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Point and line defects in checkerboard patterned hybrid nematic films:
A computer simulation investigation

Mariana Casaroto ,1 Cesare Chiccoli,2 Luiz Roberto Evangelista,1,3 Paolo Pasini,2 Rodolfo Teixeira de Souza ,1,3,*

Claudio Zannoni ,4 and Rafael Soares Zola 1,3

1Departamento de Física, Universidade Estadual de Maringá, Avenida Colombo, 5790-87020-900 Maringá, Paraná, Brazil
2INFN, Sezione di Bologna, Via Irnerio 46, 40126 Bologna, Italy

3Departamento Acadêmico de Física, Universidade Tecnológica Federal do Paraná, Campus Apucarana, Rua Marcílio Dias,
635 CEP 86812-460–Apucarana, Paraná, Brazil

4Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4,
I-40136 Bologna, Italy

(Received 18 October 2023; accepted 20 June 2024; published 19 July 2024)

We consider a nematic liquid crystal film confined to a flat cell with homeotropic and planar patterned hybrid
anchoring and show, using Monte Carlo simulations, the possibility of the system to stabilize line and point
defects. The planar anchoring surface is patterned with a chessboardlike grid of squares with alternating random
or parallel homogeneous planar anchoring. The simulations show only line defects when the individual domains
are small enough, but also point defects when the domain size is significantly larger than the sample thickness. In
the latter case, defect lines are not observed in domains with random surface anchoring, although lines and points
are connected by a thick line which separates two regions with different director tilts. Increasing the anchoring
strength, the defect lines appear a few layers above the surface, with the two ends just above the randomly
oriented domains.
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I. INTRODUCTION

Liquid crystals (LCs) [1–3] are anisotropic fluids well-
known in everyday life for flat panel displays [4,5], with
applications continuing to expand in different fields from
organic electronics [6,7], biosensors, and bioengineering
[8–11] to stimuli controlled actuators [12–14] and many more
[15,16], even if the relation between molecular structure and
properties is still far from being fully understood. Some of
these technologies also depend not only on the existence of
orientational molecular order with respect to a local preferred
direction (director) but also on singularities of the director
field (defects) that show up in the optical textures of LC thin
films observed between crossed polarizers [1,17]. In nematic
liquid crystals (NLCs), defects are observed after a phase tran-
sition when cooling from the isotropic phase, as the sample
relaxes trying to reduce its free energy and, correspondingly,
defects tend to spontaneously annihilate [18]. However, de-
fects can be stabilized, e.g., in thin films or capillaries, by
employing suitable boundary conditions. The possibility of
directly observing topological defects [19–21] in controlled
experimental conditions [22] is of great general interest as
their universal features allow employing LCs as a laboratory
for observations of relevance in fields as diverse as superflu-
idity or cosmology [18,23,24].

As the name would seem to suggest, defects are normally
undesirable for the operation of electro-optical devices and

*Contact author: rodolfosouza@utfpr.edu.br

displays based on nematic liquid-crystalline materials, where
they can decrease the image quality, even if they can also
increase the response in displays based on cholesteric blue
phases, where the defects lines are well organized [25,26].

In any case, it is important to note that topological defects
can add or modify some properties and functions of ordered
soft materials. This is particularly relevant for liquid crystals
due to their susceptivity to external stimuli [2,3], and in view
of the fact that certain defects can be created and stabilized by
a combination of surface geometry and boundary conditions
[25,27], as in the case of nematics confined to spherical or
cylindrical containers [1] or to thin films [28]. The rapidly
developing field of defect engineering aims to control and, in
special cases, create or eliminate defects providing templates
for the fabrication of complex material organizations [25,
29–33]. The development of experimental techniques based
on surface chemical treatments [34] or, perhaps more conve-
niently, on light exposure of photo-sensitive aligning materials
[35], opened the possibility of producing samples with a
variety of patterned surface for applications in areas such
as electro-optic devices or stimuli responsive actuators [36],
among others [35]. Surface patterns can be inscribed on the
surface plates to promote anchoring in diverse ways [37–39]
and, for instance, induce defects [27] or bistability [40,41].
Recently, techniques to create patterns on surfaces to induce
arbitrary anchoring have been used to stabilize complex net-
works of disclination lines [32,42,43].

Predicting or even understanding the intricacies of defect
formation for complex geometries and anchoring conditions
is of obvious importance but can be particularly challenging
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for analytic-type theories, and thus computer simulations can
be particularly handy as an alternative or complementary ap-
proach to continuum-type modeling [44]. In fact, Monte Carlo
(MC) simulations of lattices of interacting headless spins [3]
have long been successfully used to simulate complex struc-
tures [45], topological lines, and point defects [20,46–50].
In the case of a thin film with hybrid boundary alignment
(homeotropic anchoring on one surface and strong and planar
degenerate on the other), such boundaries were shown to be
crucial for producing and maintaining the experimentally ob-
served defects [51]. Extensive work has been done on defect
simulation of hybrid films using lattice models, showing good
agreement with continuum modeling and experiments where
these are available [52–56]. The point defects were found
to be located on the random surface, with the spins lying
perpendicular to the surfaces in their core region. This model
was extended to nematic with elastic anisotropy [53], where
it was observed that half-integer point defects can emerge by
setting suitable elastic constants, and also with biaxial nemat-
ics [28,56]. On the other hand, defect lines are supposed to
appear in hybrid films with the planar surface offering uniform
alignment [28]. Recently, the effects of the elastic constants in
such defect lines were studied in depth [55], while a few years
ago experiments and computer simulations were successfully
performed with the aim of studying the transition between
points to lines defects by increasing the disorder of the planar
anchoring surface [54].

Here, our main aim is to observe both types of defects
together in the same sample and investigate how they interact
with each other. This task is performed by computationally
building a sample with the planar alignment patterned as a
chessboard with the alternating square domains endowed with
uniform and random anchoring, respectively. We analyze the
structures with textures and isosurface visualizations which
permit us to examine how the defects are connected. The ef-
fects of size domains and anchoring strength are investigated.

The paper is organized as follows. In the next section,
we describe the sample, the simulation method, and the vi-
sualization techniques. In Sec. III, the results are reported
and discussed and some concluding remarks are presented in
Sec. IV.

II. THE SIMULATION MODEL

A set of N + NS headless spins are placed at the sites
of a cubic lattice of dimensions L × L × (h + 2), mimicking
a square film, with thickness h, confined between two flat
boundary layers, in which N represents the number of spins
in the volume and Ns represents the number of spins on the
surface. Referring to the laboratory frame of reference, the
boundary plates are positioned at z = 0 and z = h + 1 with
normal parallel to ẑ. The orientation of the L × L spins on
the bottom surface, Sbot (at z = 0) and on the top one, Stop

(at z = h + 1), are set to impose the anchoring conditions and
are kept fixed throughout the simulation. The N spins placed
on each of the inside bulk layers, B, are free to rotate in any
direction. By considering the orientation of the ith spin as

ui = uixx + uiyy + uizz, (1)

we set the spins on Stop with uiz = 1 and uix = uiy = 0, cor-
responding to a perfect homeotropic alignment. The bottom
surface, Sbot on the other hand, corresponds to a patterned
planar alignment with squares of random and aligned do-
mains. The planar random domain is built by setting uiz = 0,
and uix and uiy random numbers ranging from −1 to 1, with
u2

ix + u2
iy = 1, while the planar aligned domains are built by

setting uix = 1 and uiy = uiz = 0. The pattern can then be
viewed as a chessboardlike grid with arbitrary n × n domains,
with n > 2 and even, where the simulated patterned surface
offers both kinds of alignment side by side: planar degener-
ated and uniform.

The Hamiltonian of this system is given by

H = 1

2

∑

i, j∈B
i �= j

�i j + Jbot

∑

i∈B
j∈Sbot

�i j + Jtop

∑

i∈B
j∈Stop

�i j, (2)

where the parameters Jbot and Jtop model the anchoring
strength at the bottom and top surfaces. The attractive
pair potential �i j is the Gruhn-Hess-Romano-Luckhurst one
[53,54,57–59],

�i j = εi j{λ[P2(ui · si j ) + P2(u j · si j )]

+ μ[(ui · si j )(u j · si j )(ui · u j ) − 1/9]

+ νP2(ui · u j ) + ρ[P2(ui · si j ) + P2(u j · si j )]P2(ui · u j )},
(3)

with the strength of the pair interaction εi j = ε if i and j
are nearest neighbors, and 0 otherwise, and si j = r/|r|, r =
ri − rj, with ri, rj the position vectors of the ith and jth lattice
points. Simulations are performed at a reduced temperature
TR, TR = kBT/ε, with kB the Boltzmann constant and T the
absolute temperature. The potential parameters are a combi-
nation of the splay, twist, and bend Frank elastic constants,
K1, K2, K3, respectively, and are written as [53,54,57,58]

λ = 1
3�(2K1 − 3K2 + K3), (4a)

μ = 3�(K2 − K1), (4b)

ν = 1
3�(K1 − 3K2 − K3), (4c)

ρ = 1
3�(K1 − K3), (4d)

where � is a length related to the dimension of the unit cell
[59]. Finally, P2 is the well-known second rank Legendre
polynomial. Such potential has proved particularly useful in
describing elastic properties of nematics in a variety of sit-
uations [3]. If all the elastic constants are set to be equal,
then Eq. (2) reduces to the Lebwhol-Lasher pair potential
[60], which has been successfully employed to describe the
nematic-isotropic phase transition (occurring at TR ≈ 1.1232
in the bulk [61,62]) and to investigate the orientational order
in nematic liquid crystals [59].

The spins of the bulk have their starting alignment parallel
to the z direction. Such an initial condition (IC) mimics a
configuration in which the material is completely oriented by
a strong external electrical or magnetic field. Alternatively,
random initial conditions, mimicking a fast quenching from
an isotropic phase, can also reproduce some of the results
presented here. The cell is updated with the classic Monte
Carlo (MC) Metropolis algorithm [63] with the orientations of
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FIG. 1. (a)–(e) MC evolution from 10 000, 20 000, 30 000, 40 000, and 50 000 MCCs of the POM texture for a cell with alternating
domains of size 10 × 10 (n = 24). In (f), we plot the order parameter isosurface for a threshold of S = 0.76 at 50 000 MCCs superimposed
to the patterned surface and with the snapshot of the first layer above the support surface. Each spin is colored according to its uix component
(plotting the −ui if uz < 0, when necessary) from blue (uix = −1) to red (uix = +1), so the x-aligned square domains in ( f ) appear red,
while the random domains present spins of this whole range of color. In (h), we show in detail the marked region in (g) to exhibit the spins
configurations of the defects, highlighting in green the defect regions, where the spins are vertically oriented, and the defectless regions, where
the spins vary continuously from the region with positive to negative x component.

FIG. 2. Images of the 2 × 2 grid sample with Jbot = Jtop = 0.5, with the optical textures at (a) 10 000, (b) 20 000, (c) 30 000, (d) 40 000,
and (e) 50 000 MCCs. (f), (g) Isosurfaces and snapshots of bottom boundary conditions and the first layer of free spins, respectively, for the
sample with 20 000 MCCs. The region with a pair of ±1 defects, marked in (g) is expanded in (h). The color code is the same as that used in
the previous figure.
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FIG. 3. In each column, set of textures, snapshots, and isosurfaces for n = 4(a), 6 (b), 8(c), 10 (d), and 12 (e) for Jbot = Jtop = 0.5. (f), (g)
Close-up of the region delimited by the rectangles in (b) and (e), respectively.

each spin generated with the Barker-Watts technique [64]. A
Monte Carlo cycle is defined as a set of N of these individual
attempted updates, with N the number of spins inside the
cell, as defined above. The configurations of the spins after
a certain number of MC cycles (MCCs) can be investigated
by using some different techniques. One of them is simply
through snapshots, i.e., direct views of the spins. These can
directly supply information about how each spin and its sur-
roundings are organized, but snapshot of 3D arrangements are
difficult to use to identify any structure due to the high number
of particles in an image. Then, with the aim of studying
topological defects, it is useful to complement a snapshot of
spin layers with an isosurface of some suitable parameter able
to locate such defects. In our paper, we use the local order
parameter Si to identify them. Si is evaluated as the largest
eigenvalue of the 3 × 3 ordering matrix [3] with elements

Qi
jk = 〈

1
2 (3ui juik − δ j,k )

〉
, (5)

with ui j and uik being the jth and kth components of the
ith spin, and the average is evaluated over the set of nearest
neighbors, as well as on Monte Carlo cycles. In addition to
these techniques, an excellent way to analyze the microscopic

organizations is by simulating polarized optical microscopy
(POM) experiments that show the optical textures between
crossed polarizers. We built them by using the Müller matrix
procedure, which is described in detail, e.g., in Ref. [3]. Here,
we employ the set of optical parameters: light wavelength of
λ = 545 nm, LC material ordinary and extraordinary refrac-
tive indices no = 1.5 and ne = 1.66, respectively, and virtual
layer separation length of h = 0.53 µm.

III. SIMULATIONS AND RESULTS

We have run simulations for a box of L × L × (h + 2)
spins at a fixed temperature TR = 0.1 well inside the ordered
phase. As for the set of elastic constants, we choose to use
values of a typical liquid crystals as 5CB with the splay,
twist, and bend constants K1 = 7.0 pN, K2 = 4.4 pN, and
K3 = 9.7 pN [65]. The bottom surface was divided into n × n
domains, with n an even number, so as to comply with peri-
odic boundary conditions. We have kept the box size fixed to
240 × 240 × (10 + 2) and used n = 2, 4, 6, 8, 10, 12, and
24, corresponding to individual domain sizes 	 × 	, with 	 =
120, 60, 40, 30, 20, 12, and 10.
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FIG. 4. MC evolution for samples with Jbot = Jtop = 0.5 and n = 2 (a), 4 (b), and 12 (c), showing how defect lines relax after 10 000,
20 000, 30 000, 40 000, and 50 000 MCCs and, eventually, vanish.

We start by presenting our results for the smallest indi-
vidual square cell (10 × 10, with n = 24) and an anchoring
strength of Jbot = Jtop = 0.5. The simulated POM textures and
some snapshots are shown in Fig. 1.

In Figs. 1(a)–1(e), we can visualize the evolution of the
textures during the first 50 000 MCCs. Isosurfaces were built
and, in Fig. 1(f), they were superimposed to the patterned
plate, while in Fig. 1(g), they were drawn over the snapshot of
the first layer, where they are, in fact, placed. The isosurfaces
shown here and in the other figures correspond to a thresh-
old of S = 0.76. We can see from these figures only defect
lines, which indicates that only defects with ±1/2 topolog-
ical charge are formed. Due to the initial vertical alignment
boundary condition, the spins in the bulk have, initially at
least, large z and small x and y components. This alignment
is favored close to the top surface due to the homeotropic
anchoring condition. When the alignment predominant at the
bottom surface is parallel to the x direction, the spins close to
this surface tend to align to this direction. However, the free
energy presents a degeneracy on the directions x and −x, then
the spins tend with equal probability to one of these directions.
From the IC, and influenced by the homeotropic surface, the
spins in bulk can acquire a component in the x direction, ux,
lying to +x or −x, according to their neighborhood. Eventu-
ally, a spin can acquire a negative z component, and we can
plot its direction flipped, which is more common with random
(IC). Since the energy of interaction of a spin parallel to z
with a spin with components u = ±uxx + √

1 − u2
xz depends

on an even function of ux, both signs represent equal energy
states. Hence, some regions of the sample will be dominated
by an alignment with component x positive, and others with
x negative. At the boundaries of the two regions, ux → 0 and
a defect line emerges, corresponding to spins with a uz → 1
component. Then, such degenerescence of both states is the
main aspect for the line defect formation in hybrid cells as
treated here [56]. The color palette employed here allows us to
distinguish a +x (red) from a −x (blue) component of the spin.
In Fig. 1(f), the red squares correspond to the homogeneously
aligned domains. It is interesting to note that, despite some
discontinuity, the defect lines are present above regions with
both kinds of anchoring. Since the random domains are fairly
small, the overlayer presents an alignment along x sufficient
to promote the formation and stabilization of the defect line,
which is present in the whole sample. In some discontinu-
ities, as the one emphasized on the zoomed in area shown in
Fig. 1(h), the spins seem to lie on a plane xy, different from
what happens on the defect, characterized by a line of spins
with a high z component.

On the other hand, in the case of the largest (120 × 120)
domains studied here (which corresponds to n = 2), shown in
the set of images in Fig. 2, it is possible to notice both point
and line defects.

Hence, random and aligned domains can be easily identi-
fied in Fig. 2(f). In this case, we can see that the defect lines
are not connected to each other, as can be seen in the isosur-
face map. However, by performing an analysis of the regions
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FIG. 5. Evolution of the sample with Jbot = 0.7 and Jtop = 0.5 and n = 24 from 10 000 MCCs (a) to 50 000 MCCs (e) in steps of
10 000 MCCs. (f) Snapshot of the fifth layer of free spins above the patterned surface. The regions marked by dotted lines in (f) showing
the defect positions shown in (g) and (h). (i) 3D view of the order isosurface for the small region marked in the top left of (f), showing how
some defects leave the surface plane while others still lie on it.

of +x and −x orientations on the first layer, as suggested by
the textures shown in Fig. 2(g) and by the zoomed-in region
in Fig. 2(h), it seems that all the defects, lines, and points are,
somehow, linked by the regions with ±x spins components.
This can be seen, for instance, from the region between the
defect line and the pair of point defects on the bottom right
side of this image.

By analyzing the effect of domain size on the formation
and topological charges of defects, it is expected that point
defects should not be observed in small domains. In fact, our
simulations indicate that this kind of defect can be observed
only for grids with cells larger than 40 × 40 spins (n = 6). For
n = 8 (30 × 30 size), the sample presents only line defects.
This feature can be observed in Fig. 3, where we show the
textures, snapshots, and isosurfaces for n = 4, 6, 8, 10, and
12. The line defects for these analyzed values of n are located
exclusively on the portion of an aligned domain, and normally
both ends are placed in random domains. The case of n = 12,
i.e., of grid cells 20 × 20 presented in Fig. 3(e), sometimes
tends to show a small region of line defects on a random
alignment domain, but in the relaxation process the lines tend
to avoid the regions above such random domains.

On the process of defect annihilation and its speed, we note
that for the present system, point defects tend to disappear
before lines, at least on the larger domains. Point defects
annihilate in pairs, as seen in the bottom right portion of the
textures in Figs. 2(a)–2(c) and their snapshots in Fig. 4(a),
or the defects moves towards the region where the bottom

surface offers a uniform alignment anchoring, as seen in the
defect placed in the top left portion of that sample. Here,
it is possible to see in the texture, in the center of Fig. 2(a),
what seems a point defect, with the four brushes typical of the
Schlieren texture. However, by looking at the snapshot with
the help of a map of isosurfaces, it becomes clear that it is
instead a small line defect, as shown in Fig. 2(f). Line defects,
in turn, tend to close themselves to annihilate, and some lines
persist for very long runs, as can be seen in the left bottom and
top right portion of textures [Figs. 2(a)–2(c) and 4(a)]. This is
the case also observed in the cell with the smallest grid size.
The line defects persist after a high number of Monte Carlo
cycles, as shown in Fig. 4(c).

In Fig. 4(b), we show the relaxation process of the n = 4
sample. Here we highlight another interesting feature: the
boundary between regions of spins with +x and −x compo-
nents appears to be smoothed in some points, allowing the
defect line to vanish by dismantling, at both ends, the line of
high z component spins in its core. This is emphasized by the
black squares on the images. In our simulations, we observe
this behavior with the intermediate values of lattice size n
studied, showing some influence of the random alignment on
the line defect annihilation. Such an aspect is not observed for
the largest grid size, where the influence is negligible and they
are almost independent, and for the smallest, where this influ-
ence does not seem to be strong enough. On the other hand,
it is interesting to note that the pair of point defects located
in the top right region of Fig. 4(b), which are on neighboring
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FIG. 6. The effects of size domain on defect line position for n = 4 (a), 6 (b), 8 (c), 10 (d), and 12 (e), with Jbot = 0.7 and Jtop = 0.5.
Defects completely placed on the surface as, for instance, those marked in last line, are observed in (d) and (e), although in all values, the small
line in the domain corner are also placed in surface. Defects placed above the surface, in the bulk, are observed in all values of n.

random domains, as can also be seen in the bottom image of
Fig. 3, still persists even after 50 000 MCCs.

Let us now focus our attention on the effect of anchoring
strength at the two surfaces. It is clear that increasing the
anchoring intensity at the top surface will increase even more
the z component of the spins close to it, i.e., homeotropic
alignment, and we expect no relevant changes on the results
already reported. The situation is rather different, however,
when changing the anchoring strength at the bottom sur-
face and the effects are visible from the textures and in the
snapshots shown in Figs. 5 and 6. By carefully looking at
the textures, it is possible to note some dark lines among
brighter lines. An example of these lines can be seen in the
top left corner of Fig. 5(a) and its time evolution up to that at
50 000 MCCs shown in Fig. 5(e). Note that the brighter lines
are connected by dark ones. It is easier to see in Fig. 5(f),
which corresponds to the snapshot of Fig. 5(e), that in these
regions there are defect lines. Both lines, dark and bright,
present a special difference. They are lines of ±1/2 defects
but placed in different regions. While for the brighter lines, as
in the cases reported until now, the lines lie in the first layer
above the surface, as shown in Fig. 5(g), in the darker lines
the defect is found around four layers above the surface, i.e.,
in the bulk, as can be seen in Fig. 5(h). When the anchoring is
stronger, the spins close to the bottom surface tend to sustain
their planar alignment in a small region of the bulk closest
to the surface, even influencing the spins above of random
domains. In Fig. 5(i), we show a 3D view of the isosurfaces on

the alignment domains in the bottom surface. In this image, it
is possible to see that when the line escapes towards the bulk,
the end lines appear to be placed on random domains.

Turning now to examine how the grid cell size can affect
the defects, we show in Fig. 6 the texture and snapshots with
isosurfaces for n = 4, 6, 8, 10, and 12. Point defects are still
observed only up to n = 6 (lateral size 	 = 40 lattice points).
Defect lines can be observed closer to surfaces for higher
values of n, as highlighted in Figs. 6(d) and 6(e), although
some small lines located on the corner of the domains also lie
on the surface and can be viewed for the entire range on n. The
defect lines for lower values of n are characterized by being
placed above the surface, mainly on the fourth layer above
surface, with both of their ends placed exactly on the random
alignment domain.

IV. DISCUSSION AND CONCLUDING REMARKS

We considered a nematic liquid crystal film confined to a
flat cell with homeotropic and planar-patterned hybrid anchor-
ing, similar to a chessboard pattern, with alternating square
domains featuring uniform and random anchoring, respec-
tively. By employing Monte Carlo simulations, we have been
able to demonstrate the system’s capability to stabilize line
and point defects. We have observed that the interplay be-
tween domain size, anchoring conditions, and system size
plays a crucial role in determining the types of defects that
emerge. For smaller domain sizes (up to 40 × 40 spins),
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point defects with ±1/2 topological charge can be observed
alongside line defects, while for larger domains, we only
observe line defects at the domain corners. Point defects tend
to annihilate in pairs or move towards regions with uniform
alignment anchoring. Line defects, on the other hand, tend
to persist for longer simulation times and can even close
themselves to annihilation. Anchoring strength at the bottom
surface has a significant influence on defect behavior. Stronger
anchoring leads to the formation of defect lines deeper in the
bulk of the system rather than just at the surface. These deeper
defects are characterized by being located several layers above
the surface and can be connected to surface-aligned domains.

In conclusion, our extensive simulations of liquid crystal
systems within different domain sizes and anchoring strengths
have provided valuable insights into the formation and behav-
ior of topological defects. In particular, our findings give us a
clear picture of how defects form and behave in liquid crystal

systems, helping us understand how different factors influ-
ence defect behavior. These findings should be valuable for
designing and manipulating liquid crystal systems for various
applications from displays to advanced materials.
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