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Experimental measurements of the granular density of modes via impact
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The jamming transition is an important feature of granular materials, with prior work showing an excess
of low-frequency modes in the granular analog to the density of states, the granular density of modes. In this
work, we present an experimental method for acoustically measuring the granular density of modes using a
single impact event to excite vibrational modes in an experimental, three-dimensional, granular material. We
test three different granular materials, all of which are composed of spherical beads. The first two systems are
monodisperse collections of either 6 mm or 8 mm diameter beads. The third system is a bidisperse mixture of
the previous two bead sizes. During data collection, the particles are confined to a box; on top of this box, and
resting on the granular material, is a light, rigid sheet onto which pressure can be applied to the system. To excite
the material, a steel impactor ball is dropped on top of the system. The response of the granular material to
the impact pulse is recorded by piezoelectric sensors buried throughout the material, and the density of modes is
computed from the spectrum of the velocity autocorrelation of these sensors. Our measurements of the density of
modes show more low-frequency modes at low pressure, consistent with previous experimental and numerical
results, as well as several low-frequency peaks in the density of modes that shift with applied pressure. Our
method represents an experimentally simple technique for investigating the granular density of modes and may
increase the accessibility and number of such measurements.
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I. INTRODUCTION

Jamming is the phenomena in which a granular material
becomes rigid and able to support a finite shear stress and
pressure [1–6]. The jamming transition is important for un-
derstanding not only the fundamental behavior of granular
materials but can also be applied in diverse industrial set-
tings ranging from universal soft robotic grippers [7–9], to
hopper flow [10–12], to the manufacture of pharmaceuticals
[13]. Jamming also has application on a wide variety of geo-
physical processes [14,15] such as earthquakes [16–18] and
avalanches [19].

The jamming transition exhibits features of a second-order
phase transition; specifically, diverging length scales are ob-
served as jamming is approached [3,20–24]. In particular,
simulations of the granular density of states [3,20,25,26] ob-
serve long wavelength modes that diverge as the jamming
transition is approached. These simulations of the density
of states, D(ω), display an excess number of low-frequency
modes as compared to Debye scaling [27], ωd−1, where d
is the dimensionality of the system and ω is the frequency.
These simulations identify the diverging length scale by first
identifying a characteristic frequency, ω∗, that is either the
frequency at which the density begins to fall to zero at low
frequency [20], or the frequency at which D(ω) falls to some
fixed fraction of its maximum value [25] at low frequency.
Regardless of how ω∗ is defined, it is observed to have a
power-law relationship with proximity to the jamming tran-
sition as quantified by excess coordination number (z − zc)
and relative packing fraction (φ − φc) [20,24,25].

In this work, we present a technique for experimentally
measuring the granular density of states. We thus begin by
briefly summarizing some of the previously used methods
for measuring and calculating D(ω). Simulations calculate
the density of states using the dynamical matrix constructed
from the particle positions and grain interaction potential. A
related method uses a covariance matrix; this method has been
used to experimentally measure D(ω) in a two-dimensional
(2D) colloidal systems [28,29] by utilizing particle tracking
to construct the covariance matrix from the particle displace-
ments induced from thermal motion. However, applying this
method to granular experiments requires an external vibration
as a substitute for the thermal vibrations naturally present in
colloids. Experiments in a 2D granular system [30] applied
such an external vibration to their system and used particle
tracking to construct a covariance matrix; these experiments
found the number of long wavelengths mode increased as jam-
ming was approached. While the previously mentioned matrix
methods are successful in finding the vibrational modes of
the system, these types of experimental methods are generally
reserved for 2D systems that are small enough for the particles
to be tracked. This presents an impractical option for large
3D systems. Another method employed in Refs. [31,32] uses
the spectrum of the velocity autocorrelation of the particles
to measure the granular density of states (VACF method) and
can be applied to large, 3D systems.

As the VACF method described in Ref. [31] will form the
basis of our work, we will describe this method in detail.
First, the velocity autocorrelation function, Cv (t ), is defined
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as follows:

Cv (t ) =
∑

j〈v j (τ + t ) · v j (τ )〉τ∑
j〈v j (τ ) · v j (τ )〉τ , (1)

where v j (t ) is the velocity as a function of time of the j
oscillator in the system. v j (t ) can be written as

v j (t ) = Ajω j sin(ω jt + φ j ), (2)

where Aj is the amplitude of the oscillation, ω j is the an-
gular frequency of the oscillator, and φ j is the phase of the
oscillator. The sum in Eq. (1) is over all the oscillators in the
system. We now briefly summarize the derivation presented
by Ref. [33] in order to clearly identify the assumptions and
conditions of this method. The first step of this derivation
substitutes v j , as defined in Eq. (2), into Cv (t ), as defined in
Eq. (1). Cv (t ) is then simplified using the following assump-
tions: the first assumption is that the system is in a steady state
such that Aj does not vary with time. The second assumption
is that the equipartition theorem is applicable to the system,
meaning that each oscillator has an energy, on average, of kT ,
where k is the Boltzmann constant and T is the temperature.
The third assumption is that the phase of the oscillators are
random. Using these assumptions, Cv (t ), simplifies to

Cv (t ) = 1

N

∑
j

cos(w jt ) ≈
∫ ∞

0
D(ω) cos(ωt )dω, (3)

where the sum has been approximated by an integral. From
here, it is clear that the density of states is given by the Fourier
transform of Cv (t )

D(ω) =
∫ ∞

0
Cv (t )e−iωt dt . (4)

As seen from the above derivation, there are some key as-
sumptions made about the system when using the VACF
method to find the density of states. Specifically, this method
is valid for a system meeting the following criteria: the
equipartition theorem applies, the system is in thermal equi-
librium, and the vibrations are isotropic with random phase.
This method also assumes access to the velocities of all the
particles.

Given these assumptions, the applicability of this method
to granular systems is not guaranteed. However, the VACF
method was experimentally applied to a 2D granular packing
in Ref. [31] with the authors calling the result the density of
modes to distinguish it from the thermal density of states. In
these experiments, the granular packing was excited with a
steady white noise acoustic signal to mimic thermal motion.
However, the system demonstrated nonthermal motion, vio-
lating a key assumption of the VACF method. In spite of this,
the experiments recovered several important features of the
density of state, such as Debye scaling in ordered, crystalline
packings. It also saw an excess number of low-frequency
modes compared to Debye scaling in disordered packings and
was able to define an ω∗ that scaled with z − zc but which
scaled only weakly with pressure. These results demonstrate
the utility of applying the VACF method to granular systems.

A key aspect of applying the VACF method to a granular
material is to excite the material to create particle veloci-
ties that are not normally present in a granular material. In

Ref. [31], the granular material was excited with a white
noise acoustic signal to mimic thermal motion. This method of
exciting the system can be thought of as similar to a damped,
driven oscillator where the system is forced to oscillate at
the drive frequencies, but the amplitude of these oscillations
are attenuated in relation to the natural resonances of the
system. That is, the system will attenuate frequencies that
are not resonant with the system while minimally attenuat-
ing resonant frequencies. This method of exciting the system
has an advantage that dissipation in the granular material is
counteracted due to the constant white noise drive. However,
there are several significant experimental drawbacks related
to the complexity of implementing this method. Specifically,
a very flat spectrum of white noise must be injected into
the system due to the fact that any electrical or mechanical
resonances in the driving apparatus will be transmitted to the
density of states. Compensating for these resonances requires
careful design of electronics and calibration making this a
difficult excitation method to apply outside of carefully con-
trolled laboratory conditions. Additionally, since the system
is being continuously driven, a relatively large and powerful
driving mechanism must be used. An alternative method of
exciting the vibrational modes that used the VACF method
is reported in Ref. [32] where they used the natural phonon
emissions of stick slip events of a granular material under
shear to compute the density of modes. This method elim-
inated the above-mentioned experimental difficulties in the
driving method; however, this method is not applicable to
static granular packings due to the lack of shear.

Drawing from the work of Refs. [31,32], we propose a
method to excite vibrational modes in a granular material
for the purpose of measuring the granular density of modes
with the VACF method. Our method excites the vibrational
modes using a small impact on top of the granular material.
This impact will create a pulse containing a wide spectrum of
frequencies. The range of frequencies in a pulse is inversely
proportional to the width of the pulse, with an infinitesimal
pulse having a flat spectrum. This wide injection of frequen-
cies will allow the granular material to vibrate more strongly
at its natural resonances and attenuate signals that are not
resonant with the natural modes of the system.

This impact method of excitation is experimentally simple;
it does not require complex electronics, large shakers, or the
need to compensate for apparatus resonances. In addition
to being experimentally simple, an impact has a particular
intrinsic advantage. Namely, while the impactor is striking
the granular material, the system can also be thought of as
a damped, driven oscillator; however, since the impact event
is very short, transients will be important to the response.
For damped, driven oscillators, the transient terms oscillate
at the natural frequency of the system and not the driving fre-
quency, which is exactly what is needed for our experiments.
Then, after the impact event, the driving force is no longer
present and the system behaves more like a damped oscillator,
essentially ringing at the natural frequencies of the material.
This allowance of transients is in contrast to previously used
continuous excitation methods [31] where the system is forced
to oscillate at all modes and then attenuate modes that are
not resonant with the system. The primary disadvantage of
this impact technique is also due to the transient nature of the
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(a) (b)

FIG. 1. (a) A schematic of the experimental setup. The granular
material, shown as the dotted fill, is confined inside a box, shown as
the black line surrounding the granular material. Inside the granular
material, labeled with a “P” in the figure are the piezoelectric sensors.
On top of the granular material is the pressure plate assembly. The
pressure plate assembly houses the force sensors that measure the
pressure applied to the granular material via the screw, which is
itself confined to the frame. Vibrations are excited in the granular
material when the ball is released from the solenoid and dropped
through a tube onto the bottom plate of the pressure plate assembly.
The bottom plate of the pressure plate assembly is in direct contact
with the top of the granular material. (b) A photo showing the ball
dropping apparatus with the red wires composing the solenoid and
the aluminum tube below the solenoid. To the right, and from the top
down, are as follows: the piezoelectric sensor encased in the ABS
half-spheres, the bare piezoelectric sensor, a 6 mm grain, a 8 mm
grain, and the steel impactor ball.

excitation in that it may be difficult to overcome dissipation as
the vibrations travel through the material.

In this paper, we experimentally measure the granular den-
sity of modes of a real three-dimensional granular material
utilizing the VACF method with an impact event to excite
the vibrational modes. Our results recover several previously
discussed features of the granular density of states, such as an
excess of low-frequency modes at low pressure. Additionally,
this work adds another experimental system to the relatively
small number of systems for which there is data on the granu-
lar density of modes.

II. EXPERIMENTAL METHODS

For our experiment, we investigate a granular material
confined within a box closed on five sides and open at the
top, see Fig. 1. The granular material inside the box has
dimensions of 25 × 25 × 25 cm3 and is composed of one of
the following three possible grain types: (i) a monodisperse
packing of 6 mm spherical grains, (ii) a monodisperse packing

of 8 mm spherical grains, (iii) a 50-50 bidisperse mixture by
volume of 8 mm and 6 mm spherical grains. For both grain
sizes, the grains are composed of ABS plastic with a Young’s
modulus of E ≈ 2.6 GPa [34], a Poisson’s ratio of ν ≈ 0.37
[35,36], and individual grain masses of m6mm = 0.20 g and
m8mm = 0.34 g.

In order to shift the granular material further from the
jamming transition, pressure is applied to the granular ma-
terial via a pressure plate apparatus placed on top of the
granular system. This pressure plate apparatus consists of
two 25 × 25 cm2 parallel plates with three force sensors (TE
Connectivity Measurement Specialties, FX19 Series sensors)
placed in between the plates to allow us to measure the total
force applied to the system. Pressure is then applied to the
pressure plate apparatus via a screw built into a frame that
encircles the grain box, see Fig. 1. This apparatus for applying
pressure to the granular material is similar to a cider press
for pressing apples into juice, where the grains are the apples
in this analogy. For our experiments, the lowest pressure is
achieved with no force applied from the screw; then, we apply
the following pressures to the system by tightening the screw
and compressing the granular material from the top: 0 kPa,
3.6 kPa, 7.1 kPa, 14.2 kPa. Since the sensors are buried in
approximately the middle of the granular packing, we add the
weight of the grains above the sensors (50 N) for a revised
pressure range of 0.8 kPa, 4.4 kPa, 7.9 kPa, 15 kPa. For a more
intuitive understanding of these pressure ranges, the pressures
can be expressed as fractions of the Young’s modulus of the
grains as follows: 0.3μE, 1.7μE, 3.0μE, 5.8μE, where the
unit μE = 10−6E.

A. Piezoelectric sensors

We use five piezoelectric sensors embedded in the granular
material to measure the acoustic vibrations of the system
caused by the impact of a steel ball being dropped on the gran-
ular material. The particular piezoelectric sensors used are
Murata 7BB-12-9 buzzers. While these crystals are marketed
as buzzers, they work equally well as detectors due to the
symmetric nature of the piezoelectric effect: that is, a strain
on a piezoelectric crystal will produce charge separation and,
inversely, a charge difference across a piezoelectric crystal
will produce a strain. The piezoelectric sensors are 12 mm
in total diameter with the crystal being 9 mm in diameter. For
each sensor, we glue two ABS plastic half-spheres on either
side in order to turn the sensor into a 12 mm diameter ABS
sphere with a piezoelectric sensor running through its equator,
see Fig. 1. Encasing the sensors in ABS spheres allows the
sensor to better blend in with the rest of the material which is
also composed of ABS plastic spheres. This helps to ensure
that the sensors are vibrating in as close a manner to the bulk
granular material as possible.

If these sensors are simply placed into the granular material
without any additional circuitry, a voltage could be measured
in some proportion to acoustic vibrations. However, this signal
would be very weak, possibly not even exceeding the noise
threshold. It is therefore necessary to connect the piezoelectric
sensors to preprocessing circuitry to amplify the signal and
reduce the noise level. The circuit that we developed (shown
in Fig. 2) to accomplish this task consists of two charge
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FIG. 2. A conceptual schematic of the piezoelectric preprocess-
ing circuit (details are omitted). A1 and A2 together with Rf and Cf

form the two charge amplifiers and set the low-frequency response
of the system. The two resistors, Ri, together with the piezoelectric’s
capacitance set the high-frequency response. Finally, A3 is the differ-
ential amplifier that gives the final output voltage proportional to the
charge difference on the piezoelectric.

amplifiers [38], one connected to each side of the crystal.
These charge amplifiers convert the charge on each side of the
crystal into a voltage. These two voltages are then fed through
a differential amplifier for both amplification and common
mode noise rejection. This circuit yields high sensitivity and
low noise, ideal for measuring small vibrations. Additionally,
the output voltage of the circuit, Vout can be converted into the
charge, q, generated by the piezoelectric with the following
relation q = Vout

2GCf
, where G is the gain of the differential

amplifier and Cf is the feedback capacitor. Figure 3 shows
the output of a typical piezoelectric sensor.

This circuit also introduces low- and high-frequency cut-
offs for our measurements. The low-frequency cutoff is set by
the feedback resistor and capacitor in the charge amplifiers.
For our circuit values, this gives a 16 Hz, −3 dB frequency.
A high-frequency cutoff is intentionally introduced in order
to roll off high-frequency noise that is outside the frequency
range of interest, and is set by the input resistance Ri and
the capacitance of the piezoelectric crystal (8 nF). Using our
circuit values gives a −3 dB frequency of 100 kHz; however,
in practice, since our sample rate is 50 kHz, we only measure
up to 25 kHz due to the Nyquist frequency.

B. Phonon excitation

In order to excite the granular material to vibrate at its
natural modes, we drop a 1.05 g, 6.35 mm diameter, steel ball,
see Fig. 1, on top of the system, thereby injecting an acoustic
pulse into the system. In order to produce a consistent pulse

FIG. 3. A typical charge versus time signal from one of the
piezoelectric sensors. The multiple pulses are due to the ball bounc-
ing on the pressure plate; the time between the first and second
bounce is approximately 0.1 seconds. The inset is a zoomed in view
of the first pulse.

across our different packings and pressures, the following
apparatus was constructed to drop the pulse-producing steel
ball on the granular material. The pulse producing apparatus
(labeled ball in Fig. 1) consists of a 5.0 cm tall hollow alu-
minum tube on top of which is a solenoid. Inside and at the
top of the tube, but below the solenoid, the steel ball is placed.
The steel ball is held in place by the solenoid’s magnetic field
and can be dropped when the solenoid is turned off. This setup
allows for a consistent kinetic energy of the ball (0.5 mJ) as it
strikes the top plate of the system, as well as provides a means
of coordinating the time at which the ball is dropped with
the data acquisition of the embedded piezoelectric sensors.
Additionally, by striking the rigid plate of the pressure plate
apparatus, the energy of the pulse is more evenly distributed
across the granular material rather than being concentrated in
a particular region of the system.

In order to excite a broad spectrum of frequencies with
this impact technique, the impact event should be as short
as possible. To design a system that facilities a short impact
time, we imagine the impactor colliding with the impactor
plate as a mass colliding with a spring, then the period of
that spring’s oscillation would correspond to the duration of
the collision. Using this model for the impact time, a short
impact can be accomplished with a light, but hard and stiff
impactor. If higher energy is needed from the impactor, it is
best accomplished by increasing the speed of the impactor
rather than its mass so that the impact time remains small.
Finally, so long as the energy of the impactor does not cause
the grains to permanently change their position, the energy of
the impactor should not influence the D(ω) of an individual
packing, provided there is enough energy to excite the same
number of modes with different energies. However, if data
from multiple packing are averaged together, as is done in
this study, the energy of the impactor should be kept very
consistent as packings with higher-energy impacts will be
weighted more heavily in Eq. (1).
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FIG. 4. The unfiltered spectrum of a piezoelectric affixed to the
top of the impact plate showing both the injected frequencies from
the impact as well as the noise when there is no impact. The noise
spectrum shows the classic 1

f at low frequency followed by broad-
band noise [37], and we fit the noise spectrum using this form
for reference and later use. The noise spectrum also shows several
narrow spikes, which are harmonics of the 60 Hz mains. These
harmonics of 60 Hz are filtered from the later data set using a digital
notch filter with a bandwidth on the order of 1 Hz.

Keeping all of these design principles in mind, we chose
our impactor to be made of a hardened steel ball bearing with
a mass equal to only about five of the 6 mm grains or three of
the 8 mm grains. We chose the drop height, and thus the speed
of the impactor, by dropping the impactor from the highest
height that did not cause the piezoelectric sensor voltages to
be clipped.

We measure the range of frequencies produced with our
impact setup as well as the electrical noise of our circuit by
attaching a piezoelectric sensor to the top of the impactor plate
and dropping the impactor onto the plate; the results of this
test are shown in Fig. 4. Since the piezoelectric sensor is in
close proximity to the impactor, it has a larger amplitude than
the piezoelectrics in the granular material, and we therefore
omit the first five bounces of the impactor as the signal from
these bounces is clipped by our circuit. Omitting these first
bounces simply means that the amplitude of the injected fre-
quencies is greater than what is shown in Fig. 4 and the curve
in Fig. 4 represents a floor on the amplitude of the injected
frequencies. Additionally, the impactor plate is resting on the
granular material and the structure seen in the injected signal
is likely due to the granular material. Finally, we see that
the injected frequencies are above the noise threshold for the
frequencies we investigate, demonstrating that our setup is
exciting a broad band of frequencies through the measurement
limit of 25 kHz.

C. Data collection protocol

The data collection procedure is described as follows: First,
all the grains are removed from the box, and mixed in a sepa-
rate container before being poured back into the experimental
apparatus. Removing and replacing the grains ensures that
we put the granular material into a new, unique state each

time we collect data. Then, once the granular material has
been placed back into the experimental apparatus, we place
the pressure plate on top of the grains, but do not apply any
pressure with the screw. At this point, we drop the steel ball
onto the system exciting the vibrational modes. At the same
time, the solenoid is deenergized and the steel ball is released,
the DAQ card is triggered and begins to record the signal from
the piezoelectric sensors for one second. Figure 3 shows a
typical output of one of the piezoelectric sensors, with the
multiple pulses corresponding to the steel ball bouncing on
the pressure plate.

After this, pressure is applied via the screw to the pressure
plate, and the ball is dropped again and the response of the
piezoelectrics is again recorded. This procedure is repeated
for a total of four pressure states (listed above). Once all
the pressure states have been cycled through, the grains are
removed, mixed, added back into the experimental apparatus,
and the whole procedure is repeated. We measure the density
of modes as the pressure on the system is cycled from low to
high, since we find these results are not qualitatively different
from cycling the pressure on the system from high to low. In
total, we perform this procedure on five unique packings for
each of our three grain types (15 unique packings in total).

D. Sound speeds

In order to be able to relate specific frequencies to rele-
vant length scales, we need to know the speed of sound in
our granular material. This was accomplished for the 6 mm
packing by measuring the time difference between the first
arrival of sound (time of flight) at two piezoelectric sensors
separated from each other by 10 cm. For these sound speed
measurements, one piezoelectric sensor is placed near the top
of the system and the other is placed 10 cm below this. A
pulse of sound is injected at the top of the system and the time
at which the signal first arrives at each sensor is found. From
this time-of-flight information, a sound speed for the material
is found. The grains are then agitated to put the material in a
new state and the sound speed measurement is repeated for a
total of 20 unique grain configurations. A histogram of these
speeds is shown in Fig. 5.

We find an average speed of 193 ± 16 m/s (standard error).
This speed of sound is significantly slower than the bulk sound

speed, c =
√

E
ρ

, of 1200 m/s. This discrepancy with the bulk

speed is consistent with previous experiments [39–41] that
found the granular speed of sound for a granular material
composed of unconfined glass beads to be 280 m/s compared
to a bulk speed of 4000 m/s. Additional experiments on a 2D
granular material [42] found a wide range of sound speeds
within a given packing due to the fact that the speed of sound
varies with the strength of the force chain along which the
sound propagates.

Additionally, simulations of the sound speed from the time
of flight [43] find a pressure dependence of c ∝ P1/6. In their
simulations, they report pressure in units of E∗ = E

1−ν2 and

speeds in units of c∗ =
√

E∗
ρ

, which for our 6 mm packing are
E∗ ≈ 3 GPa and c∗ ≈ 1700 m/s. At the pressure at which our
sound speeds were measured (0.7 μE∗), the simulation finds
a sound speed of 0.12c∗ = 200 m/s in good agreement with
our average result of 193 m/s.
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FIG. 5. A histogram of the time-of-flight sound speeds for the
6 mm monodisperse packing. Each of the 20 speed measurements
was conducted on a unique packing and with no confining pressure.
The average sound speed was found to be 193 ± 16 m/s (standard
error).

III. RESULTS AND ANALYSIS

Using the piezoelectric charge as a function of time data
(see Fig. 3 for an example), we can calculate the granular
density of modes via the spectrum of the velocity autocorre-
lation function. As a first step towards calculating the density
of modes, we claim that the average velocities of the grains
around a sensor particle is proportional to the charge on the
piezoelectric crystal, that is q ∝ v where q is the charge on
the crystal and v is the average velocity of the grains around
the sensor. Our reasoning for this conclusion is as follows.

First, we recognize that the charge generated on the piezo-
electric is proportional to the strain on the crystal, that is
q ∝ x, where x is the change in thickness of the crystal.
From this, we can see from both an electrical and mechanical
perspective that the energy imparted to the crystal from the
granular material is proportional to q2. The electrical per-
spective treats the piezoelectric crystal as a capacitor, and the
energy of any capacitor is proportional to q2. The mechanical
perspective treats the crystal as a spring with the energy of
a spring proportional to x2, which for a piezoelectric is also
proportional to q2.

Second, since the piezoelectric sensors are only in con-
tact with the granular material, all of the energy imparted to
the piezoelectric must come from the kinetic energy of its
neighboring grains. Since the kinetic energy of the grains is
proportional to v2 and the energy of the piezoelectric crystal
is proportional to q2, it follows that v ∝ q where the constant
of proportionality is some combination of material properties
of the grains and the crystal, for example Young’s modulus,
geometry, piezoelectric charge coefficient, etc. The fact that q
does not have the precise conversion factor to exactly find v

in proper units is not necessary for computing the DOM since
Eq. (1) simply needs to know the relative amplitudes of v at
each frequency, and then the normalization of the DOM will
happen automatically as a consequence of Eq. (1).

Now that the velocity of the particles around the sensors
can be deduced, the rest of the calculation follows straight-
forwardly. For each particle type, i.e., 6 mm monodisperse,
8 mm monodisperse, or bidisperse, and at each pressure the

velocity autocorrelation function, Cv (t ), is found by finding
the average charge autocorrelation function for all the sensors.
Then, as described in Eq. (4), the FFT of Cv gives the density
of modes. Now that we have obtained the density of modes,
a final smoothing step is taken by applying a median filter
with a 15 Hz window to the density of modes. Compared
to the 25 kHz data range, a 15 Hz filter window does not
substantially change the density of modes other than a slight
flattening of some of the peaks, but it does smooth some of
the noise fluctuations seen in the data. The results of these
calculations are shown Fig. 6. These results are reported in
the frequency range of 10 Hz to 25 kHz. 10 Hz is the lowest
frequency that we report due to the fact that the impactor ball
has a bouncing period of approximately 10 Hz and the low-
frequency 3 dB point of our piezoelectric circuitry is 16 Hz.
The high-frequency cutoff of 25 kHz is set by the Nyquist
frequency. As a check that our results are above the noise
threshold of the electronics, we also add the power spectrum
of the noise found in Fig. 4 to the results in Fig. 6. We add the
power spectrum due to Wiener-Khinchin’s theorem [44] that
equates the power spectrum with the Fourier transform of the
autocorrelation function.

Some features that are immediately apparent from the den-
sity of modes in Fig. 6 are the deviation of the low-frequency
modes from Debye scaling as well as a drop off in the number
of modes around 10 kHz. We also see several peaks in the
approximately 10–1000 Hz range; for a better visual example,
Fig. 7(a) is a zoomed in graph of the density of modes in this
frequency range. Looking at Fig. 7(a), there are two peaks of
particular interest that shift with system pressure. The first
peak is the overall maximum peak in the system, call this
the primary peak, the second peak is around 100 Hz, call
this the secondary peak, which also shifts with system pres-
sure. The change in the frequency, � f , at which each of these
peaks occurs relative to the low-pressure peak is found and
plotted as a function of system pressure in Figs. 7(b) and 7(c),
and it is seen that the peaks move to higher frequency with
increasing system pressure.

Finally, we also plot the density of modes at the lowest
pressure for all three grain types on the same plot in Fig. 8 to
compare the effects of grain size and compare monodisperse
to bidisperse packings.

IV. DISCUSSION

From Fig. 8, we see that while there are some differ-
ences in the density of modes between the three systems, it
is not a dramatic difference, with general agreement across
the main features of the density of modes. This is not par-
ticularly surprising given that the grains are all made of the
same material and of the same shape (spherical). Previous
experimental measurements in 2D [31] did see a difference
between monodisperse packings and bidisperse packing due
to the crystallization of the 2D packing. However, in our 3D
packings, a bidisperse mixture is not required to break up
crystallization as it is in a 2D packing [45,46]. Given these
observations, we will focus the remainder of our discussion
on the 6 mm monodisperse packing; this discussion should
also broadly apply to the 8 mm and bidisperse packings.
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(a) (b) (c)

FIG. 6. The density of modes for (a) the bidisperse system, (b) the 8 mm monodisperse system, and (c) the 6 mm monodisperse system.
The different colors correspond to the different pressures that the system is subjected to. The dashed line is the power spectrum of the noise
fit from Fig. 4. The vertical units of the noise power spectrum are arbitrary in order for the noise spectrum to roughly vertically align with the
high-frequency noise in the density of modes. The solid black line is ∝ f 2 for comparison to Debye scaling.

In order to interpret our results, it is helpful to compare
with prior simulations of the density of modes [3,20,25,26].
We begin our comparison to simulations by converting the
simulation units used in Ref. [3] into our experimental units;
in these simulations, one unit of frequency defined is 1

2π

√
V0

ma2

where a is the particle diameter, m is the particle mass, and
V0 comes from the particle interaction potential, which for
spheres gives a force law F = V0

a5/2 δ
3/2, where δ is the par-

ticle overlap. This simulation force law can be equated to
the Hertzian contact force law [47] F =

√
a

3(1−ν2 ) Eδ3/2. We can
now write the simulation unit of frequency in terms of our
particle properties as

√
aE

12π2m(1−ν2 ) , which for the 6 mm grains
is equal to 28 kHz.

Figure 6 shows the density of modes disappearing into
the noise around 10 kHz or 0.36 in simulation units, which
is a much lower frequency than the more typical simulation
roll-off frequency of about 2.5 seen in Ref. [3]. One might at
first suspect that our experiment is simply not exciting modes
above 10 kHz; however, Fig. 4 shows that we are in fact excit-
ing vibrational modes above 10 kHz. Instead, the system does
not ring as well at these modes and/or these high-frequency
modes are more strongly dissipated than their low-frequency
counterparts. Frequency-dependent dissipation would be con-
sistent with the viscoelastic nature of ABS plastic [48,49]
and could represent a deviation from the simulated systems

that typically model the grains as elastic. Additionally, the
viscoelastic damping of the high frequencies may also account
for the more gradual falling off of the high-frequency side of
the density of modes compared to a very steep drop off seen
in simulations. While our short impact time combined with a
viscoelastic system may limit the highest frequencies acces-
sible for study, much of the information related to jamming
occurs in the lower-frequency parts of the density of states
where we have good resolution down to approximately 0.0036
in simulation units.

The primary peak, shown in Figs. 7(a) and 7(b) increases
with increasing pressure. To investigate this further, these
frequencies should be correlated to a length scale via the speed
of sound. However, this is not a straightforward endeavour
as the speed of sound does not have a consistent value as
shown in Fig. 5. If the average value of the speed of sound
is used, then the primary peak at the lowest pressure has a
wavelength of 60 cm, which is very close to twice the system
size and may correspond to a standing wave across the system.
An interesting method to validate this hypothesis would be to
create a system that had different dimensions for the length,
width, and height of the box and see if multiple peaks in the
density of modes emerge. Additionally, the viscoelastic nature
of the ABS plastic may also serve to accentuate the primary
peak, since without the frequency-dependent damping, the
density of states may look more flattened at higher frequencies

(a) (b) (c)

FIG. 7. (a) The DOM for the bidisperse packing zoomed in on the frequencies between 10 Hz and 1 kHz. The location of the primary
peaks are labeled with a plus sign and the secondary peak with a star symbol. (b) The � f of the primary peak as a function of pressure. (c) The
� f of the secondary peak as a function of pressure.
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FIG. 8. The density of modes for the lowest system pressure for
all three grain types.

instead of the gradual roll off discussed above. Nonetheless,
this primary peak must represent a dominant mode within the
system even if its prominence is raised due to viscoelasticity
as compared to simulations.

The secondary peak in Fig. 7(c) is also seen to increase
with system pressure. Using the average sound speed, the
wavelength of the secondary peak in the lowest-pressure sys-
tem is 200 cm, which is longer than the system size. However,
these modes may not actually correspond to wavelengths
longer than twice the system size as the speed of sound varies
considerably. The slowest speed of sound that we measured
in Fig. 5 is 56 m/s, and if this sound speed is used, the
wavelength would be 58 cm, which is again close to twice the
system size. Within a given packing the sound speed is going
to vary depending on the strength of the force chain on which
the sound propagates [42]. Given that force distribution in a
granular material is dominated by a majority of low-force par-
ticles [50], it is possible that this secondary peak corresponds
to these low-speed modes.

The observation of these peaks in the density of modes is
a departure from what is seen in simulations. However, the
fact that these peaks do change with system pressure gives us
confidence that they are real features of the granular material
and not spurious electrical noise or artifacts. This can be
compared to another peak of note in the density of modes seen

at 60 Hz. This peak is slightly flattened due to the median
filter and the logarithmic scaling of the figure but is well
centered at 60 Hz regardless of system pressure. This peak
is almost certainly an electrical artifact of the 60 Hz mains in
the building’s electrical wiring.

V. CONCLUSION

This work makes two meaningful contributions to the field
of granular physics. The first and main contribution is the
suggestion and experimental exploration of a technique for ex-
citing the vibrational modes of a granular material via impact
in order to measure the granular density of modes. The second
contribution of this work is to measure the density of modes
in an as yet unmeasured, experimental, three-dimensional
granular system, ABS plastic spheres; thereby providing an
additional experimental data point on the nature of the granu-
lar density of modes in real materials.

Our measurements of the density of modes displays an ex-
cess of low-frequency modes at low pressure consistent with
previous work. We also identify several interesting peaks that
shift with pressure. Future work might vary the dimensions
of the granular system in order to see if these peaks shift or
split into multiple peaks as the symmetry of the system size is
broken. Additionally, we see the density of modes rolls off on
the high frequency side at a slower rate and lower frequency
than what is seen in simulation. This deviation from simu-
lation is likely due to the viscoelastic nature of the particles
and represents an additional complexity of real materials that
is not currently captured in the simulations. In conclusion, our
approach of exciting the grains with a simple impact increases
experimental accessibility and will allow for measurements of
the granular density of modes to become more commonplace.
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