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Coherent structures formed by small particles in traveling-wave flows
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We experimentally verify the “phase locking model,” which describes the formation of one-dimensional
coherent structures by low-Stokes-number particles as proposed by Pushkin et al. [Phys. Rev. Lett. 106, 234501
(2011)] in thermocapillary liquid bridges: When the particles form the coherent structures in time-periodic flows,
the synchronous coupling of the toroidal vortex and the azimuthally traveling wave is achieved for a range of
azimuthal wave number m. We further propose coherent structures of rational wave numbers in the azimuthal
direction and unveil those experimentally.

DOI: 10.1103/PhysRevE.110.015101

I. INTRODUCTION

Particle aggregation and dispersion in closed spaces are
widely observed in nature and industrial systems. Such has
been examined in various types of convection due to the baro-
clinic instability [1–3], in thermocapillary hanging droplets
[4,5], and in lid-driven cavity [6]. As a representative example
of the phenomena, Schwabe et al. [7] discovered that small
particles as the tracers locally accumulate in a time-dependent
traveling-wave-type thermal convection due to the hydrother-
mal wave (HTW) instability [8] in so-called half-zone liquid
bridges. This unique phenomenon was termed “particle ac-
cumulation structures” (PASs). These small tracer particles
form a closed structure in the shape of ordered helical bands
under narrow conditions in thermocapillary effect [9]. Their
azimuthal wave number mPAS depends on the liquid-bridge
aspect ratio (� = height/radius = H/R) and the volume ratio
to coincide with the azimuthal wave number of the HTW
itself, mHTW, for mHTW � 2 [9–13]: The azimuthal wave num-
bers of the PASs and HTW are always the same in positive
integer, and the PASs as well as the HTW are organized
in closed geometry in m symmetry around the axis. In the
case of mHTW = mPAS � 2, the coherent structure azimuthally
closes after mth turnover of the particles [9,13]. Pushkin et al.
[14] proposed a model named the “phase locking model”
(PL model, hereafter), to produce a coherent structure in the
cylindrical liquid bridge with considering the superposition
of steady toroidal vortices and azimuthal propagating waves.
They suggested that two flows with different directions “syn-
chronize” as fixing the phase and resulting in the occurrence
of PAS, nonetheless the model has not been demonstrated.
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Further, in the case of mHTW = 1, it has been indicated
through ground-based and microgravity experiments as well
as numerical simulations that PAS and HTW have different
wave numbers [15–18]. In this research, we conduct experi-
mental verification of the synchronous behavior of the flows
by the PL model [14]. Also, we predict the occurrence of PAS
of wave numbers not only in integer but also rational numbers
based on this model and demonstrate those experimentally.

II. VERIFICATION OF PL MODEL [14]

To verify the PL model, which is based on the Doppler
shift of the particle motion [14], we focus on the HTW and
coherent structures of various azimuthal wave numbers real-
ized within the liquid bridges. As an example, we examine
the well-developed HTW of mHTW = 1 (Fig. 1), which gives
rise to (i) coherent structure of mPAS = 1 formed by particle
clusters in the reference frame rotating with traveling-wave
flow and (ii) the surface temperature T = T (r = rs, z, θ ) and
its deviation T̂ = T − T . Small particles in the liquid bridges
form a closed structure through ordered cyclic motion in the
rotating frame of reference. Such behaviors are also observed
for m � 2 [9–13,20,21] [see Fig. 2(a)]. Note that the HTW
of mHTW exhibits thermal waves associated with mHTW-pairs
of relatively hot and cold regions [22–25] [bottom panel in
Fig. 1(b) for mHTW = 1]. The angular velocity of HTW, � =
2π/τ , is measured by the propagation speed of the travel-
ing thermal wave, where τ represents the period for HTW
of mHTW to complete one azimuthal revolution. The angular
velocity of the coherent structures matches the traveling speed
of HTW [9,10,26,27]. Focusing on the motion of an individual
particle in the laboratory frame [Fig. 1(c)], the particle shows
a regular back-and-forth motion in the radial direction, or a
turnover motion, while moving in the opposite direction to
the azimuthal travel of HTW [9,28,29]. The averaged angular
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FIG. 1. Example of coherent structure (PAS) in traveling-wave
convection and particle behavior forming PAS [19]: (a) Top view
of accumulated particle images in reference frame rotating with
HTW of mHTW = 1 when PAS of mPAS = 1 occurs. Dots: the particle
positions in the particle images; circle in yellow: the outer edge of
the rod sustaining the liquid bridge; and arrow: the direction of the
particles in the reference frame. Accumulation period of the particle
images �t = 6(2π/�). (b) Snapshot of temperature (T − TC)/�T
(above) and its deviation T̂ /�T (bottom). (c) Time series of posi-
tions in (r-φ) of a single particle forming PAS [as shown in (a)]
in laboratory frame: dot interval corresponds to 4 ms. The particle
undergoes azimuthal drift at a rate of ωp,φ = �φ/τp = �φ fp while
completing one radial oscillation or a single turnover motion within
a period τp = 1/ fp. (d) Power spectrum density against radial recip-
rocal motion of a single particle.

velocity of particle azimuthal movement ωp,φ is given by
ωp,φ = �φ/τp, representing “particle azimuthal drift” [14].
Here �φ is amount of azimuthal movement of particles per
turnover, and τp (τp = 1/ fp) is the period for a particle to make
a single turnover [Fig. 1(d)]. Extraction of the period of the
particle motion in the radial direction, ωp = 2π fp = 2π/τp,
from the experimental data for various mHTW allows for the
quantitative evaluation of the winding number W = �̂/ωp =
mHTW(� − ωp,φ )/ωp, proposed by Pushkin et al. [14]. As
aforementioned, mHTW is mainly governed by �, and mPAS

coincides with mHTW for m � 2 [9,10]. It must be noted, how-
ever, that the particles exhibit a coherent structure completing
two revolutions in the azimuthal direction to form a closed
trajectory in the case of HTW of mHTW = 1 [15–17] [top
left in Fig. 2(a)]. In previous studies, this type of structure
was referred to as “m = 1 with a spiral” based on the phe-
nomenological observation [15,16]. In this paper, a fractional
wave number is introduced: Suppose the coherent structure
closes in p-time revolutions in azimuthal direction after q-time
turnover, mPAS is defined as mPAS = q/p, where p and q are
the mutually prime positive integers. Thus, the wave number
of PAS as “m = 1 with a spiral” corresponds to mPAS = 1/2.
This definition works perfectly for mPAS of integers in the
HTW of mHTW = mPAS as well.

FIG. 2. (a) Top views of integrated particle images of PAS of
mPAS = 1/2, 1, 2, and 3 in reference frame rotating with HTW.
PASs of mPAS = 1/2 and 1 emerge in the HTW of mHTW = 1,
whereas those of mPAS � 2 emerge in the HTW of mHTW = mPAS.
PAS of mPAS = 3, observed in [13], was realized in the liquid
bridge of R = 2.5 mm, and the rest of PASs were realized with
R = 0.75 mm. The particle images are prepared by integrating for
�t = 6(2π/�). (b) Verification of PL model for various mPAS: W =
�̂/ωp = mHTW(� − ωp,φ )/ωp is the indicator with considering the
Doppler shift [14], and W ′ is the one without the Doppler shift as
W ′ = mHTW�/ωp.

Utilizing these experimental findings, we extract the quan-
tities �, ωp,φ , and ωp as shown in Fig. 1 to verify of the PL
model [Fig. 2(b)] . We evaluate the azimuthal wave number
with considering the Doppler shift as �̂ = mHTW(� − ωp,φ ).
The quantity �̂ represents the wave number experienced by
the particles in the azimuthal direction when they undergo
a single turnover [Fig. 1(c)]. Pushkin et al. [14] proposed
that the phase of the particles with respect to the traveling
wave is fixed by the “synchronization” between the particles
and the azimuthal waves, which leads to the formation of
PAS: They numerically demonstrated that PAS occurs when
W is equal to unity. This criterion is evinced to rigidly work
for PASs of different wave numbers for PASs of mPAS in
integers, whereas W becomes 1/mPAS for mPAS < 1 (mPAS �=
mHTW): The fractional wave number of PAS satifsies mPAS =
mHTW/W [cross marks in Fig. 2(b)]. On the other hand, the
frequency ratio W ′ = mHTW�/ωp, which arbitrarily neglects
the Doppler shift, does not converge to unity nor remain con-
stant with respect to mPAS (plus marks). These experimental
results suggest that the Doppler shift is a crucial factor, and
the azimuthal wave number �̂ experienced by the particles
governs the formation of PAS in a system with a time-periodic
flow with an azimuthal wave [14]. Note that it has not been
demonstrated whether a nonzero azimuthal drift (ωp,φ �= 0) is
a necessary condition for the formation of coherent structures,
notwithstanding. We then examine particle trajectory when
the azimuthal wave number of the traveling wave per one
turnover of the particle is intentionally varied in the rotating
frame of reference. We extract the particle motion within a
steady toroidal vortex flow with “minimal” azimuthal drift
(ωp,φ ≈ 0) as the fundamental particle motion [Figs. 3(i)(a)].
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FIG. 3. (i) (a) Top view of path lines of particles in steady flow observed (integrated for approximately 17 turnovers). A single path
line in red is the trajectory of a single particle for the reconstruction by the examination in the case without azimuthal draft (ωp,φ ≈ 0).
(b) Accumulated position of single particle in imaginary traveling wave with varying ratio of particle’s turnover against imaginary azimuthal
component. (ii) Variation of accumulation measure K (�̂) against ωp/�̂ = W −1. Peaks are found at rational values of ωp/�̂. (iii) Examples of
highly accumulated trajectories. The labels for primary peaks (A)–(G) and those for subpeaks (a)–(f) correspond to those in frame (ii).

In this simplified examination, �̂ is approximately equal to �:
We neglect any azimuthal drift. That is, the particle undergoes
simple back-and-forth motion in the radial direction in the lab-
oratory frame. When an imaginary azimuthal flow of angular
velocity �̂ is applied to the particle motion with ωp,φ ≈ 0, the
particle trajectory exhibits tight accumulation like a coherent
structure in the rotating frame of reference under the condi-
tion of ωp/�̂ ≈ 1 [ωp/�̂ = 0.986 in Figs. 3(i)(b)]. As the
ratio ωp/�̂ slightly deviates from unity, the particle positions
disperse in the rotating frame of reference. This demon-
strates that the synchronous behavior between the turnover
motion of the particles and the azimuthal flow is a direct
factor in the formation of coherent structures. A coherent
shape of trajectories is successfully reproduced by applying
imaginary traveling waves through the particle turnover mo-
tions in any steady flows within the liquid bridges of various
� (1.0 � � � 1.8).

III. PREDICTION OF COREHENT STRUCTURES

To quantitatively measure the degree of particle aggrega-
tion in the rotating frame of reference when an imaginary
azimuthal flow of the angular velocity �̂ is applied to the
turnover motion of a single particle in a steady flow, we
utilize the so-called “accumulation measure” [30] defined as
K (�̂) = {2(Np − N )}−1∑Ncells

i=1 |Ni(�̂) − N |, where Np is the
total number of particles, N is the average number of particles
per inspection cell, and Ni(�̂) is the number of particles in the
ith inspection cell [31]. High degree of particle aggregation
is realized for ωp/�̂ ≈ 1/ξ (ξ : integer) [denoted as (A) and
(B) in Fig. 3(ii)], as well as for cases where ωp/�̂ becomes
an integer [(C) ∼ (G) in Fig. 3(ii)] with varying �̂. Focusing
on the cases where high K (�̂) values are achieved with ωp/�̂

being an integer, the distributions of particle positions in the
rotating frame of reference [Fig. 3(iii)] correspond well to the
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FIG. 4. (a) Particle trajectories (i) observed and reconstructed by
experiments and (ii) generated by the present model as depicted
in Figs. 3(iii)(C) (ωp/�̂ ≈ 1) for Row (1) and in Figs. 3(iii)(A)
(ωp/�̂ ≈ 1/3) for Row (2). (b) Spatial distributions of coherent
structure within specific cross-sectional plane C-C′.

coherent structures previously observed in experiments [9–13]
and numerical analyses [18,30,32–36]. Further, these results
are also consistent with the predictions by the PL model
proposed for the cases of m = 2 or 3 [14]. It is emphasized
that, in the case of (B) where ωp/�̂ ≈ 1/2, previous studies
have identified the presence of this type of coherent structure
known as “PAS with a spiral” in HTW of mHTW = 1 [15,16] as
introduced. Through this evaluation, we can define the struc-
ture that completes two revolutions in the azimuthal direction
(p = 2) and then closes (or, a period of two) in a single period
of turnover (q = 1) as a coherent structure with a fractional
wave number mPAS = 1/2. The model further predicts the
existence of a coherent structure that completes three revo-
lutions in the azimuthal direction and then closes (or, a period
of three) as shown in (A) ωp/�̂ ≈ 1/3, which has not been
identified in previous research. Additionally, local maxima
for “resonant mode” [14] are realized in the distribution of K
when ωp/�̂ becomes a rational number q/p (q �= 1) [denoted
as (a) ∼ (f) in Fig. 3(iii)]. Structures such as (b) and (c)
exhibit three-dimensionally closed particle trajectories, which
correspond to those predicted numerically by Barmak et al.
[18]. The structures (c) were also identified by on-ground
experiment [37]. Based on these findings, it is unveiled that
the addition of an azimuthal component to the toroidal vortex
in a steady flow leads to the twisting of particle trajectories,
resulting in the formation of coherent structures of rational
azimuthal wave numbers in the liquid bridges. A qualita-
tive comparison is presented in Fig. 4 between experimental
data [columns (a)–(i)] and the coherent structures predicted

by the present model [(a)–(ii)]. Row (1) depicts the case of
ωp/�̂ ≈ 1, where the occurrence of the coherent structure
was confirmed experimentally [37]. Row (2) indicates the
case of ωp/�̂ ≈ 1/3, which is newly predicted and experi-
mentally validated in this paper. Note that this new type of
PAS is also demonstrated to satisfy rigidily the correlation
mPAS = mHTW/W . In each frame, both a top view (above) and
a bird’s-eye view (bottom) in the rotating frame of reference
are provided. The shape of the predicted coherent structures
[subcolumn (ii)] resulting from the turnover motion of a single
particle subjected to an azimuthal flow with angular velocity
� closely matches the structures illustrated in the rotating
oscillatory flow field obtained by the experiments [subcolumn
(i)]. The differences in the existing region of the coherent
structures in the z axis arise from the disparities in the par-
ticle motion during particle turnover between the cases of
(i) the real coherent structures in the time-dependent flow
under higher Reγ as observed in the experimental results, and
(ii) the predicted ones by the particles in the steady toroidal
flow under lower Reγ as adopted in the model. Paying atten-
tion to the spatial distribution of coherent structures within a
specific cross-sectional plane (Poincaré section) [Fig. 4(b)],
a grouping of Poincaré points corresponding to the pairs of
revolution number p are observed in each region of x/R � 0
and x/R � 0. Three-dimensional distribution of coherent
structures formed by small particles exhibits a strong corre-
lation with the Kolmogorov-Arnold-Moser (KAM) tori in the
convective field of the enclosed space [18,20]. This suggests
that the model can provide predictions regarding the distribu-
tion of KAM tori, which act as attractors, in the formation
of coherent structures. The above discussion examines the
correlation between the trajectory of a single particle and
the coherent structure. To form the coherent structures by the
multiple particles [11–13,15,16], the synchronous turnover
motion of the particles at different azimuthal positions in
the liquid bridge is indispensable [37]. When considering the
particle trajectories shown in Figs. 3(i)(a), instead of viewing
them as the motion of individual particles, a perspective of
multiple particles within a steady flow is approved. Specifi-
cally, the ratio ωp/�̂, originally considered in the context of
the motion of a single particle, is adapted to multiple particles
by establishing a rational correlation between the phase shift
in turnover motions �tθ and the azimuthal position difference
�θp, which leads the correlation between the motion of mul-
tiple particles and the formation of coherent structures.

IV. CONCLUDING REMARKS

Low-Stokes-number particles aligning into one-
dimensional coherent structures, known as particle
accumulation structures (PASs), have been observed
within traveling-wave-type convection. We experimentally
verify the ‘phase locking model’ [14], which describes the
formation of coherent structures in thermocapillary liquid
bridges: Synchronous coupling of the toroidal vortex and
the azimuthally traveling wave is achieved for a range
of azimuthal wave numbers when the particles form
coherent structures in time-periodic flows. The frequency
ratio considering the Doppler shift, W , converges to
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unity in the case of integer mPAS, whereas it becomes
1/mPAS otherwise. We predict coherent structures with
rational wave numbers in the azimuthal direction by adding
azimuthal motion to a particle with two-dimensional turnover
motion, and we unveil these experimentally. We propose a
correlation between the azimuthal wave numbers of PAS
and HTW, which is rigorously demonstrated for the coherent
structures of fractional wave numbers predicted in the present

study as well as those investigated experimentally and
numerically.
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