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Orientational ordering and correlation in quasi-one-dimensional hard-body fluids
due to close-packing degeneracy
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We study the orientational ordering properties of some quasi-one-dimensional hard-body fluids, where the
anisotropic particles are confined to a straight line, while they are free to rotate in a plane. We examine a class
of models where the close-packing structure is degenerate, i.e., the highest possible density can be realized
with different orientational ordering. We find that the close-packing degeneracy always gives rise to a diverging
orientational correlation, which can be a marker of phase transition, glass formation, and jamming. In the case of
isotropic or partially ordered phases at the close-packing density, the diverging orientational correlation indicates
a tendency for being a strongly ordered nematic phase. However, the orientational divergence in the perfect
nematic phase shows that the particles must rotate in concert to go from one closely packed structure to another.
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I. INTRODUCTION

Quasi-one-dimensional (q1D) systems, with their unique
interplay between the confinement and particle interactions,
have attracted interest in many fields of science [1–8]. A
common feature of q1D fluids is that the positional and ori-
entational freedom of the particles is limited to some extent
by confining the particles into a very narrow channel [9–15].
These q1D systems exhibit fascinating and often unexpected
behaviors, offering a rich playground for studying fundamen-
tal phenomena in physics and beyond [16–25]. The research
interest ranges from enhancing the alignment of rodlike par-
ticles such as gold nanowires and carbon nanotubes with
distinctive electrical properties [26–29] to the thermodynamic
properties of classical fluids in very narrow pores [30–33].
By exploring the ordering behavior, phase transitions, and
collective properties of q1D systems, we can deepen our
knowledge to design new nanomaterials with desired phys-
ical and chemical properties. By varying the particle shape,
particle-particle, and particle-wall interactions, as well as the
size of the confining channel, complex structures and phase
behaviors can be observed [34–39].

The dimensional restriction can reduce the number of
phases and the complexity of the structures, but the phase
behavior remains complex. For example, the melting of hard
discs in a two-dimensional plane is more complex than that of
hard spheres in three dimensions [40]. In one dimension, true
phase transitions do not occur in most of the systems [41–45],
but they can exhibit anomalous phase behavior [7,46], glass
formation [47], and jamming [48]. The advantage of studying
q1D systems is that exact results can be obtained in many
cases [13,32–34,49,50].

The understanding of the phase behavior of q1D fluids
has been the subject of extensive research, leading to several
interesting phenomena [51–55]. A remarkable study shows an
exceptional example of an infinite number of phase transitions

occuring in q1D fluid of soft rods [56]. A first-order phase
transition is detected in the system of correlated molecular
rotators, which are staying in a q1D array [57]. Notably,
the dynamics of a q1D fluid composed of orientable hard
rectangles exhibits distinct properties associated with the
glass-transition phenomenon, including annealing rate depen-
dence and a characteristic two-step relaxation process [58].
Collectively, these studies provide valuable insights into the
complex behavior and the potential for glass formation in q1D
systems [59].

In a separate line of inquiry, extensive research has been
conducted on the thermodynamic properties of q1D fluids of
elongated hard particles [3,4,25,60]. These investigations have
uncovered the existence of distinct universality classes based
on the geometric attributes of the particles, highlighting the
pivotal role of particle morphology in determining orienta-
tional fluctuations and correlations. Furthermore, a specific
subset of one-dimensional systems, namely a gas composed of
needlelike objects, has been thoroughly explored [13,35,61].
These studies significantly contribute to our understanding
of the interplay between particle morphology, thermody-
namic properties, and orientational behavior in q1D systems
[62–66].

The phase behavior of freely rotating hard rods exhibits
remarkable similarities to the one-dimensional gas of hard
rods studied by Tonks in the limit of close packing [67]. At
close packing, the particles lose their ability to rotate, leading
us to believe that they become frozen in orientation. However,
it was later discovered that even at close packing, orientation
fluctuations still contribute to the pressure [34]. Furthermore,
Kantor and Kardar found that q1D fluids of hard rods pos-
sess other important properties, such as the divergence of the
orientational correlation length to infinity at the close-packing
density (infinite pressure), specifically observed in systems of
hard rectangles but not in systems of ellipses [60]. This sug-
gests that the shape of the constituent particles plays a crucial
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FIG. 1. Quasi-one-dimensional fluid of linear hard chains (upper panel) and that of hard needles (lower panel), which are confined to a
straight line, but allowed to rotate freely in a plane. At the close packing the particles must be parallel with each other in both systems. The
close packing can be realized with the following angles (ϕ):−π/6 < ϕ < π/6 for linear chains and −π/2 < ϕ < π/2 for needles.

role in the divergence of the correlation length. Nonetheless,
the driving force behind these long-range orientation corre-
lations remains unclear. Therefore, in this study, we aim to
investigate the main factor responsible for these long-range
orientation correlations by focusing on systems with degener-
ate close packing.

Our paper is laid out as follows. In Sec. II, we present the
distance of closest approach between a pair of particles for
three anisotropic hard-body models having degenerate close-
packing structures. We show that the system of hard needles
and that of linear hard chains, has degenerate close packing if
the centers of the particles are confined to a straight line. In
Sec. III, we utilize the transfer operator method to investigate
the phase behavior and structural properties of three different
hard-body systems. In Sec. IV, we present and analyze the
results for densities near the close-packing density, which are
obtained using both analytical and numerical techniques. Spe-
cial attention is paid to understand the emergence of diverging
orientational correlation length at the close-packing density.
Finally, in Sec. V, we present the conclusions of our study
and discuss our results in a broader conceptual framework,
comparing our results with previous studies.

II. MODELS

We assume that the particles interact with only anisotropic
hard repulsive forces and they are restricted in a narrow
channel such that the particles form a q1D fluid with only

one positional (x) and one orientational (ϕ) degree of free-
dom as shown in Fig. 1. We consider such models where
the number of close-packing (highest possible density state)
configurations is infinite, i.e., the close-packing structure is
continuously degenerate in the orientation as it happens in
the q1D fluid of linear chains and that of needles in Fig. 1.
As the particles must occupy the shortest distance along the
channel to get into the close-packing structure, the rodlike
particles are parallel, i.e., all particles must have the same
orientation at the close packing. This can be achieved with
ϕ angles between −π/6 and π/6 for linear chains and with
ϕ angles between −π/2 and π /2 for needles (see Fig. 1)
if ϕ is restricted to the interval of −π/2 < ϕ < π/2. Note
that the up-down symmetry of the rodlike particles does not
require to consider other angles in this study. As the particles
interact with their first neighbors only, the distance of closest
approach between a pair of particles (contact distance for
brevity) reflects the close-packing structure of the system. For
example, the contact distance of hard needles is given by [61]

σ (φ1, φ2) = l|sin (φ1 − φ2)|
2 max (cos φ1, cos φ2)

, (1)

where ϕi is the orientation angle of particle i (i = 1, 2)
measured from the y axis and l is the length of the needle.
This expression shows that the shortest distance between two
particles is zero (σ = 0) if the particles are parallel, i.e.,
ϕ1 = ϕ2. Therefore, the close-packing structure of the hard
needles is degenerate with respect to the orientation. At this
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point it is worth noting that close packing of the fluid of hard
ellipses and that of hard rectangles is not degenerate, because
all particles have to be aligned with ϕ = 0 angles to form
close-packing structure. The linear chains can be considered
between the needles and the rectangles because −π/6 < ϕ <

π/6 is the range of ϕ degeneracy at the close-packing limit
(see Fig. 1).

To understand the role of angle degeneracy of the close-
packing structure on the phase behavior and structural
properties of q1D fluids, we examine three simple models
that have different tendency for orientational ordering. In the
first model (M1), the contact distance between two particles is
defined by

σ (φ1, φ2) = a(1 + [min (|φ1 − φ2|, π − |φ1 − φ2|)]α ), (2)

where “a” is the contact distance between two parallel parti-
cles and α is an empirical exponent describing dependence of
the contact distance with the change of the angle difference
between two particles ((|φ1 − φ2|)).The effect of α is that the
cost of orientational fluctuations from the parallel ordering
(the increment of σ ) is lower with increasing α. In the second
model (M2), we assume that

σ (φ1, φ2) = a(1 + |φ1 − φ2|α ). (3)

In this model φ1 = φ2 produces the shortest distance be-
tween two neighboring particles as in M1, but it gives rise to
some angle preferences, because the cost of angle fluctuations
is lower at angle φ = 0 than at φ = ±π/2, which will be
pointed out in the Results, Sec. IV. The third model (M3) is
very similar to the hard needles [Eq. (1)] with a slight change
that a = l/2 and a is added to Eq. (1), i.e.,

σ (φ1, φ2) = a (1 + sin |φ1 − φ2|/ max (cos φ1, cos φ2)) (4)

We can see that Eq. (4) is more realistic than Eq. (1)
because it gives σ = a for φ1 = φ2 orientations instead of
σ = 0, which implies that the system does not become an
ideal gas for parallel orientations.

III. TRANSFER OPERATOR METHOD

The phase behavior of a q1D hard-body system with a
general contact distance σ (φ1, φ2) can be determined ex-
actly using the well-known transfer operator method [68].
For one-component systems having purely hard-body interac-
tions, the only independent control parameter is βP, where
β = 1/(kBT ) is the inverse temperature and P is the one-
dimensional pressure. The relevant outputs of the transfer
operator formalism are the Gibbs free energy (G), the ori-
entational distribution function ( f ), the orientational order
parameter (S), and the orientational correlation function (g2)
in this work. To get these quantities, the following eigenvalue
problem has to be solved for λi eigenvalue and corresponding
ψi eigenfunction:∫ π/2

−π/2
Ki(φ1, φ2) ψi(φ2) dφ2 = λiψi(φ1). (5)

Here, K0(φ1, φ2) = exp(−βPσ (φ1, φ2))/βP is the basic
kernel for thermodynamic properties, while the higher-order
Ki(φ1, φ2) kernels (i = 1, 2, …,etc.) can be obtained by pro-
jecting out the lower-order eigenvalues with Ki(φ1, φ2) =

Ki(φ1, φ2) − λi−1ψi−1(φ1) ψi−1(φ2), where the |λi| � |λi+1|
condition has to be fulfilled. In Eq. (5) it is assumed that the
eigenfunctions are normalized as follows:

∫ π/2
−π/2 ψ2

i (φ) dφ =
1. Under the above circumstances, we get the Gibbs free-
energy density (g = βG/N ), the one-dimensional number
density (ρ = N/L), f and S using the largest eigenvalue
(λ0), and the corresponding eigenfunction (ψ0) as fol-
lows: g = − ln λ0, ρ−1 = dg

d (βP) , f (φ) = ψ2
0 (φ), and S =∫ π/2

−π/2 cos (2φ) f (φ)dφ, where N is the number of particles and
L is the length of the channel. We also determine angle fluc-
tuation from the orientational distribution function as follows:
〈φ2〉 = ∫ π/2

−π/2 φ2 f (φ)dφ, because 〈φ〉 = ∫ π/2
−π/2 φ f (φ)dφ = 0.

The orientational correlation function, which is defined as
g2(i) = 〈cos (2φ(0) − 2φ(i))〉 − S2 [13,68], can be obtained
with the help of higher-order eigenvalues and the correspond-
ing eigenfunctions using

g2(i) =
∞∑
j=1

(
λ j

λ0

)i
⎛
⎝

[∫ π/2

−π/2
cos (2φ) ψ0(φ) ψ j (φ)dφ

]2

+
[∫ π/2

−π/2
sin (2φ) ψ0(φ) ψ j (φ)dφ

]2
⎞
⎠, (6)

where i denotes the ith neighbor from a given particle, i.e.,
there are i − 1 particles between a particle j and a particle
j + i. We can see from Eq. (6) that g2 decays exponentially
as i goes to �, i.e., g2(i → ∞) ≈ exp (−i/ξ ), where ξ is
the orientational correlation length. As λ0 > λ1 > λ2 > . . .,
the leading term of Eq. (6) is (λ1/λ0)i, and we can get from
exp (−i/ξ ) = (λ1/λ0)i that

ξ−1 = ln

(
λ0

λ1

)
(7)

This shows that the orientational correlation is very weak if
λ0 >> λ1, while it diverges if λ0/λ1 goes to 1. It is very easy
to prove that there is no orientational correlation if the contact
distance is constant, which corresponds to the system of hard
spheres confined to a straight line. In this system, the contact
distance is identical with the diameter of the sphere (a), i.e.,
σ = a. It is trivial to show that λ0 = πexp(−βPa)/βP and
ψ0 = 1/

√
π are the solutions of Eq. (5) for i = 0. Using these

results we get that Ki(φ1, φ2) = 0 for i > 0, which implies that
all higher-order eigenvalues are zero (λi = 0, where i = 1,
2, …,etc.). As λ0/λ1 is infinite for hard spheres, Eq. (7) shows
the trivial result that the orientational correlation length is
always zero. The other trivial result is that the phase is always
isotropic as f = 1/π and S = 0. Moreover, we can derive the
well-known Tonks equation of state of hard rods [67] using
g = βG

N = − ln λ0 and ρ−1 = dg
d (βP) , which is given by

βPT = ρ

1 − ρa
. (8)

However, the solution of the eigenvalue problem [Eq. (5)]
is not trivial for the orientation-dependent contact distances.
We present our analytical results for M1 system, which is
defined by Eq. (2). Moreover, numerical calculations are per-
formed for M2 and M3 systems, which are defined with
contact distances given by Eqs. (3) and (4), respectively. To
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get reliable numerical results, we used very fine grid sizes
to perform the integration with respect to the orientation
(ϕ), because the orientational ordering can be very strong in
the vicinity of close packing. It turned out that an equidis-
tance representation of the orientation with dϕ = π/5000 grid
size, i.e., ϕi = −π/2 + idϕ, is satisfactory to get the accu-
rate results for the eigenvalues and eigenfunctions using the
successive iteration method. Our initial guess for the eigen-
function (ψi(φ)) was 1/

√
π for all systems. We found that the

convergence of the iteration is very fast with this guess, and
the maximum iteration number does not exceed 5000 steps.
Finally, we mention that the results are presented in dimen-
sionless units using a and β, i.e., ρ∗ = ρa is the dimensionless
density and ρ∗ = βPa is the dimensionless pressure.

IV. RESULTS

The phase behavior and the structural properties of the sys-
tem M1 can be obtained analytically. The exact solution relies
on the fact that the contact distance defined by Eq. (2) can be
extended for any values of −∞ < ϕ1, ϕ2 < ∞ fulfilling the
following two requirements at the same time: (i) σ (ϕ1, ϕ2)
is a periodic function in both variables with π , and (ii) σ

depends only on |ϕ1 − ϕ2|. We must mention here that these
two requirements are not fulfilled by M2 given by Eq. (3).
Without going into the details, we present the results of the
eigenvalue problem [Eq. (5)] for the contact distance given by
Eq. (2). It can be shown that the eigenvalues are given by

λi = exp (−βPa)

βP

∫ π/2

−π/2
cos (2iφ) exp (−βP|φ|α ) dφ, (9)

where i = 0, 1, 2, …,etc. The highest eigenvalue is λ0, while
the corresponding eigenfunction is given by ψ0(φ) = 1/

√
π .

This means that the phase is isotropic for all possible val-
ues of the pressure, because the orientational distribution is
constant as f = ψ2

0 = 1/π . The higher-order eigenvalues (λi,
where i = 1, 2, …,etc.) are twofold degenerate with ψi,1(φ) =√

2
π

cos(2iφ) and ψi,2(φ) =
√

2
π

sin(2iφ) eigenfunctions (see
the Supplemental Material for further details [69]). From
λ0 we can get the thermodynamic properties of the system,
while the higher-order eigenvalues and the corresponding
eigenfunctions provide information about the orientational
ordering. Now we focus on the high-pressure limit, which
pushes the system into the close-packing structure. Let us
introduce a variable z from ϕ as follows z := (βP)1/αφ.
As the exponential function in Eq. (9) goes to zero very
fast with increasing pressure, we can change the integration
boundaries from finite range to infinite, i.e.,

∫ π/2
−π/2 ... dφ ⇔

1
(βP)1/α

∫ ∞
−∞ ...dz. Furthermore we can use the following

second-order Taylor-expansion: cos (2iφ) ≈ 1 − 2i2φ2. Us-
ing the introduced variable (z) and the above approximations,
we get from Eq. (9) that

λi = λ0 − exp (−βPa)

(βP)1+1/α

2i2

(βP)2/α

∫ ∞

−∞
z2 exp (−|z|α )dz, (10)

where λ0 = exp (−βPa)
(βP)1+1/α

∫ ∞
−∞ exp (−|z|α ) dz is the largest eigen-

value. As g = − ln λ0 and ρ−1 = dg/d (βP), we get the

equation of state of the M1 in the high-pressure limit as
follows:

βP = (1 + 1/α) ρ

1−ρ a . Therefore, the deviation of the pres-
sure of the M1 system and that of Tonks-gas [see Eq. (8)] can
be written as

P/PT = 1 + 1/α. (11)

We can see from this equation that only the α parameter
affects the deviation from the Tonks gas at high pressures.
As the deviation is due to the orientational freedom of the
model, the orientational fluctuation has a PT /α contribution
to the pressure of the orientationally frozen Tonks equation
of state. Since the increment in the contact distance due to
the orientational fluctuations (�φ) is proportional to |�φ|α ,
the deviation from the Tonks gas becomes stronger with de-
creasing α, because the contact distance increases more for
lower α values at a given �φ fluctuation. In the same manner
we can calculate the correlation length from Eq. (7) in the
high-pressure limit. Using Eq. (10) we can write that

λi/λ0 ≈
{

1 − 2i2

(βP)2/α

∫ ∞
−∞ z2 exp (−|z|α )dz∫ ∞

−∞ exp (−|z|α )dz

}
. (12)

After substitution of this equation into Eq. (7) we end up
with

ξ−1 ≈ 2

(βP)2/α

∫ ∞
−∞ z2 exp (−|z|α )dz∫ ∞

−∞ exp (−|z|α )dz
, (13)

where the integrals do not depend on the pressure. Therefore,
the correlation length in model M1 at very high pressures is
given by

ξ ∼ (βP) 2/α. (14)

This shows that the M1 model is an orientationally strongly
correlated system and the correlation length diverges with the
pressure. This system becomes uncorrelated at high pressures
only if α → ∞, where the cost of fluctuation goes to zero in
the contact distance.

The results from Eq. (9) for both low and high pressures
are shown in Fig. 2. We can see the effect of α on the equation
of state in Fig. 2(a). When comparing the pressures at a
given value of density (ρ∗), it is observed that the pressure
is consistently higher for α = 1, compared to α = 2. This
difference in pressure can be attributed to the disparity in
the cost of fluctuations between the two cases. Specifically,
the cost of fluctuations in the contact distance is greater
for α = 1 than for α = 2. The inset of Fig. 2(a) illustrates
the deviation from the Tonks equation of state. Notably, the
deviation from the Tonks gas behavior is more pronounced
for α = 1, with P/Pt precisely converging to 2, whereas it
converges to 1.5 for α = 2. This is due to the fact that M1 with
α = 1 has a larger collision diameter compared to the case
of α = 2. Therefore, the increased collision diameter implies
the higher pressure. Note that these results are consistent with
our high-pressure result [see Eq. (11)]. Figure 2(b) shows
orientational correlation length as a function of pressure for
α = 1 and 2. It is evident that the system with α = 1 exhibits
stronger correlations due to the higher cost of fluctuations
compared to the case of α = 2. The results show that there
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FIG. 2. The effect of α on the equation of state (a) and the orientational correlation length (b) of Model 1 (M1), which is defined by Eq. (2).
The inset of (a) highlights the deviation from the Tonks equation of state, while the orientational correlation function between two particles is
presented at P∗ = 10 in the inset of (b). The pressure and the density are dimensionless, i.e., P∗ = βPa and ρ∗ = ρa. The parameter i counts
the number of particles between two chosen particles.

is a crossover point in the pressure, below which α = 2 dis-
plays a higher correlation, while above this point the trend
reverses, indicating that the system with α = 1 becomes more
correlated. Furthermore, the curves are linear in log-log scale
at higher pressures, indicating that Eq. (14) becomes valid for
pressures above the crossover point. Remarkably, the slopes
of the curves are consistent with the prediction of Eq. (14).
The inset of Fig. 2(b) presents the results of Eq. (6) using
20 eigenvalues and the corresponding eigenfunctions of the
M1 system at P∗ = 10. It can be seen that for α = 1, the
system exhibits stronger correlations, as the correlation func-
tion reaches zero at higher distances compared to the case of
α = 2. The stronger orientational correlation of α = 1 case
is due to the higher contact distance cost coming from the
orientational fluctuations.

We now proceed to present the results of Model 2 (M2),
which is defined by the contact distance given by Eq. (3).
Our results are presented for the equation of state, orienta-
tional correlation length, and the order parameter in Fig. 3.
As for the M1 system, it can be seen that for α = 1, the
pressure consistently surpasses that of α = 2. This deviation
in pressure can be attributed to the differences in the cost of
fluctuations between the two cases, similar to the observations
in the M1 model. However, the deviation from the Tonks
equation of state does not follow the M1 system, because the
curves of α = 1 and those of α = 2 cases cross each other
at an intermediate density [see the inset of Fig. 3(a)]. As we
learned in the M1 system, if the fluctuations are costly in
terms of contact distance, the pressure deviates significantly
from the Tonks gas behavior. Therefore, we can say that the
emergence of a density cross point suggests that the fluctua-
tion cost is higher in the contact distance for α = 2 than for
α = 1 at low densities, while the opposite trend happens at
high densities. We can also see in the inset of Fig. 3(a) that
the high-pressure behavior of the M2 system is the same as
that of the M1 system, since Eq. (11) is also valid for the M2
system. This unexpected results is obtained in light of the fact
that fluctuation cost in the contact distance is higher in the M2
system, because the “min” function is missing in the definition
of the M2 system [compare Eqs. (2) and (3)]. This particular
characteristic is due to the fact that when the angle between

two particles exceeds π /2, the contact distance is even larger
than in the M1 case. Figure 3(b) reveals a negligible difference
in the orientational correlation between M1 and M2 systems,
as the contact distance remains nearly identical in both cases
when the neighboring particles are almost parallel to each
other at high pressures. An additional figure [Fig. 3(c)] is
included to compare the M2 with the M1, as the M2 tends to
exhibit some level of ordering, albeit not strongly pronounced.
The system displays orientational ordering, as evidenced by
the nonzero order parameter. Interestingly, the M2 system is
only partially ordered, with the orientational order parameter
not converging to 1 at high densities, which would be the typ-
ical value of the order parameter at the close-packing density.
It can be proved exactly for α = 1 that ψ0(φ) =

√
2
π

cos(φ)
in the limit of P → ∞ [70]. Using this expression one can
get that S = 〈cos (2φ)〉 = 1/2 and 〈ϕ2〉 = π2/12–1/2 ≈ 0.32.
It is worth noting here that 〈ϕ2〉 = π2/12 ≈ 0.82 in the M1
system, which is isotropic at all possible densities. In the case
of α = 2, we could get the limiting values S ≈ 0.485 and
〈φ2〉 ≈ 0.34 with only numerical solution of the eigenvalue
problem. We can see that the M2 system with α = 1 is more
ordered with lower one-particle average fluctuation than that
of the M2 with α = 2. These results are the consequence of
the cost of orientational fluctuation on the contact distance.
However, it is not trivial to understand why the M2 system
exhibits orientational ordering with a peak at ϕ = 0 as the
close packing of the system is degenerated in the angle ϕ.
The answer for this issue is that cost of orientational fluctu-
ation is the lowest around ϕ = 0, while it is highest around
ϕ = ±π/2 in the contact distance. Therefore, we can say the
fluctuation-induced orientational ordering occurs in the M2
system, which results in a nematic ordering with a director at
ϕ = 0.

Finally, in Fig. 4 we present our numerical results for the
M3 system, which is more strongly ordered than the previous
systems. The equation of state seems to be very similar to
the M1 and M2 system, because P/PT converges to 2 at the
close-packing density, which corresponds to the α = 1 case
in the previous systems. However, P/PT is a nonmonotonic
function of ρ as it has an intermediate peak at around ρ∗ = 0.5
with a value of P/PT ≈ 2 [see Fig. 4(a)]. The slope of the
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FIG. 3. The effect of α on the equation of state (a), the orientational correlation length (b) and the orientational order parameter (c) of
Model 2 (M2), which is defined by Eq. (3). The insets show the deviation from the Tonks equation of state in (a), the orientational correlation
function between two particles at P∗ = 10 in (b), and the average angle fluctuation in (c). The pressure and the density are dimensionless, i.e.,
P∗ = βPa and ρ∗ = ρa. The parameter i counts the number of particles between two chosen particles.

correlation length is also nonmonotonic in log-log scale,
showing that the pressure dependence of the correlation is
different at intermediate and high pressures [see Fig. 4(b)].
The order parameter goes to the limiting S = 1 with increas-
ing pressure, but the angle fluctuation decreases slowly up
to P∗ = 1, then algebraically decays to zero with increasing
pressure [see Fig. 4(c)]. These results show together that the
phase behavior of the M3 model is very similar to that of
the M2 up to intermediate pressures, because P/PT tries to
saturate at 2 and 〈ϕ2〉 decreases slowly as it happens in the M2
system. As P/PT ≈ 2, α equals to 1 in the corresponding M2
system. However, the M3 system behaves very differently at
very high pressures, as the orientational correlation becomes
weaker (ξ∼ P) and the orientational fluctuation vanishes ac-
cording to 〈ϕ2〉 ∼ 1/P. These results do not follow ξ∼ P2/α

law [see Eq. (14)] and 〈ϕ2〉 is not finite at infinite pressure,
which are valid for both M1 and M2 models. Interestingly,
P/PT = 1 + 1/α holds for all models, if α is taken to be 1.

These results show that the M3 system can be considered
as another class of q1D fluids, because it behaves differently
from M1 and M2 systems and it does not belong to the
previously studied q1D hard-body systems, where either no
diverging orientational correlation is observed [34] or the
divergence goes with P1/2 [60]. Regarding the meaning of
the diverging orientatinal correlation, it cannot be the indi-
cator of an orientational phase transition, because the system
is perfectly ordered at the close-packing density. It is more

likely that the diverging correlation length is the marker of the
jamming proposed by Kantor and Kardar [60], because each
particle is stuck between neighboring particles suppressing
their rotational fluctuations. Although, the transition between
different close-packing states can be made by global rota-
tion, and these states are not separated by energy barriers
as in the case of the ordinary glassy systems, these different
close-packing states are far from each other in the sense that
random fluctuations cannot drive the system from one closely
packed state to another. Therefore, the diverging correlation
length indicates that the only way to go from one closely
packed structures with a given tilt angle to the other one with a
different tilt angle is to do it in concert, i.e., all particles must
do the same rotation in the same time, while random thermal
fluctuations cannot change this jammed state of the system.

In summary, due to the effect described in the previous
paragraph, the correlation length diverges with the increasing
pressure in all three models studied. The key to a deeper
understanding of this result is that a single close-packing
state is associated with the same orientation of all particles.
Nevertheless, the orientational ordering is different, because
there are many close-packing states, so the average of these
states and fluctuations around them can lead to isotropic or-
dering (M1), or partial ordering (M2), or complete ordering
(M3). The difference among them is due to the fluctuations
around the close-packing states. In the case of model M1,
the neighborhoods of all close-packing states are completely
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FIG. 4. The effect of α on the equation of state (a), the orientational correlation length (b), and the orientational order parameter (c) of
Model 3 (M3), which is defined by Eq. (4). The insets shows the deviation from the Tonks equation of state in (a), the orientational correlation
function between two particles at P∗ = 10 in (b), and the average angle fluctuation in (c). The pressure and the density are dimensionless, i.e.,
P∗ = βPa and ρ∗ = ρa. The parameter i counts the number of particles between chosen two particles.

equivalent, the fluctuations behave in the same way around
every close-packing state, giving rise to an isotropic order
(S = 0). In the case of model M3, the small fluctuations in
the angle of a given particle has less cost (the increment in the
contact distance is smaller) in the case when the orientation
of the neighboring particles are perpendicular to the confining
line. As the neighboring particles tilt out from the perpendic-
ular direction, the cost of the fluctuation increases. Therefore,
the system prefers the perpendicular orientation in spite of
the fact that the close-packing degeneracy is the same as
in the case of model M1. As a result, the angular fluctuations
stabilize the nematic order along the perpendicular direction.
The second model (M2) is between M1 and M3. The cost of
small fluctuations in the relative angle is the same at almost
every angle except the cases when the particles are parallel
with the confining line, i.e., ϕ1 = ±π/2 and ϕ2 = ±π/2. In
these special situations an infinitesimal fluctuation increases
the contact distance with a finite value, because the contact
distance is not a continuous function. Therefore, these par-
ticular points are very unfavorable and behave like walls,
i.e., the parallel particles cannot rotate freely together either.
Therefore, although at high pressure the relative fluctuations
of neighboring particles behave in the same way for almost
all orientations, the collective fluctuations will still prefer the
perpendicular orientation, because they can be the largest in
these orientations. However, these effects cannot completely
order the system, so the order parameter does not reach 1 even
at infinite pressure.

V. CONCLUSIONS

In this study, an in-depth investigation has been conducted
to understand the orientational ordering properties of three
different q1D hard-body fluids having degenerate structures
at the close-packing density. We have unraveled important
insights into the phase behavior, structural characteristics,
and collective features of these systems. We have paid spe-
cial attention to the pressure, orientational correlation, and
angular fluctuation in the vicinity of close-packing density,
which can be realized with very high pressures along the
channel. It has been observed that the fluids of three models
can be described with the same equation of state at high
pressures as P/PT = 1 + 1/α holds for all of them. However,
this agreement does not imply that the order parameter, the
angular fluctuation, and the orientation correlation have the
same properties in the three systems studied. For example,
the orientational ordering properties are very different in each
system, because M1 shows no orientational ordering at all,
M2 shows partial ordering, and M3 is perfectly ordered at
the close-packing density. The orientational correlation length
diverges with pressure (ξ ∼ P2/α) in M1 and M2 systems,
while the correlation weakens in the third model as ξ∼P.
The angular fluctuation is also different in these models:
〈ϕ2〉 = π2/12≈0.82 for M1, 〈ϕ2〉 = π2/12–1/2≈0.32 for M2,
and 〈ϕ2〉 ∼ 1/P for M3 at the close-packing density. From
these results we can conclude that only the M1system shows
critical behavior at the close-packing density (ρ∗ = 1), be-
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cause it is in isotropic phase in the whole range of density
and the orientational correlation length diverges to infinity at
ρ∗ = 1. Therefore, the system would undergo a spontaneous
symmetry-breaking phase transition from the isotropic (S =
0) to the perfectly ordered nematic phase (S = 1), and ξ→�
indicates that a system would choose a director randomly,
which will be the orientation of all particles at ρ∗ = 1. In the
case of the M2 system, there is no possibility for symmetry-
breaking transition, because the system is already partially
ordered with a peak in the orientational distribution function at
ϕ = 0. Therefore, the diverging ξ marks that the system would
jump from a partially ordered phase to a perfectly ordered
one. Finally, the M3 system does not show any tendency for
critical behavior, because it is perfectly ordered at ρ∗ = 1. In
this system, the diverging correlation length and the vanishing
orientational fluctuation are the signals of the entropy cost
from moving from one degenerate close-packing structure to
the other one. This is the only way to alter the director of
the fully correlated M3 system if all particles change their
orientations with the same angle at the same time.

To understand better the phase behavior of the M3 system,
we review the earlier q1D models, which are devised for
ellipse, rectangle, and other shapes to determine the phase
behavior of nonspherical hard-body fluids at high pressure.
The contact distance of the first class is due to Lebowitz et al.
[34], which can be written as

σ (φ1, φ2) = a + b|φ1 + φ2|α + c |φ1 − φ2|α, (15)

where a, b, and c are shape-dependent parameters. The second
class of models belongs to Kantor and Kardar [60], which is
given by

σ (φ1, φ2) = a + b
(
φ2

1 + φ2
2

) + c|φ1 − φ2|α. (16)

The third class can be obtained with the Taylor expansion
of Eq. (4) around ϕ1 = ϕ2 = 0. It can be shown that

σ (φ1, φ2) = a + b|φ1 − φ2|α + c|φ1 − φ2|α min
(
φ2

1 , φ
2
2

)
,

(17)

where a is the contact distance for parallel orientations, b = a,
c = a/2, and α = 1 for the contact distance given by Eq. (4).
Note that Eq. (17) can be also used for hard needles with
length l , with a = 0, b = l/2, c = l/4, and α = 1. We have
checked the results coming from Eq. (17) are really identical
with that of Eq. (4) at high pressures. We summarize our
results of the transfer operator calculations using the above
three classes of contact distances in Table I. We can see
that all classes of models can be described with the same
equation of state, i.e., βP = (1 + 1/α) βPT provides the pres-
sure in the vicinity of the close-packing densities, where
βPT = ρ/(1 − ρa). However, the pressure dependence of the
orientational correlation is very different in these classes of
models: (i) the first class is uncorrelated for any value of α;
(ii) the second class is uncorrelated for α = 2 and weakly
correlated for α = 1; and (iii) the third class is correlated
even for α = 2. The angular fluctuations has a 〈ϕ2〉 ∼ P−2/α

dependence in the first class; it vanishes very similarly in the
second class and it has a weaker dependence from the pressure
in the third class of model. A common feature of all classes is
that the angular fluctuation weakens with decreasing α, while

TABLE I. High-pressure behavior of three classes of models,
which are defined by Eqs. (15)–(17).

Eq. (15) Eq. (15) Eq. (16) Eq. (16) Eq. (17) Eq. (17)

α = 1 α = 2 α = 1 α = 2 α = 1 α = 2
P/PT 2 1.5 2 1.5 2 1.5
ξ P0 P0 P0.5 P0 P1 P0.47

〈ϕ2〉 P−2 P−1 P−1.5 P−1 P−1 P−0.53

the orientational correlation becomes stronger in the second
and third classes. It can also be concluded that the models
belonging to second class are always more ordered that those
of the third one is due to the second term in Eq. (16), which
forces the particles to be parallel with ϕ = 0 angles, while
the second term of Eq. (17) gives rise to a weak orientational
order as it happens in the M2 system. This is also why the
third class shows a higher correlation than the second class
for the same α value. In the third class, the third term of
Eq. (17) is responsible for the perfect orientational order at the
close-packing density, because the second one causes only a
partial orientational order. However, it can be also seen that
the third term is a lower-order term than the second term.
The consequence of this fact is that the ordering properties of
systems belonging to third class is determined mainly by the
second term at the low- and intermediate densities, while the
third term becomes relevant in the vicinity of close-packing
density. This fact manifests in the ordering properties of the
M3 system, which behaves very similarly to the M2 system
at intermediate densities, but shows very different behavior at
the close packing. This can be seen as an intermediate peak in
the P/PT vs ρ∗ curve and an inflection point arises in ξ vs P
curve.

To describe the high-pressure behavior of anisotropic hard-
body fluids, the important contribution of the contact distance
depends on the shape of the particles. For hard needles, the
third class is the right model, while the second one can be
used for rectangles. However, it is not clear what the minimum
model is for other particles’ shape, such as rigid and flexible
hard chains. It is also an issue how these fluids behave and
correlate at the close-packing density. We leave these issues
for future studies.
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