εAn−1.

Due to the retarded structure of (A6) the normalization
constant∫

Dp Dφ exp(iI ) →
N∏

n=1

∫
d pn dφn

2π
exp(iI ) (A8)

is equal to unity. To prove this property, we begin the cal-
culation of the integral (A8) “from the end,” performing first
integration over the final angle, φN , since the initial value of
φ, φ0, is fixed, as one should. The only term in I (A6) con-
taining φN is pNφN . Thus, the integration over φN produces
2πδ(pN ) and the subsequent integration over pN is reduced to
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the substitution pN = 0. After the integrations we return to the
initial form of I with the number of pn, φn decreased by one.
Repeating the procedure, we conclude that the normalization
constant equals one.

Now we consider �(−
), which can be found by the inver-
sion τ → T − τ , φ → −φ in Eq. (A2). Then we arrive at the
same path integral of same form, where the effective action I
is substituted by I−. Structure of the action I− is analogous to
Eq. (A6), though shifted, with the fixed final value φN+1 now

I− =
N∑

m=1

[pm(φm+1 − φm) + εpmAm]

→
N∑

m=1

pm

[(
1 − ε

∂Am

∂φm

)
(φm+1 − φm) + εAm+1

]
. (A9)

This feature leads to an additional factor at integration with the
weight exp(iI−) comparing with exp(iI ) integration’s weight.

To establish the factor, we consider the integral

N =
∫

Dp Dφ exp(iI−) →
N∏

n=1

∫
d pn dφn

2π
exp(iI−).

(A10)

In this case, we should start “from the beginning” since φN+1

is fixed; the first integration should be performed over φ1 and
gives∫

dφ1

2π
exp

[
−ip1

(
1 − ε

∂A1

∂φ1

)
φ1

]
= δ(p1)(

1 − ε ∂A1
∂φ1

) .
The subsequent integration over p1 is reduced to substituting
p1 = 0.

Repeating the procedure for all φn, pn, one obtains

N =
∫

Dp Dφ exp(iI−) →
N∏

m=1

(
1 − ε

∂Am

∂φm

)−1

→ exp

(∑
m

ε
∂Am

∂φm

)
→ exp

(∫
dτ

∂A

∂φ

)
.

Due to the δ function in (A2), it is expressed via (A1) after our
inversion transformation

2ρ(T ) − 2ρ(0) =
∫ T

0
dτ

∂A

∂φ
= −2ρ, (A11)

resulting in normalization factor:

N = exp(−2
). (A12)

Just the presence of this factor distinguishes the path integral
with the effective action I and one with the effective action I−.
Remembering, that the path integral with I determines �(
)
and that the path integral with I− determines�(−
), we arrive
at the law (13).

As well, let us note the Fluctuation Theorem can be formu-
lated for our dynamical system with time-invertible statistics.
Following the work [41], we see that Eq. (A11) means the rel-
ative contraction of volume in phase space during evolution:
� = ∂φ̇/∂φ = −2ρ̇, which defines the dissipation function
according to (2.6): �τ = 2ξ for our system. The Fluctuation
Theorem formula (2.8) for �τ is our symmetry (17).

APPENDIX B: CONNECTION
TO THE UNSTRETCHED SPACE

In the works [34,63] the other (“natural”) parametrization
of vector �,

�x = l0 exp ρ cosϕ, �y = l0 exp ρ sin ϕ (B1)

was used, which differs from our parametrization; see
Sec. II A. The “natural” parametrization (B1) may be more
convenient for analysis of experimental data; see, e.g.,
Ref. [36]. All analytical results regarding the angle dynamics
and the Lyapunov exponent were obtained in Refs. [34,63]
also using that parametrization. Here we demonstrate how
these results can be transferred to the parametrization (9) used
in our work. For brevity, we introduce below the notation
ϕ∗ = (D/	)1/3 � 1 for the characteristic value of angle ϕ.

Angles φ and ϕ are related to each other by

sin φ = sin ϕ√
(ϕ∗ cosϕ)2 + sin2ϕ

,

cosφ = ϕ∗ cosϕ√
(ϕ∗ cosϕ)2 + sin2ϕ

. (B2)

Under the transformation (B2), points πn/2 (where n is in-
teger) remain unchanged. In particular, this means that the
tumbling frequency ω (28) in terms of ϕ and φ is the same.
The exponents ρ and 
 differ on a function whose value is
bounded in time,

ρ = 
 + 1

2
ln

(
cos2 φ

ϕ2∗
+ sin2 φ

)
, (B3)

so the Cramér function (14) and the Lyapunov exponent (27)
are the same for PDF of ρ.

Let us derive here the approximate dynamical equa-
tions (10) and (11) in terms of ρ, ϕ. Full dynamical
equations (5) and (6) written in terms of ρ, ϕ are

∂tρ = 	+ ∂yux + ∂xuy

2
sin(2ϕ) + ∂xux cos(2ϕ), (B4)

∂tϕ = −(	+ ∂yux ) sin2 ϕ + ∂xuy cos2 ϕ − ∂xux sin(2ϕ),

(B5)

where we used ∂yuy = −∂xux due to the incompressibility.
First, we neglect all terms where ∂iu j is added to 	 as we as-
sume that the steady effect produced by 	 is stronger than one
produced by the flow fluctuations ∂iu j at the relevant timescale
1/λ̄. Due to the correlation time of ∂iu j being smaller than this
timescale, we obtain the requirement 	/λ̄ � √

D/λ̄ for each
element of tensor D in (7), which is ensured with our basic
assumption (8): 	 � D. Next, due to the estimation for angle
| sin ϕ| ∼ ϕ∗, we neglect the last terms in (B4) and (B5) as
their effect is relatively small as

√
D/λ̄ ∼ ϕ∗ � 1. Thus we

arrive at

∂tρ = 	

2
sin(2ϕ), ∂tϕ = −	 sin2 ϕ + ∂xuy cos(2ϕ), (B6)

which corresponds to (10) and (11) written in terms of ρ, ϕ.
Note that within the used accuracy one can replace cos(2ϕ) by
unity in (B6), since the term is relevant only when | sin ϕ| �
ϕ∗. This derivation is equivalent in respect of neglected terms
in (B5) to the ones in [33,34]. Within the Langevin model
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(26), noise in Eq. (B6) has the statistics determined by the pair
correlation function 〈∂xuy(t )∂xuy(t ′)〉 = 2Dδ(t − t ′). Compar-
ing the order of terms in system (B6) at angle values | sin ϕ| ∼
ϕ∗ where fluctuations are relevant, one obtains the character-
istic timescale (which is an order of tumbling frequency as
well) via estimate for Lyapunov exponent: t−1

∗ = λ̄ ∼ 	ϕ∗ ∼
	

√
D/λ̄, that gives λ̄ ∼ D1/3	2/3.

Equations (B6) were obtained and treated analytically in
[34,63] in the limit of small parameter D/	 � 1. In particu-
lar, analytical expressions for λ and ω (31) can be found there.
Also, there is the stationary solution for PDF Qs(ϕ), which is
an analog of Ps(φ), with a narrow peak at ϕ ∼ ϕ∗ of the same
width ∼ϕ∗ and the algebraic tails Qs = ωϕ∗/π sin2 ϕ.

APPENDIX C: CONNECTION BETWEEN THE STATISTICS
OF LAGRANGIAN TRAJECTORIES AND THE PAIR

CORRELATION FUNCTION

In this Appendix we derive Eq. (35) for F (t, r) and es-
tablish the equation for the pair correlation function F (t, r)
in case of the short correlated model determined by Eq. (26).
The function F can be related to the joint PDF P (φ, 
).

The dynamics of object F (t, r1, r2) = 〈ϑ (t, r1)ϑ (t, r2)〉ϑ ,
where low index ϑ means over the statistics of the forcing f
or the initial conditions, follows from the basic equation (1):

∂tF = −[(v (1)∇(1) ) + (v (2)∇(2) )]F
+ (�(1) +�(2) )F + 〈ϑ (1) f (2) + ϑ (2) f (1)〉ϑ . (C1)

Here indices (1) and (2) mean points r1 and r2 respectively.
If the statistics of the scalar is homogeneous in space, then
F depends on r = r2 − r1 only. Then the sum of Laplacians
is �(1) +�(2) = 2�, and the advection term is (v (1)∇(1) ) +
(v (2)∇(2) ) = (v (2) − v (1) )∇, where differentiation with respect
to components of r. Next, employing the smoothness of ve-
locity field (4), we simplify the advection term to (∂iv j )ri∂ j ,
which we divide then in (35) into the constant and random
parts. The last term in (C1) is relevant only if there is stochas-
tic forcing and equals to � (66).

Now let us derive equation for F , first within the decay
problem. Equation (36) averaged over statistics of the random
flow (26) takes the form

∂τF + y∂wF − w2∂2
y F = r2

κ∂
2
y F. (C2)

One can neglect the diffusion at scales much larger than
rκ . The absence of diffusion means that the pair correlation
function is determined only by the statistics of Lagrangian
trajectories. In other words, Eq. (C2) should be equivalent to
Eq. (32). To prove the property, we introduce

F = P/b2, (C3)

where b and ψ are defined in (56). Then Eq. (C2) written in
terms of P , 
 = ln b, and φ = ψ coincides with Eq. (32).

Next we turn to the problem of continuous forcing. The
pair correlation function satisfies the same equation (C2) with
additional term �(r), which is the spacial correlation function
of the forcing, describing the supply [see Eq. (66)]:

∂τF + y∂wF − w2∂2
y F = r2

κ∂
2
y F +�. (C4)

To consider the Batchelor (downscale) cascade of the pas-
sive scalar, it is instructive to rewrite Eq. (C4) in Fourier space,

(
∂τ − kw∂ky − k2

y ∂
2
kw

+ r2
κk2

y

)
F̃k = �̃k, (C5)

where the Fourier transform is determined in accordance with

F̃k(t ) =
∫

dw dy F (t, r) exp(−ikww − ikyy). (C6)

We consider (C5) in the inertial range 1/L� � k =√
k2
w + k2

y � 1/rκ , where diffusion and supply terms are neg-
ligible. In case of the shear flow, there is a symmetry with
the equation in coordinate space: in the absence of diffusion,
Eq. (C5) is equivalent to Eq. (C4) under change {kw, ky} →
{y,−w}. Therefore, there is the stationary solution of (C5) in
the inertial range, which corresponds to the Batchelor cascade

F̃k = 2π2�(0) Ps(φk )

λ̄k2
, (C7)

where ky = k cosφk , kw = −k sin φk , and Ps is the stationary
angle PDF (32). The factor with forcing � here comes from
the requirement that the flux through line k = const should
be equal to the scalar variance production rate �(0). The
spectrum is obtained from (C7) via integration over angle
is k/(2π )2

∫
dψ F̃k = �(0)/(λ̄k). The k−1 dependence is the

same as for isotropic turbulence case [8] and corresponds to
logarithmic dependence (73) in b space. The inverse Fourier
transform of (C7) brings us to (73).

APPENDIX D: FOURIER TRANSFORM

Here we analyze properties of Fourier transform of the
joint PDF P (τ, 
, φ) determined by Eq. (33). One can write
Eq. (32) in the form

∂τ P̃ = −M̂P̃, (D1)

M̂ = (η − 1) cosφ sin φ − sin φ ∂φ sin φ

− [cosφ sin φ (η − 1) + cosφ ∂φ cosφ]2. (D2)

Thus, we arrive at the differential equation formulated solely
in terms of the angle φ.

A general solution of Eq. (D1) can be written as

P̃ (τ, φ, η) =
∑

n

cn exp[−γn(η)τ ]P̃n(φ, η), (D3)

where factors cn depend on initial conditions. Here P̃n are
eigenfunctions of the operator M̂(η) with the corresponding
eigenvalue γn(η):

M̂P̃n = γnP̃n.

The discreteness of the eigenfunctions P̃n is caused by their
periodicity in φ.

If γn is the eigenvalue of the operator M̂ for a given value
of η, there is the same eigenvalue γn for 2 − η. To prove the
assertion we consider the matrix

Mmn =
∫ π/2

−π/2

dφ

π
exp(−2imφ)M̂ exp(2inφ), (D4)
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FIG. 2. Integration contours for the inverse Fourier transform.
Continuous blue and red straight lines along the imaginary axis
are the initial contours of the integration. Dashed black lines are
branch cuts.

which eigenvalues are γn(η) by definition. Let us consider the
transposed matrix Mnm. Substituting φ → −φ in integral (D4)
for Mnm and integrating over φ by parts, we find Mnm(η) =
Mmn(2 − η). Since the eigenvalues of a matrix and of a trans-
posed one are the same, we find that eigenvalue sets of the
operators M̂(η) and M̂(2 − η) coincide, which concludes the
assertion’s proof.

At large times, the main contribution to the sum (D3) at a
given η is produced by the term with γn, whose real part is
the smallest (we denote it as γ ). In fact, eigenvalues γn are
ordered by increase of Re γn. Since

�̃ =
∫ +π/2

−π/2

dφ

π
P̃ (τ, φ, η),

we conclude that just one term with this γ enters Eq. (21).
This fact enables one to find γ (η) numerically, by solving the
equation M̂P̃n = γnP̃n.

There are singular points in η complex plane, where a pair
of eigenvalue branches, γi(η) and γ j (η) approach the same
value. In particular, the zeroth eigenvalue coincides with the
next first eigenvalue at points η − 1 ≈ ±2.1 ± 1.6i, and the
next two, first and second, eigenvalues with the smallest real
parts are equal to each other in the points η − 1 ≈ ±5.0. In the
vicinity of such a point, each of the corresponding eigenvalues
acts as one of two branches of a square-root-like singularity. It
is important that the singularities produce zero contributions
to the inverse Fourier transform

P =
∫

dη

2π i
exp(
η)P̃, (D5)

at large |
|. Let us take negative 
; then one should deform
two contours of the integral which correspond to the involved
eigenvalues as depicted in Fig. 2. The integrands including
pre-exponents, considered as analytical continuation from the
real axis, are equal to each other on the dotted parts of the
deformed contours, but the directions of the contours are op-
posite, so the results of integrations along the contours’ dotted
parts cancel each other. The same holds for the dashed parts
of the contours. Because of branch points’ square-root-like
behavior, one can reassemble the integration contours after
passing the point into a new pair of contours from the pieces,
which are marked as “1” and “2” in Fig. 2. Therefore, we
conclude that moving integration contours in the pairs on the
complex plane allow one to not consider such singular branch
points.

In that way, at large times the inverse Fourier transform
is determined by the zeroth eigenvalue and eigenfunction and
the corresponding saddle point located on the real axis, which
ensures the positiveness of the PDF P . The saddle point sat-
isfies Eq. (23): η = −∂ξS(ξ ). Knowing γ (η), one finds the
Cramér function via the Legendre transform. The result is
consistent with the statistics obtained via numerical simula-
tion of Langevin equations (10) and (11). Note that the Cramér
function S(ξ ) ≈ 0.33ξ 4 at large |ξ | � 1. This extremely fast
decay of the PDF stops at |ξ | ∼ (	/D)2/3, and after that the
Cramér function S ∼ (
/Dt )2, that is provided by terms with
the derivatives of u in Eqs. (5) and (6), omitted in our analysis.
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