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Evident structural anisotropies arising from near-zero particle asphericity in granular
spherocylinder packings
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With magnetic resonance imaging experiments, we study packings of granular spherocylinders with merely
2% asphericity. Evident structural anisotropies across all length scales are identified. Most interestingly, the
global nematic order decreases with increasing packing fraction, while the local contact anisotropy shows an
opposing trend. We attribute this counterintuitive phenomenon to a competition between gravity-driven ordering
aided by frictional contacts and a geometric frustration effect at the marginally jammed state. It is also surprising
to notice that such slight particle asphericity can trigger non-negligible correlations between contact-level and
mesoscale structures, manifested in drastically different nonaffine structural rearrangements upon compaction
from that of granular spheres. These observations can help improve statistical mechanical models for the
orientational order transformation of nonspherical granular particle packings, which involves complex interplays
between particle shape, frictional contacts, and external force field.
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I. INTRODUCTION

Particle packing models are important for studying molec-
ular, colloidal, and granular assemblies, which can provide
fundamental understandings for their complex macroscopic
behaviors and transitions between their various phases [1].
It is well known that particle shape affects the packing
structures, and correspondingly, mechanical and transport
properties. Few quasiuniversal laws have been proposed for
the shape effects of nonspherical packing systems based on
expansion in the vicinity of the shape of a sphere [2,3]. Yet a
hard sphere packing may not be a very reliable reference point
for nonspherical particles even with very slight asphericity
[4], since the packing structure and dynamics depend sensi-
tively on particle shape [5–8]. A classic example is the sharp
increase in packing fractions and average contact numbers
of ellipsoid and spherocylinder packings when the particle
shape changes slightly from a sphere [9–11]. Also, a sheared
packing of spherocylinders exhibits nonzero nematic order
in the limit of the particle shape approaching a sphere [12],
and infinitesimal asphericity of ellipsoids leads to a distinct
universality class of the jamming transition compared with
spheres [13]. Thus it would be illuminating to examine how
a random packing structure loses its assumed spherical sym-
metry when the particle shape begins to deviate from a sphere.

For granular matter, a member of the particle packing
family, the particle shape effect is of fundamental and prac-
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tical research interest as well [14]. Nonspherical granular
packings sometimes show orientationally ordered phases and
flow dynamics reminiscent of some liquid-crystalline sys-
tems [15,16], but their athermal nature can also lead to
complex nonequilibrium behaviors, requiring fundamentally
different theories. For example, for a granular packing, its
statistical mechanical laws depend on the mechanical stability
requirement which couples frictional contacts and particle ori-
entations [17–19]. For a flowing granular system, additional
interplays between particle orientations, contact forces, and
anisotropic kinetics lead to convoluted dynamic behaviors
[20–24]. Experimentally, the packing structures of some non-
spherical granular particle packings have been studied with
various imaging techniques [25,26]. Most previous studies
have focused on particles with relatively large asphericity
and other overwhelming shape effects, including the excluded
volume effect of elongated particles [27], geometric cohe-
sion effect of long rods [28], stack effect of thin plates
[29], and flat contact effect of polyhedral particles [30,31],
etc. Yet the mechanisms of some elementary particle shape
effects remain elusive. For instance, a series of previous
studies on nonspherical granular packings has discovered
a counterintuitive diminishing of global orientational order
upon compaction [29,32,33], while some others have reported
an opposing trend [15,34]. These observations raise a most
primary question: What is the fundamental law underlying
the evolution of orientational order with packing fraction
in a nonspherical granular packing? We think studying the
packing structures of granular particles with very slight as-
phericity can provide some quasiuniversal understandings
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FIG. 1. (a) A schematic of assembling one spherocylinder with the two identical halves. When the two half spheres are attached, the short
pillar on each part can be inserted into the opposing hole to fix their relative position and orientation, and the two cavities can merge into one
hollow cuboid inside the particle. (b) One slice of the magnetic resonance image superimposed by reconstructed hydrogel-filled cuboids at the
middle section of the graph, and spherocylinders at the right side. (c) A reconstructed spherocylinder packing. In (b), (c), the white belt on
each particle indicates the cylindrical side wall and the particle orientation.

of the shape effects, and shed light on such unresolved
problems.

In this work, we employ magnetic resonance imaging
(MRI) techniques to reconstruct and study the packings of
very short granular spherocylinders, whose aspect ratio, i.e.,
the ratio between the length and diameter of the sphero-
cylinder, is only 1.02, in contrast with previous investigations
on much longer spherocylinders [9,11,21,35,36]. Despite this
extremely small particle asphericity, we are still able to ob-
serve evident structural anisotropies at different length scales.
Interestingly, the global orientational order (i.e., nematic or-
der) decreases with increasing packing fraction, while a local
structural anisotropy associated with the contact orientations
(i.e., the vectors connecting the particle centroid and con-
tact points) increases. The opposing trends of anisotropies at
global and contact levels indicate a general ordering transfor-
mation law of nonspherical granular particles, governed by
a competition between gravity-driven ordering of individual
particles stabilized by frictional contacts, and the marginal
stability condition of a frictionless particle packing, (i.e., a
critical packing state with just enough contacts to maintain
mechanical stability [37]). The structural rearrangements at
mesoscale have also been characterized, emphasized by a no-
tably different scaling exponent from that of granular sphere
packings owing to non-negligible coupling between particles’
centroids and orientations induced by the slight asphericity.
The geometric characterizations and structural transformation
laws unveiled here can also provide insights into other out-of-
equilibrium particle packing systems.

II. EXPERIMENTAL PROCEDURE AND DATA
ANALYSIS METHOD

A. Spherocylinder particles

Each particle used in this experiment is composed of
two identical plastic half spheres produced by 3D printing,
as shown in Fig. 1(a). The diameter D of a half sphere is
23.48 ± 0.04 mm. When the two parts are glued together,
there is a small gap of 0.54 ± 0.19 mm between them.
The actual particle shape can be approximated as a sphe-
rocylinder with an aspect ratio of 1.02 with a thin groove
replacing the cylindrical side. The absence of the cylindrical
side in the particle’s exterior shape barely affects the packing

structures because we find no gathering of contact points near
the groove, as would be assumed to happen when the particle
shape nonconvexity is strong. Such a phenomenon has been
observed in packings of granular spheres with holes whose
nonconvexity is much larger than ours [38]. Furthermore,
there is a 10 × 12 × 14 mm3 cuboid cavity at the center
of each particle filled with hydrogel for magnetic resonance
imaging. The densities of the particle shell and hydrogel are
about 1.24 and 1.12 g/cm3, respectively. For a homogeneous
spherocylinder, the anisotropy index of the moment of inertia
tensor is 0.98, measured as the ratio between the smallest
and largest eigenvalues. The nonuniform mass distribution
changes this anisotropy index by 1.8%, and also breaks the
rotational symmetry around the spherocylinder axis with a
0.1% relative difference in the other two eigenvalues. The
particle size polydispersity in D is about 0.16% and the stan-
dard deviation of the aspect ratio is about 8.3 × 10−3. In this
work, the average diameter of the spherocylinders is set as a
unit length. The average surface friction coefficient between
two particles is 0.33 ± 0.02, measured according to a sphere
stacking method [39].

B. Shaking experiments

During the experiment, we first randomly poured the parti-
cles into a cuboid container with size 260 × 200 × 180 mm3.
The internal wall and floor of the container are decorated with
hemispheres with a diameter of 25 mm at random positions
to reduce the ordering effect of flat boundaries. The loose
initial packing state was scanned by an MRI scanner. Then the
container was placed onto an electrical vibrator, and shaken
vertically under a sinusoidal excitation with 30 Hz frequency
and 2.6g peak acceleration (with g representing the gravita-
tional acceleration). The packing fraction increased gradually
under vibration, and the packing was scanned again after 1, 5,
10, and 100 s of shaking. These scanned packings correspond
to different states during a compaction process, and we obtain
packings with different packing fractions in this way. The
packing fraction saturated after about 100 s of shaking, and
this final packing state is close to the steady state under this
vibration protocol. Four independently repeated compaction
trials were carried out to increase the amount of data, and
a total of nineteen packing structures are analyzed in this
work.
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C. MRI and image processing

The cavity of each particle is filled with hydrogel pro-
duced by edible gelatin, water, and glycerol to provide strong
resonance signals, and thus it appears bright in the scanned
image. The spatial resolution of the MRI scanner (MAGNE-
TOM Prisma Fit, Siemens Healthcare, Erlangen, Germany)
is 1mm/pixel. Through our image processing algorithm, the
position and orientation of each cavity are calculated by opti-
mizing the overlap between each region in the raw image and
a model cuboid with the same size and shape [see Fig. 1(b)]
and, accordingly, the whole packing structure is reconstructed
[see Fig. 1(c)]. The optimizing process is similar to the one
previously used to reconstruct packing structures of some
other nonspherical granular particles [30]. We estimate the
errors of centroid and particle orientation to be about 0.012D
and 1.0◦, respectively.

In the subsequent analyses, only particles at least 1D away
from the container boundaries and the packing’s upper surface
are included, leaving about 350 particles in each packing. We
have verified that the following results barely depend on the
system size as long as more than 200 particles in each packing
are included in the calculations.

D. Contact identification

Rigorous (mechanical) contacts are impossible to identify
with imaging experiments, but we can identify (geometric)
quasicontacts between particle pairs by setting a distance
threshold δt for their interparticle distances δ. The interpar-
ticle distance between two particles is defined as the shortest
distance between the two segments connecting the two sphe-
rocylinders’ respective pairs of hemispherical centers minus
D, and the contacts can be categorized into three forms:
head-head, waist-waist, and head-waist [see Figs. 2(a)–2(c)].
The proper value of the threshold can be obtained with a
well-developed approach. According to Aste et al. [40], in-
terparticle distances between contact particles are assumed
to follow a Gaussian distribution, considering the errors of
reconstructed packing structures due to the finite resolution
and gray scale fluctuations of the raw images. Also, the
interparticle distances of nearby particles which are not in
real contacts are assumed to follow a uniform distribution
in a short distance range. Therefore, the average number of
neighbors for all central particles whose interparticle distance
is smaller than a threshold δt should have a form of an error
function (i.e., erf) plus a linear function,

N (δt ) = Z

2

[
1 + erf

(
δt − δt,0

�

)]
+ H (δt − δt,0)K (δt − δt,0),

(1)
where H is the Heaviside step function; Z , δt,0, �, and K are
fitting parameters obtained by fitting the experimental data
[see Fig. 2(d)]. Among these parameters, Z represents the
actual average contact number, δt,0 and � denote the average
value and standard deviation of the interparticle distance be-
tween contact neighbors, and K represents the growth rate of
noncontact neighbors with interparticle distance. The proper
threshold δ∗

t is the one satisfying N (δ∗
t ) = Z , which equals

0.023D in this work.

FIG. 2. Schematics of head-head (a), waist-waist (b), and head-
waist (c) contact spherocylinders. The dashed line denotes the
shortest distance between the segments connecting the two hemi-
spherical centers of each particle. (d) Average number of nearby
particles as a function of interparticle distance threshold δt , for two
packings with � = 0.655 (up triangles) and 0.625 (down triangles).
The solid line is a fit of the � = 0.625 experimental data, which
is the sum of an error function (dashed line) and a linear function
(dotted line). (e) Increment of average number of nearby particles
when δt increases to δt + �δt , where �δt = 5 × 10−3D. The lines
are derivatives of the lines in (d) up to a multiplier �δt : the fitting
curve (solid line) is the sum of a Gaussian function (dashed line)
and a step function (dotted line). The red arrow marks the threshold
δ∗

t that gives the correct average contact number of this packing.
In this graph, the average contact number corresponds to the area
under the Gaussian function, i.e., the summation of areas I, II, and
III, which also equals the total area under the solid curve and to the
left of the threshold, i.e., the summation of areas I, II and IV, up to
the multiplier. The area of region I corresponds to N = 6, that is,
the isostatic condition for spheres, and regions III and IV have equal
areas by definition of the threshold.
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FIG. 3. Average contact numbers Z for packings with different
packing fractions �. Data points with different colors correspond to
packings of different compaction trials.

III. STRUCTURAL QUANTIFICATIONS

A. Contact number versus packing fraction

We first calculate some basic structural quantities of a
granular packing. The packing fraction of a packing is defined
as � = Vp/〈Vcell〉, where Vp is the average particle volume,
and Vcell is the Voronoi cell volume of each particle calculated
using a set-Voronoi method [41]. The average contact num-
ber Z of a packing is obtained using the above generalized
error-function method. As shown in Figs. 2(e) and 3, the
average contact numbers of all our packings are larger than
that of the random close packing (RCP) state of granular
spheres (i.e., 6), and the largest value is smaller than 10 (i.e.,
twice the number of degrees of freedom of a spherocylinder).
This is consistent with the underconstrained jammed packing
state of nonspherical particles [4]. Besides, by interpolating
previous results of hard frictionless spherocylinders [11,42]
and ellipsoids [8,10], we find that the packing state of our
densest packing (i.e., � = 0.655 and Z = 7.12) is close to the
J points of these elongated frictionless particles with the same
aspect ratio. Thus our densest packing is close to the RCP
state because of the theoretical correspondence between the
RCP of granular particles and the jamming transition critical
point of frictionless particles [18,43].

B. Global nematic order

To determine whether gravity can introduce global ori-
entational order in our system, we define a nematic order
parameter S = 〈P2(cos θ )〉, where P2 is the second-order
Legendre polynomial and θ is the angle between each sphero-
cylinder’s orientation and the vertical direction [see Fig. 4(a)].
According to this definition, S = 0 corresponds to an isotropic
particle orientation distribution, while a negative S means that
the particle orientations tend to point horizontally. As shown
in Fig. 4(d), S of our loosest packing is negative and increases
towards zero as packing fraction increases. To first determine
whether such a small absolute value of S reflects true nematic
order in the packing, or just results from the fluctuation of
a small system, we generate 350 random orientations ac-
cording to an isotropic orientation distribution, and calculate

FIG. 4. Schematics for (a) the angle θ between particle orien-
tation and gravitational direction for evaluating the nematic order
parameter S, and (b) the angle between the central particle’s orien-
tation and a vector connecting its centroid and a contact point on
its surface, to calculate the contact orientation order parameter sc. (c)
Voronoi cell of a particle. The angles between the particle orientation
(black line) and the three eigenvectors (green arrows) of the cell
are used to evaluate the cell orientation order parameter sM,i. (d)
The nematic order parameter S for packings with different packing
fractions �. If the same number of particles follow an isotropic
random orientation distribution, the expectation value of S is zero
(solid line), and the standard deviation is 2.4 × 10−2 (dashed lines).
(e) Contact orientation order parameter sc for packings with differ-
ent �. Assuming a uniform distribution of contacts on the particle
surface, the expectation value of sc is 0.57 × 10−2 (solid line), and
its standard deviation is 0.94 × 10−2, marked by half the width of
the shaded region. (f) Cell orientation order parameters sM,i versus
�, with i denoting eigenvectors corresponding to the largest (i = 1,
up triangles), middle (i = 2, diamonds), and smallest (i = 3, down
triangles) eigenvalues. The boundaries of the shaded region represent
the standard deviation of these parameters if the particle and cell
orientations were uncorrelated.

numerically the standard deviation σ (Siso) of their fluctuating
values of S, as marked by the shaded region in Fig. 4(d). |S|
being basically larger than σ (Siso) leads to our conclusion that
the nematic order truly exists. Similar comparisons between
the actual data and completely random orientations have also
been carried out in the following to confirm the existence of
some ordering or correlation. Additionally, we have calculated
the nematic order associated with the other two eigenvectors
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of the moment of inertia tensor of the particle, which are per-
pendicular to the spherocylinder’s orientation. Their nematic
order is basically identical with each other, i.e., both equal-
ing −S/2 within experimental error, indicating the negligible
influence of the anisotropic moment of inertia tensor.

It is counterintuitive that the global orientational order
gradually decreases upon compaction, which appears to be
the very opposite of the entropy-driven excluded volume ef-
fect of elongated hard particles. Therefore, the emergence of
the global orientational order in our granular spherocylinder
packings should be majorly mechanical. We have also verified
that the same nematic order parameter is always negligible if
it is calculated along horizontal directions, proving its grav-
itational origin, but why the anisotropic influence of gravity
on a looser packing is more noticeable can only be answered
after the following analyses are made on packing structures at
a much smaller length scale.

C. Contact orientation order parameter

The contact-level structures are crucial to understanding
the mechanical stability properties of a granular packing. The
mystery that a jammed packing of frictionless nonspherical
particles is mechanically stable but has fewer contacts than
the isostatic condition has been partly solved by consider-
ing the vibrational modes with zero or quartic energy terms
near the jamming transition [4,6,44,45]. According to previ-
ous studies, contacts near the waist of an elongated particle
can provide more constraints to the degree of freedom, since
they can block translational and rotational movements at
the same time, and thus form a hypostatic jammed packing
[2,4,5]. It is unclear whether this mechanism is responsible
for the orientational order transformation in random packings
of frictional nonspherical particles. Thus we characterize the
anisotropy of contact structures with a contact orientation
order parameter, and an orientational distribution of contact
points on each central particle. Interestingly, the evolving
trend of the local structural anisotropy associated with the
contact structures is opposite to S, as elaborated upon below.

We first define a contact orientation unit vector nc along
the direction from the particle centroid to a contact point. The
contact angle αc is the (acute) angle between nc and the cen-
tral particle’s orientation [see Fig. 4(b)]. We define a contact
orientation order parameter sc = 〈P2(cos αc)〉 to characterize
the contact anisotropy, where the average is calculated over
all pairs of contacts. It would equal suni

c = 0.57 × 10−2 if all
contact points were distributed uniformly on the particle sur-
face (i.e., with an equal number of contacts per unit area). This
value is nonzero because of the particle asphericity, and we
compare sc with this reference value to tell how differently the
contacts are distributed on the particle surface from a uniform
distribution. As demonstrated in Fig. 4(e), sc are basically
smaller than suni

c , indicating a slight preference of contact
points to be located close to the spherocylinder’s waist. Also,
the progressively smaller value of sc with respect to suni

c when
� increases is in contrast to S, indicating competing rearrang-
ing mechanisms at local and global levels.

To understand the origin of the increasing contact-level
anisotropy with � more comprehensively, we calculate the
probability distribution function (PDF) f (αc) of αc. As shown

FIG. 5. (a) Averaged PDFs of αc for the densest (up triangles)
and loosest (down triangles) three packings, and for all packings
(diamonds), all normalized by the PDF assuming a uniform contact
point distribution. The two dashed lines mark 37◦ and 79◦, corre-
sponding to the included angles between a normal vector of a regular
icosahedron’s face and vectors connecting the icosahedron’s center
and vertices, as shown by the yellow and red lines in (b). (b) A
schematic of an icosahedral cluster, with one particle at its center
and neighbors at its vertices.

in Fig. 5(a), when f (αc) is normalized by f uni(αc), which
is the contact angle PDF assumed for uniformly distributed
contact points on the particle surface, two unusual peaks at
roughly 40◦ and 80◦ irrespective of � can be distinguished.
The two peaks are relatively higher for denser packings. In-
spired by a previous theoretical result [46], we think the two
peaks most likely originate from the symmetry of an icosa-
hedron. According to Schaller et al. [46], for ellipsoids with
near-zero asphericity, the densest local configuration adopts
the structure of an icosahedral cluster approximately, and
the orientation of the central ellipsoid is parallel with one
face normal vector of the icosahedron. In such a configuration,
the contact angles between neighboring and central ellipsoids
are around 37◦ or 79◦ [as illustrated in Fig. 5(b)]. Therefore,
the two peaks near the two characteristic angles demonstrate
a noticeable residual influence of the densest local config-
uration in granular packings. This influence is preserved
even in the loose packings which hardly contain any local
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structures close to an intact icosahedral cluster. In addition, in
this densest local configuration, the waists of the neighboring
particles are directed at the central one, consistent with the
smaller values of sc than suni

c , especially when � is large
[see Fig. 4(e)]. Apparently such dense local structures are
incommensurate with the global nematic order.

Based on the above structural analyses, the following
mechanism for the orientational order transformation of non-
spherical granular packings can be proposed, highlighting
a complex interplay between friction and packing effects
[47]. A dense granular packing is close to a marginally
jammed packing of frictionless hard particles [18,43], requir-
ing just enough contacts to constraint all collective modes
[37]. Accordingly, for a spherocylinder packing, locally fa-
vored structures with more contacts near the particle waist
increase with packing fraction and, hence, diminish the global
nematic order analogously to a geometric frustration effect. In
comparison, the frictional forces are more activated in a looser
packing [48], which helps stabilize the structure with fewer
contacts per particle regardless of the relative orientations and
contact positions of the contact neighbors [49]. Therefore,
each individual particle is allowed to take an orientation closer
to the horizontal to lower its gravitational potential energy. In
other words, the anisotropic influence of gravity on a looser
packing appears to be more noticeable. This phenomenon is
analogous to a transformation between a high-temperature
paramagnetic phase and a low-temperature antiferromagnetic
phase.

Besides, in previous numerical results of two-dimensional
(2D) frictionless spherocylinder packings [12,50,51], exceed-
ingly more contacts are detected to be exactly at the particle
waist, i.e., at αc ≈ 90◦, in the limit of zero asphericity. This
is in stark contrast with the f (αc) obtained in our frictional
granular packings, although the underlying mechanisms of
these different systems being hypostatic may have some con-
nections. Moreover, in 2D sheared frictionless spherocylinder
packings [52,53], similar evolutions of the nematic order and
contact orientation order with packing fraction have been ob-
served in the regime below jamming. Since a granular packing
can be mapped onto a supercooled hard particle liquid at
different temperatures or packing fractions [54], we believe
that the mechanism of competing mechanical and geometric
effects in dense nonspherical particle packings applies to both
systems.

D. Voronoi cell anisotropy

The above results also remind us of the correlation between
the anisotropic Voronoi cells and locally favored structures
observed in granular sphere packings [55], indicating a dis-
cernible correlation between the central particle’s orientation
and the packing structures at a slightly larger length scale than
the contact level. Thus we proceed to analyze the Voronoi cell
structure to quantify this correlation. The shape anisotropy
of a Voronoi cell can be quantified by a Minkowski ten-
sor, M = ∫ r ⊗ rdV , where r is a vector from the cell’s
geometric center to each point in the cell, and the integral
is calculated over the cell volume [56]. The eigenvector of
M associated with the largest (smallest) eigenvalue corre-
sponds to the direction where the cell is most elongated

(shortened) [Fig. 4(c)]. We define a triplet of parameters
sM,i = 〈P2(cos γi )〉 to characterize the eigenvectors’ direction
with respect to the spherocylinder’s orientation, where γi is
the (acute) angle between each particle’s orientation and the
ith eigenvector of M, with i = 1, 2, 3 representing the one
associated with the largest, middle, and smallest eigenvalues,
respectively. The average is calculated over all particles. As
shown in Fig. 4(f), sM,1 (sM,3) is positive (negative) for all
packing fractions, clearly manifesting a tendency of the sphe-
rocylinders to align with the cell elongation direction [57].
Since the Voronoi cells are anisotropic even in a random
packing of spheres [56], the clear correlation between particle
orientation and a cell’s eigenvector observed here is not only
trivially due to the elongated particle shape, but also the mild
tendency of a central spherocylinder to have more contact
neighbors near its waist, leaving relatively large voids along
the particle orientation. Consistently, the absolute values of
sM,1 and sM,3 increase slightly with � similar to |sc − suni

c |,
indicating an extension of the above inherent packing effect
on the contact structures to the Voronoi structures in jammed
packings. This may also cause anisotropic and correlated dy-
namics of the particles when the packing is perturbed [58].

E. Nonaffine evolution of local and mesoscale structures

A final piece of the puzzle is how to bridge the opposing
trends of the structural anisotropies at global and contact lev-
els. To this end, we analyze the particle shape effects across
different length scales in the following systematic way. For
each central particle, we sort all nearby particles by their
centroid-centroid distances ri j = |ri j |, where ri j is a vector
connecting the particle centroids. Then we calculate 〈ri j〉k ,
where 〈· · · 〉k represents an average among all central par-
ticles and their respective nearest k neighbors. Power-law
relationships � ∝ 〈ri j〉k

−dk are observed for all values of k
with a varying exponent dk [Fig. 6(a)]. This exponent should
equal the spatial dimension regardless of k from a simple
dimensional analysis, but this trivial scaling law only holds
for particle systems with negligible spatial correlation such
as a simple liquid, and ordered point arrays like a crystal,
while discrepancies of a similar exponent from the spatial
dimension have been observed in amorphous solids [59]. This
conundrum has been attributed to the nonaffine structural
rearrangements within the local packing structures when the
packing fraction changes [60]. The extent of structural trans-
formation nonaffinity can be measured by the difference of
the scaling exponent from the spatial dimension. It is most
intriguing that this exponent has a minimal value dk ≈ 2.1 at
k = 12 [see Fig. 6(b)], in comparison with the minimal value
d13 ≈ 2.5 for granular sphere packings [60], which means
that the merely 2% shape change from a sphere to a sphero-
cylinder causes a substantially 18% change of the exponent.
The smaller exponent for granular spherocylinder packings
implies a more sensitive response of the centroid-centroid dis-
tance when the packing fraction changes compared with the
granular sphere packings. This additional “softness” clearly
originates from the accompanied evolution of nearby parti-
cles’ relative orientations when the packing fraction changes,
indicating a remarkable correlation between the orientational
and translational degrees of freedom.
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FIG. 6. (a) The average centroid-centroid distances between the central particle and its nearest k neighbors for packings with different �.
The lines are power-law fittings of the experimental data: 〈ri j〉k ∝ �−1/dk . The data from bottom to top correspond to k ranging from 1 to 30.
(b) The fitted exponent dk (circles, left axis) and the correlation coefficient ck between 〈sn〉k and � (diamonds, right axis) for different k. (c) A
schematic of the angle βn between the orientation of a nearby particle and a vector connecting the centroids of it and the central particle, for
evaluating the neighbor orientation order parameter sn. Average neighbor orientation order parameter 〈sn〉k for packings with different �, for
k = 6 (d), 11 (e), and 17 (f). The solid lines are linear fittings of the data.

To further quantify the statistic changes of relative orien-
tations of granular spherocylinders, we develop a neighbor
orientation order parameter sn = P2(cos βn), with βn denot-
ing the (acute) angle between ri j and the orientation of
each nearby particle [see Fig. 6(c)]. We obtain different re-
lationships between 〈sn〉k and � for different k, as shown
in Figs. 6(d)–6(f). In general, the correlation coefficients ck

between 〈sn〉k and � are negative for k < 11, suggesting that,
for particles within the first shell of a central particle, directing
their waists towards the central particle makes comparatively
dense packing structures. In comparison, ck are positive for
k � 11, which means that facing the central particle with
their heads may efficiently accommodate more particles in
the second shell and increase the packing fraction. ck ap-
proaches zero for large enough k, representing a dying-out
long-range spatial correlation. Hence, the packing effect has
conflicting influences on the relative orientations of particles
within the first shell and those beyond, but the dense structures
at both levels prefer particles to misalign with each other,
further decreasing the global nematic order upon compaction.
We also suspect that the mesoscale nonaffine structural rear-
rangements associated with both translational and rotational
movements are deeply connected with the phonon modes of
nonspherical particles [61].

IV. DISCUSSION AND CONCLUSION

In this work, we report structural anisotropies in granu-
lar spherocylinder packings. The existence of global nematic
order due to gravity is expected. Nonetheless, the structural
anisotropies triggered by the very slight 2% particle aspheric-
ity at both contact-level and Voronoi structures are rather
unexpected and nontrivial. The physical mechanism of the

orientational order transformation of nonspherical granular
materials is now clear. For a loose packing away from the RCP
state, the orientational order is influenced by lowering the
gravitational potential of individual particles, with frictional
contacts at random positions helping stabilize the configura-
tions. For a dense packing, as it approaches the marginally
stable jammed state of frictionless particles, the global ori-
entational order is determined by the orientational symmetry
of the locally favored dense structures, for example, whether
they are commensurate with a nematic phase.

This mechanism should be general, at least in a mod-
erate range of particle asphericity, since it originates from
the fundamental marginal stability of jammed materials, and
it potentially connects the structural transformation laws of
granular materials with the theoretical advance of the glass
and jamming transitions of nonspherical particles [13]. For
particles with stronger particle asphericity, e.g., more elon-
gated granular spherocylinders or rods, the larger variation
range of the nematic order parameter observed in previous
studies is a natural corollary based on the above mechanism
[15,62]. Our previous explanation of a similar decreasing (in-
creasing) global (local) orientational order of granular disks
upon compaction can also be incorporated into this theoretical
scenario [29]. Moreover, for particles with different surface
friction properties, one can anticipate a weakened nematic
order for a less frictional nonspherical granular packing. Con-
sistently, we have observed an orientationally random RCP
state of almost frictionless hydrogel ellipsoids [63]. System-
atic studies to fully clarify the individual roles played by
particle shape and friction should be carried out in the future.

Furthermore, the findings of the present work clearly
demonstrate nonignorable couplings between the particle’s
orientational and translational degrees of freedom, and
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between contact-level and Voronoi structures of nonspherical
granular packings, which are very weak in granular sphere
packings [54,64]. These analyses therefore pose a demanding
challenge to the statistical mechanical models of granular
packings based on the Edwards volume and/or stress en-
sembles [65,66], since most current models are based on
simplified mean-field assumptions. In principle, one should
take into consideration the intricate interplays between parti-
cle shape, frictional contacts, and external force field to model
correctly the ubiquitous packing structural transformation ac-
companied with orientational order evolution. Notice that all
the above subtle correlations can emerge vividly even when
particle asphericity is as small as 2%.

To go one step further, the situation can be more complex
if kinetic effects are taken into consideration. For a granular
system under mechanical agitation, the kinetic energy tends
to dilate the packing and destroy global orientational order
due to entropic reasons, while on the contrary, the higher

configurational temperature (i.e., the effective granular tem-
perature in the Edwards volume ensemble [19]) for a looser
packing implies a stronger influence of the external force that
aligns particle orientations. The competing effects of kinetic
and configurational temperatures could be a statistical me-
chanical origin of the complex constitutive relations of slowly
agitated dense granular flows [20–22]. A careful examination
of the structural anisotropies at various length scales as done
here could be crucial to understanding them.
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