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Molecular dynamics simulations of head-on low-velocity collisions between particles
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The particle contact model is important for powder simulations. Although several contact models have been
proposed, their validity has not yet been well established. Therefore, we perform molecular dynamics (MD)
simulations to clarify the particle interaction. We simulate head-on collisions of two particles with impact
velocities less than a few percent of the sound velocity to investigate the dependence of the interparticle force
and the coefficient of restitution on the impact velocity and particle radius. In this study, we treat particles with
a radius of 10–100 nm and perform simulations with up to 0.2 billion atoms. We find that the interparticle force
exhibits hysteresis between the loading and unloading phases. Larger impact velocities result in strong hysteresis
and plastic deformation. For all impact velocities and particle radii, the coefficient of restitution is smaller than
that given by the Johnson-Kendall-Robert theory, which is a contact model that gives the force between elastic
spherical particles. A contact model of inelastic particles cannot reproduce our MD simulations. In particular,
the coefficient of restitution is significantly reduced when the impact velocity exceeds a certain value. This
significant energy dissipation cannot be explained even by the contact models including plastic deformation. We
also find that the coefficient of restitution increases with increasing particle radius. We also find that the previous
contact models including plastic deformation cannot explain the strong energy dissipation obtained in our MD
simulations, although they agree with the MD results for very low impact velocities. Accordingly, we have
constructed a new dissipative contact model in which the dissipative force increases with the stress generated
by collisions. The new stress-dependent model successfully reproduces our MD results over a wider range of
impact velocities than the conventional models do. In addition, we proposed another, simpler, dissipative contact
model that can also reproduce the MD results.

DOI: 10.1103/PhysRevE.110.015001

I. INTRODUCTION

Particle collisions are universal processes that occur in
many fields of science and technology (e.g., Refs. [1–3]). In
mineral-processing engineering, for example, fine ores form
agglomerates such as pellets; particle collision processes are
essential for their formation, growth, and fragmentation. In
the fertilizer industry, agglomeration technology is used to
form granules. In astrophysics, dust aggregates—the starting
materials of planets—are formed by many silica and water ice
particles. In this process, submicron-sized dust particles stick
together at collision velocities of �100 m/s to form agglom-
erates. Furthermore, the structure of the small bodies of the
solar system is described by the granular mechanic’s theories,
which have been studied theoretically, experimentally, and
numerically (e.g., Ref. [4]).

Powder simulations have been used to study the physics
of agglomerates, including the structures and tensile strengths
of agglomerates, the threshold collision velocity for frag-
mentation, and fragment distributions (e.g., Refs. [5–10]).
In powder simulations, the interaction forces and torques
between particles are usually calculated assuming spherical
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particles. Several contact models have been proposed for
spherical particles. The Johnson–Kendall–Roberts (JKR) the-
ory [11–15] is the model often used in the powder simulations
(e.g., Refs. [5–10]). The JKR theory assumes a pressure dis-
tribution in which the pressure diverges at the rim of the
contact region. This model is consistent with the experiments
that use large particles. Besides the JKR theory, other contact
models have been proposed. The Derjaguin–Muller–Toporov
(DMT) theory is another contact model [16]; it is suitable for
small particles and assumes that adhesive forces act around
the rim of the contact area between the particles. The Maugis–
Dugdale solution was proposed for medium-sized particles
[17,18]. Several previous studies indicated that although these
models describe the basic contact process, their treatments
of energy dissipation are insufficient. In particular, a study
using molecular dynamics simulations showed that the ki-
netic energy of the macroscopic particles is converted into
molecular motions, which results in more energy dissipation
than in the JKR theory [19]. Other molecular dynamics sim-
ulations of head-on collisions between nonadhesive particles
demonstrated that plastic deformation of the particles results
in the dissipation of kinetic energy, and they also obtained the
yield velocity at which the plastic deformation begins [20,21].
Molecular motion and particle deformation result in energy
dissipation and affect the physical processes of the powder
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system, but these effects are not included in the contact mod-
els listed above. Krijt et al. [22] constructed a new dissipation
model that adds the viscoelasticity of the particles and the
effect of the plastic deformation to the JKR theory. Krijt et al.
showed the validity of their model for micron-sized particles
by comparing it to some experiments of collisions with im-
pact velocities lower than a few percent of sound velocities.
It is necessary to check the validity of their model through
microscopic molecular dynamics simulations.

Some contact models do include particle deformation and
molecular motions. For example, crack propagation in the
contact area due to the molecular motion has been studied
[23]. Dissipation forces due to the viscoelastic deforma-
tion were also considered [22,24]. The contact models that
include these effects are consistent with experiments on col-
lisions between particles larger than a few µm in size (e.g.,
Refs. [22,25,26]). However, their validity for smaller particles
has not yet been confirmed. Molecular dynamics simulations
are particularly useful to clarify the actual particle interactions
for such small particle sizes.

Molecular dynamics (MD) simulations are used to study
the physical processes involved by analyzing molecular mo-
tion. In other words, MD simulations are molecular N-body
simulations. Such MD simulations have been used primarily
in engineering, biology, and even in the study of particle
contact dynamics. In particularly, collisions between nanopar-
ticles have been well investigated (e.g., Refs. [27–36]).
Collisions between a nanoparticle and an atomic cluster were
also simulated, and their rebound or adhesion was studied
[37]. Nietiadi et al. [29,34] simulated the collisions between
silica nanoparticles with an impact velocity of less than
1000 m/s and investigated the COR and bouncing threshold.
They used Si and O atoms to model the silica nanoparticles,
and covalent bonds bind these atoms. Most of these studies fo-
cused on high-velocity collisions of nanoparticles with impact
velocities exceeding 1000 m/s, about 20% of the sound veloc-
ity, to investigate particle melting and fragmentation, which is
beyond the scope of contact models. Although there have been
few MD simulation studies with impact velocities of the order
of tens of m/s, a few percent of the sound velocity, the validity
of contact models under these conditions has not yet been
confirmed. Tanaka et al. [19] used the Lennard-Jones potential
as the interatomic potential and investigated the collisions
between submicron-sized particles with an impact velocity of
less than 50 m/s, assuming argon atoms. They found that the
COR obtained from the MD simulations is smaller than that
predicted by the JKR theory and that collisions with large
velocities cause strong deformation and energy dissipation.
Nietiadi et al. [29,35] investigated the collisions between
nanoparticles of radii less than 20 nm. In this way, the previ-
ous studies mainly simulated collisions between nanoparticles
with a radius on the order of 10 nm, consisting of several mil-
lion molecules, and since low collision velocities result only in
coalescence, they investigated collision velocities with about
10% of the sound velocity, although such collision processes
cannot be described by the contact model presented above.
As the particles become larger, they start to bounce back even
at a few percent of the sound velocity, and such a collision
process can be compared to the contact model. To validate the
model, we should use particles of about 100 nm or less, where

bouncing occurs. Here, we use MD simulations to explore
the realistic particle interactions with submicron particles at
impact velocities of around 100 m/s. We have also developed
a new contact model with dissipation that can reproduce MD
simulations.

In this paper, we study particle collisions using MD simu-
lations. The JKR theory and a dissipative model of Krijt et al.
[22] are first introduced in Sec. II because the JKR theory
is often used in the powder simulations and the dissipative
model is an extended model of the JKR theory. We next
explain our simulation method, the particle models, and the
initial condition of the collisions in Sec. III. In Sec. IV, we
present the results of the MD simulations in which particle
interactions and the coefficient of restitution are investigated.
Based on these results, we construct new contact models in
Sec. V. Finally, we summarize our results and discuss future
work in Sec. VI.

II. CONTACT MODEL

A. Hertz theory

In this section, we first explain the models of the interaction
between two elastic spheres in contact. We start with the Hertz
theory. We consider two particles with radii R1 and R2. They
have Young’s moduli E1 and E2, Poisson’s ratios ν1 and ν2,
and masses m1 and m2. We introduce the reduced particle
radius 1/R∗ = 1/R1 + 1/R2, the reduced Young’s modulus
1/E∗ = (1 − ν2

1 )/E1 + (1 − ν2
2 )/E2, and the reduced mass

1/m∗ = 1/m1 + 1/m2. When the spheres are in contact, the
contact surface can be treated as a disk with radius a. The
mutual approach δ is the compression length given by

δ = R1 + R2 − X, (1)

where X is the distance between the centers of the two parti-
cles. In the Hertz theory, connection and disconnection occur
at δ = 0; thus, δ is positive for particles in contact.

The Hertzian force can be written as follows:

FH = 4E∗a3

3R∗ , (2)

where the radius of the contact surface between the two par-
ticles, a, is given by

√
R∗δ in the Hertz theory. The Hertzian

force is always repulsive and nonadhesive, as a positive force
denotes a repulsive one. The forces are identical in both the
loading and unloading phases, and there is no hysteresis. As
a result, the coefficient of restitution is always e = 1 in the
Hertz theory. We can also obtain the Hertzian potential energy
by integrating Eq. (2):

UH = 8E∗

15
R∗1/2

δ5/2. (3)

The pressure at the center of the contact area increases with δ

and is given by

pc,H = 2E∗

π
R∗−1/2

δ1/2. (4)
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B. Johnson–Kendall–Roberts theory

In the JKR theory [11,15], δ and a are related as

δR∗ = a2 −
√

4πγ aR∗2

E∗ , (5)

where γ is the surface energy per unit area [38]. The contact
radius is obtained from this equation as a function of δ. The
force between the particles is given by

FJ = 4E∗a3

3R∗ −
√

16πγ E∗a3. (6)

A positive value of FJ again indicates a repulsive force,
whereas a negative one indicates an attractive force. The po-
tential energy in the JKR theory can be written as follows:

UJ = a3E∗
[

1

5

( a

R∗
)2

− 2

3

δ

R∗ +
(

δ

a

)2
]

− 2πγ a2. (7)

This equation consists of two terms: the first represents the
elastic potential energy, and the second represents the surface
energy. The maximum absolute value of the attractive force
between the two contacting particles, Fc, is given by 3πγ R∗,
and it occurs at δ = −0.397δ0, where δ0 is the stationary
mutual approach. The stationary point exists where FJ = 0
and is denoted by the subscription 0. The stationary contact
radius a0 and the stationary mutual approach δ0 are given by

a0 =
(

9πγ R∗2

E∗

)1/3

, δ0 = a2
0

3R∗ . (8)

The pressure at the center of the contact area is given

pc,J = 2E∗a

πR∗ −
√

4γ E∗

πa
. (9)

In the JKR theory, contact between the two particles starts
at δ = 0, and the disconnection occurs at δ � −0.825δ0. The
difference in δ between the connection and disconnection
represents hysteresis, which indicates energy dissipation in
the amount of � 0.773Fcδ0 [39], which gives the coefficient
of restitution in the JKR theory.

C. Krijt model

The contact model of Krijt et al. [22] (hereafter re-
ferred to as the Krijt model) includes two energy dissipation
mechanisms. One is the bulk dissipative force due to the
viscoelasticity [24,40]. The other is a delayed evolution of the
contact radius based on the viscoelastic crack theory [23].

In the Krijt model, the interaction force between two
particles in contact consists of two components, and the equa-
tion for relative motion is given by

m∗ d2δ

dt2
= −(FE + Fdis,K ), (10)

where FE is the elastic force and Fdis,K is the dissipative force:

FE =
∫ a

0
2πr p(r)dr, (11)

Fdis,K � Tvis

ν2

∫ a

0
2πrδ̇

∂ p(r)

∂δ
dr = 2TvisE∗

ν2
aδ̇, (12)

where p(r) is the pressure distribution across the contact area
[22,41] and Tvis is the relaxation time [24,40]. Since p(r) de-
pends on both δ and a, the elastic force FE has hysteresis due to
the delayed evolution of a. Some studied suggested that Tvis is
approximately proportional to the particle radius [22,42]. We
should note that the dissipation force Fdis,K has the opposite
sign to the relative velocity dX/dt because δ = R1 + R2 − X .
Thus, this dissipation force acts in the same way as a viscous
resistance.

To describe the evolution of the contact radius, the Krijt
model uses the Griffith theory [43] instead of Eq. (5). The
Griffith theory describes the crack propagation and gives the
rate of evolution of the contact radius, ȧ, which is propor-
tional to 1/Tvis. The detailed formula for ȧ is presented in
Appendix B. The viscoelastic effect in crack propagation
results in a delay in the evolution of a compared with that
given by Eq. (5) and causes hysteresis in the evolution of the
contact radius and the elastic force FE between loading and
unloading phases (e.g., Refs. [22,44]). In our MD simulations
for nano- and submicron-sized particles, however, we find that
the hysteresis of FE due to the delayed a is much smaller than
that of the dissipative force Fdis,K.

Given the initial conditions of the collision, the outcome of
the collision can be obtained by numerically solving Eq. (10).
Krijt et al. incorporated the plastic deformation model of
Thornton and Ning [45] into the outcome to obtain a co-
efficient of restitution e that includes the effects of plastic
deformation. The plastic deformation of the Thornton and
Ning model with vimp > vY results in a decrease in e, as
expressed by the following equation:

eTN =
(

6
√

3

5

)1/2√
1 − v2

Y

6v2
imp

⎡
⎣1 + 2

√
6v2

imp

5v2
Y

− 1

5

⎤
⎦

−1/4

,

(13)

where vY is the yield velocity, which is the impact velocity
at which the plastic deformation begins, and v̂ = vY /vimp.
Takato et al. [20] performed MD simulations of collisions
between nonadhesive particles and estimated vY � 26.1 m/s
for R > 15 nm for Argon particles. Krijt et al. combined e
obtained by numerically solving Eq. (10) with the energy
dissipation due to plastic deformation in the Eq. (13) and
obtained the coefficient of restitution epl including the effect
of plastic deformation as

epl =
√

e2 − (
1 − e2

TN

)
. (14)

III. METHODS

We have simulated the head-on collisions between two
equal-mass particles using the MD simulation code LAMMPS
[46]. The particles are spheres consisting of 12–6 Lennard–
Jones (LJ) atoms arranged in a face-centered cubic (fcc)
structure. The LJ atoms are subject to the potential u(ri j ) =
4ε{(ri j/σ )−12 − (ri j/σ )−6}, where ri j is the distance between
the ith and jth atoms, ε is the potential depth, and σ is the
distance at which u(ri j ) = 0. We normalize the parameters
using σ, ε and the molecular weight, thus expressing them
in so-called LJ units. For example, the unit of temperature is
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TABLE I. A table of the LJ units for Argon [47], water [48],
and Ag [49]. Time and velocity of the LJ units are t = σ

√
m/ε and

v = √
ε/m.

m (g/mol) σ (nm) ε (meV) t (ps) v (m/s)

Ar 39.95 0.341 10.32 2.16 158
H2O 18.02 0.319 53 0.599 533
Ag 107.87 0.2644 345 0.476 555

εk−1
B , where kB is the Boltzmann constant and kB = 1 is set in

the LJ units. We prepare a population of molecules arranged
in an fcc structure and cut the molecules outside a certain dis-
tance from the origin to form a sphere. The number of atoms
N in a particle is from N � 1.1 × 105 to N � 1.2 × 108. The
particle density is ρ � 1.09mσ−3. The particle temperature T
is determined by giving random motion to the atoms: T =
2Ekin/3N where Ekin = ∑N

i miv
2
i /2, mi and vi are the mass

and velocity of the ith atom. The initial particle temperature
is set to T = 10−6εk−1

B in the canonical ensemble (NVT),
corresponding to, for example, 8 × 10−5 K for argon. In this
paper, we treat the collisions with extremely low temperatures
as a first step. We place two particles at a distance greater
than rcut = 5σ from each other and give an initial velocity for
each particle so that they collide head-on. The orientations of
each particle are randomly rotated. We also vary the impact
velocity from vimp = 0.04 to 0.50. We adopt a cutoff distance
for the interaction for all atoms at rcut = 5.0σ and perform
the simulations in the microcanonical ensemble (NVE) for a
time of at least 3 × 104 with a timestep of 2−7 in the LJ units.
The positions and velocities of molecules are updated by the
Velocity Verlet algorithm.

We introduce examples of LJ units for three atoms, shown
in Table I. The LJ lengths are almost the same, and the particle
radius corresponds to 10–100 nm. Water molecules have a
complex potential. Note that the normalizing parameters of
water molecules are quantitatively different by a factor of
several.

By simulating a Hertzian contact, we next determine the
particle radius R(= R1,2) and the reduced Young’s modulus
E∗. In the Hertz theory, there are no adhesive forces between
particles. To simulate a Hertzian contact, we therefore remove
the attractive term −(r/σ )−6 between atoms belonging to
different particles. By fitting to the Hertzian force, we can
obtain R and E∗, which we represent in Table II. The fitting
procedures are shown in Appendix A. A previous simulation
investigated the elastic constant of FCC LJ solid and showed
E∗ � 34.7ε/σ 3 [50]. Their obtained E∗ is smaller than that

TABLE II. The particle radius R and the reduced Young’s modu-
lus E∗ in the LJ units.

N R E∗

113 637 29.6 53.2
914 443 58.9 58.4
3 120 599 88.4 63.7
14 434 147 147 65.5
115 506 757 294 68.3

of our MD simulations due to their shorter cutoff length than
ours. We adopt the surface energy as γ = 3.17 and Poisson’s
ratio ν = 0.25. The surface energy of the particle is derived as
discussed in Appendix C. The sound velocity of the particles
is calculated as V � √

E/ρ ∼ 11. In this paper, we mainly
treat the impact velocities less than a few % of the sound
velocity (vimp � 0.3).

IV. RESULTS

A. Interparticle force

1. Hysteresis

We show an example of collision simulation with R =
147σ and vimp = 0.10(ε/m)1/2 in Fig. 1. The particle radius
and impact velocity correspond to 50 nm and 15–50 m/s,
respectively, in the physical units. We always use the LJ
units, although we omit the symbols such as σ and ε from
now on. From left to right, the panels show the particles in
the initial stage, during the contact, and after the disconnec-
tion. After disconnection, the surfaces become rough because
of the displacement of atoms. We calculate the center of
mass of each particle and derive its velocity and acceleration
by differentiating it with respect to time. The interparticle
force is then obtained by multiplying the acceleration by the
particle mass.

Figure 2 shows the interparticle force as a function of
δ. The red curve shows the case illustrated in Fig. 1, the
gray curves show the results obtained with different crys-
tal orientations, and the dotted line shows the JKR theory.
The unstable solution of the JKR theory is omitted in the
figure since it is not stably realized in the actual contact
process. In the JKR theory, the two particles are in con-
tact at (δ, F ) = (0,−8Fc/9) � (0,−1950), disconnected at
(δ, F ) = [−(3/4)2/3δ0,−5Fc/9] � (−1.33,−1220), and are
in the stationary state at (δ, F ) = (δ0, 0) � (1.61, 0) for R =
147. The maximum attractive force is Fc = 3πγ R∗ � 2200
for R = 147. The JKR force in both the loading and unload-
ing phases follows the same curve, although the moments of
connection and disconnection are different; this represents the
hysteresis in the JKR theory. The two particles first approach
each other, represented by increasing δ. A negative force acts
on them when they come into contact because of the attractive
molecular force. As they are compressed, the repulsive force
increases with increasing δ, which is the loading phase. After
the greatest compression, the two particles rebound, and δ

decreases; this corresponds to the unloading phase. For δ

becomes δ < −(3/4)2/3δ0, the disconnection of the contact
occurs; otherwise, the two particles coalesce, oscillating be-
tween loading and unloading.

In all the MD simulations, we find a difference between
the loading and unloading phases, which is the hysteresis in
the MD simulations. The example case discussed above
has the largest hysteresis among eight runs. The collisional
process depends on the orientations of each particle, and par-
ticles easily stick to each other when their orientations are
similar [35]. Although the force in the loading phase agrees
with the JKR theory, the force in the unloading phase differs
from that in the loading phase. Figure 2 shows that hysteresis
shifts the mutual approach δ toward larger δ in the unloading
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FIG. 1. Snapshots of particles with R = 147 during a collision with vimp = 0.10 (a) the initial stage, (b) at the highest compression, and
(c) after disconnecting. These figures are visualized by OVITO [51].

phase. Particle kinetic energy is dissipated by the area en-
closed by the loading and unloading curves. We note that
the total energy of the molecular system is conserved. The
kinetic energy of particle translational motion is converted
to the internal energy of particles. The energy conversion is
discussed in detail in Sec. IV C.

2. Dependence on particle radius and impact velocity

Figure 3 shows the interparticle force as a function of δ for
all radius cases with vimp = 0.06 and 0.10. The particles coa-
lesce for R � 88.2, and the force oscillates at a δ larger than in
the JKR theory. For R = 29.6, the force paths of the loading
and unloading phases are distinctly different and the force
finally oscillates at δ � 2, which indicates the occurrence
of the plastic deformation. Focusing on the force difference
between the loading and unloading phases normalized by Fc,
we see that it is about Fc for R = 29.6 and about 3–4 times
as large as Fc for R = 294. This trend is roughly consistent
with the relationship Fdis,K/Fc ∝ R1/2 as Fdis,K ∝ aTvis ∝ R3/2

and Fc ∝ R, where we approximate a ∝ R1/2, if the hysteresis
comes from the dissipative force of the Krijt model. As the
radius increases, the difference in force normalized by Fc also

FIG. 2. Interparticle force with R = 147 as a function of δ for
vimp = 0.10. The black dotted curve is the JKR theory, the red curve
shows the example run, and the gray curves show the other runs with
different crystal orientations. The arrows show the time evolution of
the force. The force and the length of the mutual approach are plotted
in the LJ units.

increases. However, the effect of hysteresis becomes smaller
as the radius increases since the kinetic energy, which is iner-
tia, is proportional to R3.

Figure 4 shows the interparticle force as a function of δ

normalized by Fc and δ0 for all radius cases with vimp = 0.20
and 0.50. The hysteresis is clearly apparent in Fig. 4. Higher
impact velocities cause significant shifts in δ in the unloading
phase, resulting in stronger hysteresis. The significant shifts
in δ for vimp � 0.2 indicate plastic deformation. In all radius
cases, the particles coalesce for vimp = 0.50 with the remain-
ing at large δ, which suggests strong plastic deformation.
Though this figure shows the collision results with a particular
orientation, such large shifts in δ occur and particles stick even
for other orientations.

Figures 5(a) and 5(b) show images of particles with vimp =
0.10 and 0.50 at the ends of the simulations for R = 88.4.
The particles remain spherical for vimp = 0.10. In contrast,
a bump is formed on the particle surface, and the contact
area is increased for vimp = 0.50. This deep sticking causes
a significant shift in δ in the unloading phase. The bump
on the right-most particle in Fig. 5(b) is called an antipodal
deformation. The atoms are pushed from the contact area to
the opposite surface, forming the bump. Figure 5(c) shows
the atoms that do not arrange in an FCC lattice structure,
indicating cracks in the particles. The cracks are seats and
extend from the contact surface in a planar state, which can
be observed as the crack lines on the surface in Fig. 5(b). In
particular, the crystal structure around the contact surface is
extremely broken.

3. Plastic deformation

Plastic deformation occurs due to stress acting on the
contact area. The interparticle force in Figs. 3 and 4 shows
possible plastic deformation at all impact velocities for R =
29.6 and at all radii for vimp = 0.2. In this section, we estimate
the pressure and verify whether it is sufficient to cause plastic
deformation.

The onset of plastic deformation is determined by the
yield strength Y . Takato et al. [20] performed MD simula-
tions of collisions between nonadhesive particles and found
a yield velocity of vY � 0.17 for R > 44, which corresponds
to Y = 0.15E∗. However, the yield strength Y is theoretically
given as Y � 0.38E∗ for defect-free material [22,52]. Spheres
begin to deform plastically when the pressure at the center
of the contact area reaches pc = 1.6Y [15]. Then, the plastic
deformation of particles is expected to occur for pc � 0.24E∗
numerically and pc � 0.6E∗ theoretically. We compare these
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FIG. 3. Interparticle force as a function of δ with vimp = 0.06 and 0.10. The black curves represent the JKR theory. The force and the
length of the mutual approach are plotted in the LJ units.

values with maximum pressures between particles in our MD
simulations.

The pressure at the center of the contact area can be es-
timated by Eq. (4). Since from the energy conservation, the
initial kinetic energy equals the Hertzian potential energy of
Eq. (3) at the maximum compression, the maximum δ can be
estimated as

δmax =
(

15

32

mv2
imp

E∗R∗1/2

)2/5

. (15)

Combining Eqs. (4) and (15), we can estimate the maximum
pressure as pc,H � 0.26E∗ for vimp = 0.20. We note that the
estimated maximum pressure using the Hertz theory does not
depend on the particle radius. For small particles, the Hertz

theory underestimates δmax and pc, and the JKR theory esti-
mates them more accurately; for vimp = 0.06, pc,J � 0.29E∗,
with R = 29.6.

The pressure estimated above is less than the theoretical
onset pressure of plastic deformation (0.6E∗) but larger than
that obtained by the previous MD simulation. The displace-
ment of δ shown in Figs. 3 and 4 indicates the occurrence of
the plastic deformation. Therefore, in this study, we use their
onset pressure of plastic deformation.

4. Contact radius

We calculate the contact radius using the gyration radius
derived from the molecule distribution in a thin layer of
the thickness 1σ containing the contact surface. Let ri be
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FIG. 4. Normalized interparticle force as a function of δ/δ0 with
vimp = 0.20 and 0.50.

the position vectors projected onto the contact surface for
molecules in this layer. The gyration radius is given by rg =√∑

i |ri − rM|2/n, where rM and n are the position of the
center of mass and number of the molecules in the layer,
respectively. Then, we obtain a = √

2rg. Figure 6 shows the
contact radius as a function of δ for R = 88.4. The contact
radius of the MD simulations is smaller than that of the JKR
theory in the loading phase and larger in the unloading phase,
indicating the delayed a and the hysteresis. The hysteresis of
a in the MD simulations is larger than that of the Krijt model,
although the behavior of the contact radius evolution is similar
to that of the Krijt model.

For the high-velocity collisions of vimp � 0.2, the con-
tact radius increases around the most compressed point. For
vimp = 0.5, the contact radius increases significantly around
the most compressed point due to plastic deformation (see
Fig. 6). Such an effect of plastic deformation is not considered
in the JKR theory.

In the crack propagation model (e.g., Refs. [22,23]), a is
delayed due to the viscoelasticity, but the degree of delay
predicted by the model is insufficient compared to that in
the MD simulations. The model has the uncertainty of the

FIG. 5. Images of particles of R = 88.4 with (a) vimp = 0.10 and
(b) vimp = 0.50 at the end of simulations. Panel (c) shows the results
of dislocation analysis of panel (b) and red atoms show those that
do not have an FCC lattice structure due to molecular movement by
collision.

relaxation time Tvis, which may cause the deference between
the MD simulations and the model.

B. Coefficient of restitution

1. Dependence on the impact velocity

The coefficient of restitution (COR) e provides an appro-
priate method for evaluating the effects of the kinetic energy
dissipation of the translational motion. Figure 7 shows the
COR for vimp = 0.06, 0.10 and 0.20 for particles with R =
147. A previous study suggested that the crystal orientation
within the particles may significantly affect the collision re-
sults [35], consistent with Fig. 7. Figure 7 also shows that
the COR of the MD simulations is smaller than that obtained
from the JKR theory. As shown in Sec. IV A, the hysteresis
is larger for collisions with higher impact velocities, which
leads to larger energy dissipation and smaller values of e.
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FIG. 6. Contact radius as a function of δ for vimp = 0.06, 0.10, 0.20, and 0.50 with R = 88.4. The black dotted curves show the JKR
theory, the red curves show the MD simulations, and the blue curves show the Krijt model with Tvis = 0.075, respectively.

Since the energy dissipation is independent of the impact
velocity in the JKR theory, e approaches 1.0 as the impact
velocity increases. The Krijt model predicts larger energy
dissipation than does the JKR theory because it includes the
energy dissipation due to the hysteresis described in Sec. II C.
In Fig. 7, we set Tvis = 0.075 to fit the MD results with
vimp = 0.06. This model can also reproduce the MD results for
vimp = 0.10 within the error bars, although it does not match
for vimp = 0.20. This occurs because high-velocity collisions
have large hysteresis, as shown in Fig. 4, causing e to decrease
as the impact velocity increases. A stronger energy dissipation
occurs in the MD simulations than that caused by the model
of plastic deformation.

Here, we compare our MD simulations with previous stud-
ies for velocity dependence. Nietiadi et al. [29] treated silica
particles of 10–20 nm radius. In their results, the COR e has
a peak similar to our MD simulations, but the peak is located
where vimp is 5–8% of sound velocity, which is several times
as large as that of our results, about 1% of sound velocity.
This difference is thought to be due to the difference in
potentials: silica has covalent bonds and spherically asymmet-
ric potential, whereas LJ atoms have noncovalent bonds and
spherically symmetric potential. The LJ atoms tend to move
tangentially to the contact surface and deform easily even at
low impact velocities, and translational energy is easily con-
verted to kinetic energy of atomic random motion. Therefore,
the impact velocity where e peaks in our simulations is smaller
than that of previous studies. Nietiadi et al. [35] used LJ atoms

as we do and examined e for R < 90 and showed the peak of
e at the same impact velocity. Tanaka et al. [19] examined
the coefficient of restitution for R � 88 only, and their results
are consistent with that of this study. Few previous studies
examined the particle collisions with R > 100 and thus can-
not be compared to our results. Our results indicate a strong
dependence of the translational kinetic energy dissipation on
the radii for 29 < R < 150.

2. Dependence on radius

Figure 8 compares the COR obtained for R =
58.9, 88.4, 147 and 294 as a function of vimp with the results
from the JKR theory and the Krijt model. For R = 29.6, all
particle collisions result in coalescence. In the JKR theory, the
collisions result in energy dissipation of � 0.773Fcδ0 ∝ R4/3,
which means that collisions with smaller particles result
in smaller e because the translational kinetic energy is
proportional to R3. In the MD simulations, e decreases, and
its deviation increases as the radius decreases. As shown in
Fig. 3, the hysteresis is larger for smaller radii and higher
impact velocities, which explains the trend of the COR
in Fig. 8.

The coefficient of restitution e obtained by the MD simula-
tions for R = 88.4 is the same as Tanaka et al. [19]. Nietiadi
et al. [29,34] also found that e has the peak and weakly
depends on the particle radius for radii between 10–20 nm,
which corresponds to R � 30 and 60 in the LJ units. However,
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FIG. 7. Coefficient of restitution for vimp = 0.06, 0.10, and 0.20
with R = 88.4. The gray points are the results of eight runs with
different crystal orientations, and the red points with error bars are
the root mean square (RMS) of the 8 results with their deviations.
The dashed black and solid blue curves show the JKR theory and the
Krijt model with Tvis = 0.075, respectively. The dashed blue curve
shows the Krijt model with plastic deformation (pd) for Y = 0.12E∗

based on the model of Thornton and Ning [45].

our MD simulations show that the results of collisions with
R = 29.6 and 58.9 are quite different; all collisions with R =
29.6 result in coalescence while e reaches ∼0.3 for R = 58.9.
The difference between the previous studies and our study
comes from the interaction of molecules consisting of parti-
cles. The previous studies used silica nanoparticles in which
covalent bonds bond Si and O atoms. Such a particle is ex-
pected to be more rigid and to have a larger Young’s modulus
than that in particles composed of LJ atoms. Comparison to
the previous studies suggests that the molecular bonds affect
particle collisions well.

Figure 9 shows the sticking probability for each particle
radius as a function of vimp. For low impact velocities, smaller
particles easily stick. The onset impact velocity for bouncing
increases with decreasing particle radius. For vimp > 0.2, the
sticking probability rapidly decreases since coalescence oc-
curs with strong energy dissipation due to plastic deformation.

3. Comparison with the Krijt model including
the plastic deformation

In the Krijt model, we set the relaxation time to be
Tvis(R) = 0.075(R/147) [22]. The Krijt model agrees well
with the MD results for vimp � 0.10 with R = 147 and for
vimp = 0.10 with R = 294. For vimp � 0.08, the Krijt model
reproduces the coefficient of restitution e with R = 88.4 to
within the error bars but not that with R = 58.9. In other
words, the Krijt model reproduces MD results only for low
impact velocities and large radii.

The Krijt model considers the effect of plastic deformation
based on Thornton and Ning [45]. The plastic deformation
leads to decreased e due to energy loss as shown in Eq. (13).
As discussed in Sec. IV A 3, we employ vY = 0.17 obtained
by Takato for the Krijt model with plastic deformation, and

plot it in Figs. 7, 8, and 11. However, as shown in Fig. 8,
the energy dissipation due to the plastic deformation of the
model is insufficient to reproduce the MD results although the
COR of the Krijt model with plastic deformation decreases
with vimp for vimp � 0.20. The value of vY = 0.17 is estimated
from the Hertz theory, and the JKR theory is expected to give
vY just slightly smaller. Consequently, the model curves are
expected to shift to the lower left. However, the shift is not
enough to be consistent with the MD simulations although
the shift increases with decreasing particle radius. Even
when the impact velocity is near or less than the onset velocity
of the plastic deformation, more dissipation of the transla-
tional kinetic energy occurs in the MD simulations. In par-
ticular, the energy dissipation strongly depends on the particle
radius and the Krijt model does not fit with this radius de-
pendence. The results of this study indicate that collisions be-
tween particles with adhesion result in additional dissipation
compared to the previous MD studies using particles without
adhesion.

C. Energetics

In molecular systems, the total energy K + W is conserved,
where K and W are the kinetic and potential energies, respec-
tively. The kinetic energy can be divided into K = Kp + Kt ,
where Kp is the translational kinetic energy of the macroscopic
particles and Kt is the kinetic energy of random molecular
motions; i.e., the thermal energy:

Kt =
N∑
j

1

2
mj (v j − Vi )

2, (16)

where mj and v j are the mass and velocity of the jth atom,
and Vi is the velocity of the center of mass of the macro-
scopic particle to which the jth atom belongs. Because the
initial temperature of the particle is close to zero, Kt at the
end of each simulation is almost equal to the increase of
the thermal energy 
Kt . Bulk systems, such as those con-
sidered by the JKR theory, mainly discuss the bulk kinetic
energy Kp and do not consider changes in Kt and W . Here,
we investigate the energetics of collisions in the MD simula-
tions. Figure 10 shows 
Kt and 
W as a function of vimp.
The respective energy–conversion ratios are 
W/|
Kp| ∼
40% and 
Kt/|
Kp| ∼ 60% when particles bounce and dis-
connection occurs. When particles coalesce, most of Kp is
converted to Kt for low impact velocities. In this case, all
of Kp should be converted, but the change in W is small at
low impact velocities because barely any molecular displace-
ment occurs. Thus, the coalescence results for vimp = 0.06
are dominated by energy conversion to Kt . However, at high
impact velocities, vimp = 0.20, the energy conversion for the
coalescing case is the same as that for a case in which dis-
connection occurs. The particles are deformed, and sufficient
molecular displacements occur to dissipate the translational
kinetic energy into both the potential and thermal energies:

W/|
Kp| ∼ 40% and 
Kt/|
Kp| ∼ 60%. Assuming that
the masses of the two particles after disconnection are the
same as those before the collision, the kinetic–energy ratio
of the particles is Kp,end/Kp,ini = 1 − e2. We have confirmed
that 
Kp/Kp,ini = (
Kt + 
W )/Kp,ini � 1 − e2 in all results,

015001-9



YOSHIDA, KOKUBO, AND TANAKA PHYSICAL REVIEW E 110, 015001 (2024)

FIG. 8. Variation of the COR as a function of impact velocity. The red points with error bars are the RMS and its deviation from 20-run
results with R = 58.9 and 88.4, and 8-run results for R = 147 and 294. We compare the MD results with the JKR theory (dashed black curves)
and the Krijt model (solid blue curves). The dashed blue curves show the Krijt model with plastic deformation (pd) for Y = 0.12E∗. The
relaxation time is Tvis(R) = 0.075(R/147), which is linear with respect to the particle radius.

which means that fewer molecules move between the particles
and that the particle masses before and after the collisions are
approximately the same.

V. NEW DISSIPATION MODELS

As shown in Sec. IV B, our MD simulations of particle col-
lisions have stronger energy dissipation than those predicted

FIG. 9. Sticking probability as a function of the impact velocity
for each particle radius, which is calculated from 20 runs with R =
58.9 and 88.4, and 8 runs for R = 147.

either by the JKR theory or the Krijt model. In particular, for
high impact velocities with vimp > 0.1 and for small parti-
cles with R � 58.9, the CORs are much smaller than those
predicted by the Krijt model. Here, we propose two new
dissipation models that reproduce the energy dissipation in
our MD simulation results.

FIG. 10. The energy conversion 
Kt and 
W as a function of
vimp. The circles and crosses represent 
Kt and 
W , respectively.
Red represents bouncing results, and blue represents the sticking
cases.
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FIG. 11. Coefficient of restitution for the new model with Tvis,0(R) � 0.031(R/147), B � 6.4, and ζ = 4.0 as a function of vimp compared
to the MD simulation results and the Krijt model. The red points with error bars represent the MD results, solid blue curves represent the Krijt
model, and solid green curves represent the stress-dependent dissipation model. The dashed blue curves show the Krijt model with plastic
deformation (pd) for Y = 0.12E∗.

A. Stress-dependent dissipation model

The dissipative force of the Krijt model is in qualitative
agreement with the ratio of |Floading − Funloading|/Fc obtained
by the MD simulations, as discussed in Sec. IV A2. However,
for the coefficient of restitution e, the MD simulation results
do not agree with the Krijt model. Therefore, we discuss what
the Krijt model lacks and modify the model to reproduce e.

The large energy dissipation that occurs in high-velocity
collisions may be due to the high stresses in such collisions.
Using Eqs. (4) and (15), we find the pressures at maximum
compression to be pc,H � 0.194E∗ and 0.255E∗ for vimp =
0.10 and 0.20, respectively, in the case with R = 147. The
maximum pressures predicted by the JKR theory are pc,J =
0.211E∗ and 0.265E∗ for vimp = 0.10 and 0.20 for R = 147.
Because Young’s modulus E is about twice as large as E∗, the
induced pressures are � 0.1E . Such high pressures can cause
plastic deformation and, thus, strong energy dissipation. This
estimate agrees with the strong energy dissipation observed in
our MD simulation for high-velocity collisions. However, for
small particles, the pressure pc is not small even at the sta-
tionary contact with δ = δ0. In fact, for R = 58.9 and δ = δ0,
the pressure pc is obtained as ∼0.16E∗ from Eq. (9). The JKR
theory predicts pc,J � 0.282E∗ for vimp = 0.1 and R = 29.6.
Thus, for small particles with R � 58.9, the induced pressure
can cause plastic deformation even in low-velocity collisions.
This is consistent with the small values of COR shown in
Fig. 8(a).

We, therefore, propose a new, stress-dependent dissipation
model to reproduce the strong energy dissipation that occurs
under high stress in particle collisions. In this model, we adopt

the same formula for the dissipation force as in the Krijt model
[Eq. (12)], although the relaxation time Tvis now depends on
the pressure at the center of the contact area, pc as

Tvis(pc) =
{

Tvis,0(R) exp
[(

B pc

E∗
)ζ ]

(pc > 0),

Tvis,0(R) (pc < 0),
(17)

where Tvis,0(R) and B are coefficients and ζ is a power-law-
index. The pressure pc at the center of the contact area is given
by Eq. (9). The relaxation time is linear in the particle radius:

Tvis,0(R) = CR, (18)

where C is a coefficient. We adopt the exponential form of
Tvis on pc to express the strong energy dissipation dependent
on the stress. Using Eq. (17), we solve Eqs. (B2) and (10) to
investigate the evolution of the contact radius and the relative
motion of two particles. Then, we search for optimal values
of B,C, and ζ in the range of 6.0 < B < 6.4, 2 × 10−4 < C <

5 × 10−4 and 1 < ζ < 5 to fit our model to the MD simulation
results.

Figure 11 shows the fitting results obtained with B � 6.2
and ζ = 4.0. Since Tvis,0 � 0.031 for R = 147, we obtain
C � 2.1 × 10−4. The relaxation time Tvis(pc) is almost the
same as that in the Krijt model. This new model is consistent
with the MD simulation results well for R = 58.9 and 294.
The new model also reproduces the MD simulation results in
the range vimp � 0.2 for R = 88.4 and vimp � 0.12 for R =
147. Compared with the Krijt model, the new model better
reproduces the MD simulation results for R = 58.9 and the
COR peak for R = 88.4 and 147 for low impact velocities.
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FIG. 12. Relation between δ and vrel for vimp = 0.1 and R =
58.9, 88.4, and 147. The black dotted curves represent the JKR
theory, the gray curves represent each MD simulation result, and the
red curves represent the new model. The mutual approach in the new
model is smaller than in the MD simulation results.

These fitted values are expected to depend on the potential.
For example, in the case of silica, the pressure at which de-
formation occurs is expected to be greater than for LJ atoms,
and then B is expected to be smaller than that for LJ atoms.
At high impact velocities, there appear to be some discrepan-
cies between the model and the MD simulations. To achieve
a more accurate reproduction at high-velocity collisions, it
may be necessary to handle plastic deformation in a more
precise way.

We also examine the trajectories of particles in the δ-vrel

phase plane to check whether the new model can reproduce
the contact model by comparing the MD results. Figure 12
shows the δ-vrel relation with vimp = 0.10. We find that δ in the
new model is smaller than those in either the JKR theory or the
MD simulation results. Although the new model reproduces
the motion of large particles well, the displacement of δ cannot

be reproduced perfectly. At R = 58.9 in Fig. 12, the difference
of δ between the MD simulations and the new model at max-
imum compression is about 0.4, which may indicate plastic
deformation.

B. Simple dissipation model

The Krijt and the new models described above are too com-
plex to apply in powder simulations. We, therefore, propose a
simple power-law dissipation model in which the dissipation
force is given by

Fdis = sgn(vrel )DE∗|vrel|αaβ, (19)

where D is a coefficient and α and β are power-law-indices.
We include the factor sgn(vrel ) because the dissipation force
and relative velocity point in opposite directions. We searched
for optimal values of D, α, and β to fit the MD simulation
results by solving the equation of motion:

m∗ d2δ

dt2
= −(FJ + Fdis). (20)

In this model, we do not consider the time evolution of
the contact radius but instead use the contact radius based
on Eq. (5).

Figure 13 shows the COR for this simple model with D =
118, α = 3.0 and β = 1.5. This model reproduces the MD
simulation results for vimp � 0.12. Small α and large β result
in weak dissipation. We find that the appropriate values are
2.0 < α < 3.0 and 1.0 < β < 1.5. Because we simply add
the dissipative force to the JKR force, it is easy to use this
model for powder simulations with low-velocity collisions.

VI. SUMMARY

In the present work, we have studied head-on collisions
between two equal-mass particles by using molecular dynam-
ics (MD) simulations with the Lennard-Jones (LJ) potential
as the intermolecular potential. We have investigated the nor-
mal interparticle force between the macroscopic particles and
the coefficient of restitution (COR) e, and we have con-
structed a new contact model that includes energy dissipation
to reproduce the simulation results. Our main findings are
summarized as follows:

(1) In the unloading phase of collisions between two par-
ticles, the interparticle force deviates from that of the JKR
theory, whereas in the loading phase, it agrees with the
JKR theory (Figs. 2 and 3). The difference in the force
between the loading and unloading phases represents the hys-
teresis in the particle interaction, which dissipates the kinetic
energy of the motion of each particle’s center of mass. The
contact radius also has hysteresis; a of the MD simulations
is smaller than that of the JKR theory in the loading phase
and larger in the unloading phase. The hysteresis in the force
is greater for smaller particle sizes or higher collision veloci-
ties. In particular, for high-velocity collisions with vimp � 0.2,
plastic deformation of the particle is observed (Figs. 4 and 5).
The plastic deformation for vimp � 0.2 can be explained by
the yield strength estimated by the previous studies.

(2) Energy dissipation in a collision reduces e. The CORs
obtained in our MD simulations are smaller than those of
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FIG. 13. Same as described in the caption of Fig. 11 but for the simple model with (Fdis ∝ D|vrel|3a3/2).

the JKR theory, which is natural because energy dissipation
occurs at any time during contact in the MD simulations. The
Krijt model includes such hysteresis in the force to accurately
describe the energy dissipation. For high-velocity collisions
(vimp > 0.1), our MD simulations show much higher energy
dissipation than that predicted by the Krijt model, although the
Krijt model reproduces our simulations well for low-velocity
collisions (vimp < 0.1) in Fig. 8. In contrast, the strong energy
dissipation in the MD simulations for vimp > 0.1 cannot be
explained even by the Krijt model with plastic deformation
using the yield strength obtained by the previous MD simula-
tions of collisions between nonadhesive particles. Collisions
of adhesive particles produce additional dissipation rather
than nonadhesive particles.

(3) To reproduce the strong energy dissipation observed in
our MD simulations for high-velocity collisions, we have pro-
posed a new, stress-dependent dissipation model in which the
relaxation time, Tvis, increases rapidly with the pressure at the
center of the contact surface, pc, for pc > 0.1E∗ [Eq. (17)].
We found that the stress-dependent dissipation model success-
fully reproduces the CORs in our MD simulations well for
vimp < 0.2. We have also proposed another simple dissipation
model [Eq. (19)] that can reproduce the CORs of our MD
simulations for vimp < 0.2 and which is expected to be useful
for powder simulations.

The proposed new models successfully reproduce the MD
results for vimp < 0.2, although the energy dissipation is in-
sufficient for higher impact velocities. This is due to particle
deformation at high impact velocities, which leads to sig-
nificantly small values of the COR. Neither the Krijt model
nor the proposed models include this effect. Thus, we cannot
reproduce the COR of our MD simulations at high impact
velocities. Both the new stress-dependent model and the Krijt

model solve for the evolution of the contact radius indepen-
dently, although the dissipation due to delay of a is negligibly
small in these models. We, therefore, used the same relaxation
time Tvis in the dissipation force and contact radius evolution.
If Tvis in Eq. (B2) is much larger than that of dissipation force,
then the delay of a is more significant and can be effective
in decreasing COR. This is one of the possibilities to explain
our MD simulations. We thus need to understand better the
property of Tvis.

We also need to consider the effects of different particle
properties. In this study, we used particles with an ideal FCC
structure. However, we should also investigate the effects of
structures such as body-centered cubic (BCC) or amorphous
structures and their dependence on the filling factors of the
macroscopic particles. The particle temperature also affects
the collision results, and we should explore this as well in
a future paper. We should also simulate particle collisions
with more realistic molecules, such as water, to understand
dust growth in planet-forming regions. These subjects are all
planned for future work.
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FIG. 14. The force acts on the particles. The red lines are the MD results, and the black lines are the fitting results.

APPENDIX A: DETERMINATION OF E∗ AND R

We used MD simulations to determine the particle radius R
and the reduced Young’s modulus E∗. We prepared five parti-
cles by hollowing out atoms so that R = 29.4, 58.8, 88.2, 147,
and 294. We also remove the attractive term −(r/σ )−6 from
the molecular potential between atoms belonging to different
particles. The modified LJ potential then becomes

uLJ,mod(ri j ) = 4ε

[( ri j

σ

)−12
− δk�

( ri j

σ

)−6
]
, (A1)

where δk� is the Kronecker delta, and k and � represent the
macroscopic particles to which the ith and jth atoms belong,
respectively. In this case, the force between particles corre-
sponds to a Hertzian contact. We calculate the force between
the particles and fit the parameters R and E∗ using Eq. (2).

When we fit the parameters, we ignore the data for small
F since a small force works due to the intermolecular force
existing even if the two particles are not in contact. Figure 14
shows the forces and fitting lines as a function of X , and
Table II summarizes the fitting results. The fitting results are
slightly larger than the initially prepared radii, with a differ-
ence of less than 1. Here, we simulated only one run for each
radius with the same orientation as that shown in Fig. 3. Note
that the fitting results may change slightly depending on the
orientations.

APPENDIX B: MODEL OF CRACK PROPAGATION

Here, we summarize the crack–propagation model used in
the Krijt model. The apparent surface energy is expressed
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as [22]

Geff = E∗

4πaR∗2
(a2 − δR∗)2. (B1)

If δ and a have the relationship shown in Eq. (5), which is satisfied by the JKR theory, then Geff = γ . Because of viscoelasticity,
however, the evolution of the contact area differs slightly from that of the JKR theory (e.g., Refs. [22,24]). The crack speed ȧ
can be written as [23,54]

σ 2
0 Tvis

2E∗γ
ȧ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.15
[
β ln

(
0.98
1−β

)]−1
, (β � 0.29),

(0.1035x + 0.3421)x1.1160, (0.29 < β < 1, where x = 1/β − 1),

−(0.2112x + 0.3939)x1.1403, (1 < β < 3.7, where x = β − 1),

−0.24β
[
ln
(

0.98
1−1/β

)]−1
, (3.7 � β ),

(B2)

where β = Geff/γ and σ0 � γ /(spacing between atoms). We
also assume the initial condition given in Appendix B of Krijt
et al. [22].

APPENDIX C: SURFACE ENERGY

We derive the surface energy in our MD simulations using
the potential energy of a spherical particle with an FCC struc-
ture of the atoms. The surface energy of a spherical particle is
given by

γ = −Ne1 − U

4πR2
, (C1)

where N is the number of atoms in the system, and e1 is the
potential energy per atom in the FCC solid. The total potential
energy of the particle, U , is obtained from our MD simulation.
The energy e1 is the value when the atoms extend to infinity,
meaning there is no surface or boundary.

The energy e1 is obtained as follows. If the LJ potential has
no cutoff, then the potential energy per atom in the FCC solid,
e1, is given by [55]

e1 = 1

2
× 4ε

⎡
⎣∑

j

(
p j

D

σ

)−12

−
∑

j

(
p j

D

σ

)−6
⎤
⎦

= 2ε[a(D/σ )−12 − b(D/σ )−6], (C2)

where D is the nearest-neighbor distance and p jD is the dis-
tance between a reference atom and any other atom j. For the
FCC structure, the coefficients a and b are given by

a =
∑

j

p−12
j = 12.13, b =

∑
j

p−6
j = 14.45. (C3)

However, in this study, we set the cutoff rcut = 5.0σ , so we
need to include the effects of the cutoff in determining e1.

We can neglect the cutoff effect on the coefficient a due to
the rapid decreases of p−12

j . There are two cutoff effects on
the coefficient b. One is to set the potential to be zero at
r(= p jD) = rcut by replacing p−6

j with p−6
j − (rcut/D)−6. The

resulting correction 
b1 is given by


b1 = −
( rcut

D

)−6 4π

3

r3
cut

V1
= −4

√
2π

3

( rcut

D

)−3
, (C4)

where V1 = D3/
√

2 is the volume per atom in the FCC
structure. The other cutoff effect on b is neglecting terms
with r > rcut. We find that the correction due to the ne-
glect, 
b2, equals 
b1. Thus, including these corrections, we
obtain e1 as

e1 = 2ε

[
12.13

(
D

σ

)−12

−
{

14.45 − 8
√

2π

3

( rcut

D

)−3
}(

D

σ

)−6
]
. (C5)

The nearest-neighbor distance D is determined by the equilib-
rium condition de1/dD = 0. From the equilibrium condition
with Eq. (C5), we obtain D � 1.091σ and e1 � −8.464ε. The
obtained D agrees with that of the spherical particles in our
MD simulations.

The potential U is obtained from the MD simulation.
We obtain U = −9.96 × 105, −7.88 × 106, −2.61 ×
107, −1.22 × 108 for R = 29.6, 58.9, 88.4, and
147, respectively, in the LJ units. Finally, we get
γ = 3.18, 3.18, 3.15, 3.06, respectively. Thus, We take
γ = 3.17 as the nominal value in this paper. This value agrees
with that of the previous work γ = 3.18 [19].
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