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Recovering the activity parameters of an active fluid confined in a sphere
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The properties of an active fluid, for example, a bacterial bath or a collection of microtubules and molecular
motors, can be accessed through the dynamics of passive particle probes. Here, in the perspective of analyzing
experimental situations of confinement in droplets, we consider the kinematics of a negatively buoyant probe
particle in an active fluid, both confined within a spherical domain. The active bath generates a fluctuating
flow that pushes the particle with a velocity that is modeled as a colored stochastic noise, characterized by two
parameters, the intensity and memory time of the active flow. When the particle departs a little from the bottom
of the spherical domain, the configuration is well approximated by a particle in a two-dimensional harmonic
trap subjected to the colored noise, in which case an analytical solution exists, which is the base for quantitative
analysis. We numerically simulate the dynamics of the particle and use the planar, two-dimensional mean square
displacement to recover the activity parameters of the bath. This approach yields satisfactory results as long as
the particle remains relatively confined; that is, as long as the intensity of the colored noise remains low.
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I. INTRODUCTION

When characterizing a fluid flow, the use of tracer particles
is a common approach. In particle image velocimetry (PIV)
and particle tracking velocimetry (PTV), for example, the flow
is seeded with tracer particles whose velocities are measured
by optical means, under the assumption that they reflect the
velocity of the carrier fluid [1]. In general, neutrally buoyant
small particles follow the flow more accurately. The same
principle has been used to characterize bacterial flows. In
those cases, the tracer particles are usually of the same size
or larger than the bacteria, and thus, although micrometric
in size, they can hardly follow the flow streamlines. Instead,
particles interact with the hydrodynamic fields produced by
the swimming bacteria [2–6] and undergo random sequences
of binary collisions with them [7,8]. The resulting particle
dynamics thus becomes an indirect probe for the statistical
properties of the bacterial bath [9–12].

A suspension of swimming bacteria, performing frequent
active random reorientations, and reorienting also due to the
thermal noise and the flow field generated by other bacteria,
produces a fluctuating flow in the external liquid medium
that can be described as an active noisy bath. One effect of
this active bath on a tracer particle is an increased diffusivity
[2–10,13–21], which has been described as an increased effec-
tive temperature [8,10,13,17,19,22–24]. Although the concept
of an effective temperature is easy to grasp, the noisy flow
caused by the active bath is not thermal but instead can be
better characterized as an exponentially correlated colored
noise with at least two independent activity parameters, that
here we choose to define as the noise intensity and its per-
sistence time at a fixed position [24–31]. By immersing a
probe particle in the bacterial suspension, the noisy bath exerts

a fluctuating drag force on the passive particle that yields a
fluctuating movement, from which the bath parameters could
be, in principle, obtained.

One simple conceptual configuration that serves this ob-
jective is a passive particle immersed in the bacterial fluid
and confined in a harmonic potential, such as an optical trap
[9,12,25,27–34]. Here, the simple form of the forces acting
on the particle due to the harmonic potential and the active
flow, which is modeled as a colored noise, makes it possible
to find an analytical solution for the mean square displacement
(MSD) of the tracer [32]. Then, the statistical properties of the
bath can be obtained by fitting the dynamics of the particle to
the model prediction for the MSD.

A similar experimental setup consists in confining the ac-
tive suspension inside a circular or spherical domain together
with a passive probe particle. This configuration was theoret-
ically considered [35] and experimentally implemented in a
circular capillary [10,32] and in a double emulsion droplet
[36]. Other geometries for the confinement have been con-
sidered as well [37]. If the probe particle is not neutrally
buoyant, then sedimentation due to gravity will compete with
the fluctuating active forcing. As a result, the probe parti-
cle will explore the spherical domain around the equilibrium
position that it would display in absence of the active fluid
(hereafter the “equilibrium position” for simplicity). From the
statistics of this dynamics, the properties of the active bath can
be obtained, just like the optical trap case.

In this work, we consider the above-mentioned scenario
of a negatively buoyant passive tracer particle immersed in
an active fluid under spherical confinement. The objective is
to answer the question: how can we formally extract the two
parameters characterizing bacteria activity from the dynamics
of the tracer particle? For that, through numerical simulations,
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FIG. 1. Sketch of the system. A passive particle of radius Ri

inside a sphere of radius Ro filled with an active bath. The passive
particle is subject to gravity pointing toward negative z.

we fix the activity parameters of the active fluid and record
the motion of a passive particle. Then we try to recover the
activity parameters from a fit of the particle in-plane MSD
with a curve drawn from the model that describes a particle in
a two-dimensional harmonic potential subjected to an active
colored noise. Due to sedimentation, the spherical confine-
ment is well approximated by a harmonic potential only when
the particle departs little from the equilibrium position and,
in that condition, the parameters characterizing the activity
are directly recoverable. However, care must be taken to ade-
quately capture the properties of the bath and, in particular, to
distinguish between the persistence time of the active bath and
the characteristic sedimentation timescale. Beyond that limit,
we also show that the activity parameters extracted from this
model can reasonably describe the active bath properties, at
least in some regions of the parameter space.

II. THREE-DIMENSIONAL SIMULATIONS

A. Model

We consider a non-Brownian passive spherical particle of
radius Ri suspended in an active fluid, with both the particle
and the active fluid confined in a spherical domain of radius
Ro (see Fig. 1). The activity of the fluid generates a fluctuating
velocity field that drives the motion of the particle. For small
Ri, in the point tracer limit, the induced velocity of the particle
is simply the flow velocity at the particle position. For slightly
larger particle sizes, the Faxén correction should be included
[38,39]. For even larger particles, the particle velocity results
from solving the flow field in presence of the active stresses
generated by the bacteria. To close the problem, the bound-
ary conditions at the particle surface and at the border of
the enclosing sphere should be explicitly considered. In any
of these cases, the active suspension imposes a fluctuating
velocity u(t ) on the particle. On top of this, due to the gravita-
tional acceleration g, the particle sediments with a speed vs =
�Mg/γ , where �M is the buoyant mass and γ is the friction

coefficient. Depending on the sign of �M, the particle can
sediment along or against gravity. For simplicity and without
loss of generality, we consider that �M is positive, imply-
ing that the equilibrium position is at the bottom of the
sphere. As a result of the sedimentation and the fluctuating
field, the equation of motion for the particle with position
r = (x, y, z) is

ṙ = u(t ) − vsêz, (1)

with boundary condition x2 + y2 + z2 � (Ro − Ri )2, where
we have assumed that the particle moves in the low Reynolds
number regime [39].

For the active bath, we take a coarse-grained description
where the individual agents composing the bath and their
dynamics are not described in detail, but rather we consider
their added effect on the particle. Hence, we model u as a
Gaussian noise with amplitude ub and persistence time τb,
〈ui(t )u j (t ′)〉 = u2

bδi je−|t−t ′ |/τb , with i, j = x, y, z. That is, we
model it as an Ornstein–Uhlenbeck process (OUP) following
the dynamical equation:

u̇ = − u
τb

+ η(t ), (2)

where η is a white noise with zero mean and delta correlated in
time, 〈ηi(t )η j (t ′)〉 = 2u2

b/τbδi jδ(t − t ′). This model captures
the essential features of the bacterial swimming mechanism,
including persistence in motion and random reorientations
[24–31].

To analyze the resulting Langevin equation with colored
noise, we define the dimensionless position r̃ = r/R and time
t̃ = tvs/R, where R = Ro − Ri. Here, we opted to make time
dimensionless with τs = R/vs, the characteristic sedimenta-
tion time, because it is a timescale that can be accessed
experimentally, as also happens for the characteristic length
scale R. With this, we define the two dimensionless control
parameters: the dimensionless bath persistence time

τ̃b = τb/τs (3)

and bath persistence length

�̃b = ubτb/R. (4)

In terms of them, the dimensionless bath speed is ũb =
ub/vs = �̃b/τ̃b.

In summary, the system is described by two dimensional
parameters R and vs that determine the degree of confinement
and the speed of sedimentation, and two dimensionless param-
eters, �̃b and τ̃b that compare the persistence length and time of
the active fluid to the particle’s confinement and sedimentation
time. The resulting dimensionless equation of motion for the
particle is (dimensionless variables are denoted by tildes)

d r̃
dt̃

= ũ − êz, (5)

where now the boundary condition for the particle reads

|r̃|2 = x̃2 + ỹ2 + z̃2 � 1. (6)

The imposed velocity satisfies the Langevin equation for the
OUP,

dũ
dt̃

= − ũ
τ̃b

+ η̃(t̃ ), (7)
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where the correlation of the nondimensional noise is
〈η̃i(t̃ )η̃ j (t̃ ′)〉 = 2�̃2

bτ̃
−3
b δi jδ(t̃ − t̃ ′) = 2ũ2

bτ̃
−1
b δi jδ(t̃ − t̃ ′).

The memoryless case; that is, the tracer subject to Brown-
ian noise, corresponds to taking the limit τ̃b → 0 and �̃b → 0,
while keeping �̃2

b/τ̃b fixed, equal to the diffusion coefficient.
Also, despite focusing mainly on the case of buoyant particles,
the case of neutrally buoyant particles is recovered by taking
the limit τs → ∞.

B. Simulation results

To investigate the system, we numerically solve the dynam-
ical equations (5) and (7) with a forward Euler scheme. To
confine the particle [Eq. (6)], we use the reflective boundary
condition method [42]. Simulations were run for τ̃b and �̃b in
the range [0.1–10], which is evenly explored in a logarithmic
scale. The particle is placed initially at the equilibrium posi-
tion r̃eq = −êz. For each set of parameters, we first determine
empirically the time needed for the MSD to saturate (see
below). Then, the system is allowed to relax for this time and,
after that, measurements are made for a period at least ten
times longer. In the Supplemental Material [43] we present,
for illustration, sample trajectories of the particle for relevant
sets of parameters.

Depending on the values of the active fluid parameters, the
particle position departs a little from the equilibrium position
(see Supplemental Video S1 [43]), or on the other end ex-
plores the spherical confinement, whether almost all the time
in contact with the inner surface of the sphere (Supplemental
Video S2 [43]) or leaving it to explore fully the bulk of the
active fluid (Supplemental Video S3 [43]). To analyze the
different regimes, we present the probability density functions
(PDFs) of the particle’s position as a function of τ̃b and �̃b

in Fig. 2. Experimentally, for example using a microscope to
observe the tracer dynamics, normally only the planar x and
y coordinates are accessible with precision. Then, it becomes
relevant for practical reasons to obtain the statistical properties
of the planar radius ρ̃ = (x̃2 + ỹ2)1/2. Figure 2 presents the
probability density function p(ρ̃ ) for relevant values of the
control parameters. It is seen that for some values of the pa-
rameters, the distribution is peaked at ρ̃ ≈ 0, meaning that the
particle hardly departs from the equilibrium position, while
for other cases a peak appears at ρ̃ ≈ 1, which indicates that
the particle is exploring the whole spherical space. However,
this distribution alone does not indicate whether the particle
moves in contact with the inner surface or if it departs from
it. To discriminate between these possibilities, we compute
p(r̃), the probability density function of the distance from the
center r̃ = |r̃|, which is shown as insets in Fig. 2. For the sub-
plots where the inset is not shown, the probability distribution
function is essentially equal to the subplot in Fig. 2(a), with
p(r̃) strongly peaked at r̃ ≈ 1, meaning that the particle is
almost all the time in contact with the inner surface. To help
the analysis, we also present for comparison the theoretical
distributions for the planar radius punif.vol.(ρ̃) = 3ρ̃(1 − ρ̃2)1/2

and punif.surf.(ρ̃) = ρ̃/(1 − ρ̃2)1/2, for a particle that is uni-
formly distributed inside the sphere or uniformly distributed
on the inner surface, respectively, and the distribution for the
distance to the center punif.vol.(r̃) = 3r̃2, for a particle that is
uniformly distributed inside the sphere.

It is found that as �̃b increases, the particle is more likely to
be found far from ρ̃ = 0, as an increasing persistence length
makes it easier for the bath to take the particle away from
the equilibrium position. On the other hand, for values of
�̃b � τ̃b (that is, for ũb � 1), the particle mainly fluctuates
around the equilibrium position as the bath push is weaker
than the tendency to sediment [Figs. 2(a), 2(b), and 2(d)].
Almost in all conditions, the particle moves very close to the
surface. The shape of p(ρ̃ ) becomes more distributed in ρ̃

when �̃b � τ̃b but p(r̃) still remains highly peaked at r̃ = 1
[Figs. 2(e)–2(h)], suggesting that in those cases the particles
explores the confinement but being almost all the time in
contact with the inner surface of the sphere. On the contrary,
the particle explores the interior of the sphere for large �̃b and
small τ̃b, that is, for large ũb, although for the larger values of
ũb explored here, it is still more likely for the particle to be
located near the surface [Fig. 2(i)].

To study the dynamics of the particle, we also compute the
MSDs for each direction, defined as 〈�r̃2

i (t̃ )〉 = 〈[r̃i(t̃ + t̃0) −
r̃i(t̃0)]2〉, averaged over t̃0, with i = x̃, ỹ, z̃. By symmetry, the
x̃ and ỹ components are equivalent and, therefore, we present
their average. The results are shown in Figs. 3(a)–3(c). Two
clear regimes can be observed for all the values of the con-
trol parameters: ballistic at short times and saturation at long
times due to the confinement. The crossover time between
these two regimes shows dependence with both parameters,
increasing with τ̃b and decreasing with �̃b. Indeed, if the bath
shows larger persistence times, the particle is also pushed for
longer times in the same direction, increasing the duration
of the ballistic regime. For the dependence with �̃b, we re-
call that increasing this parameter while keeping τ̃b fixed is
equivalent to increasing the bath speed ũb, in which case it
takes less time for the particle to explore the sphere and then,
the saturation regime of the MSD is more rapidly achieved.
Diffusion, meaning a linear increase of the MSD with time
over an appreciable lapse of time, is only observed for τ̃b

smaller than 10−3 (not shown), which corresponds then to
an effective Brownian particle. From the ballistic regime, we
can extract the mean square velocity of the particle, 〈ṽ2

i 〉
(offset of the log-log plot of the MSD in the ballistic regime),
which increases with �̃b and decreases with τ̃b. That is, 〈ṽ2

i 〉
increases with the bath velocity ũb. For small values of �̃b,
when the particle barely departs from the equilibrium posi-
tion (see Fig. 2), the saturation value at long times decreases
with τ̃b, again reflecting its natural increase with the bath
velocity ũb. On the other hand, when �̃b is large, the satu-
ration is independent of τ̃b, taking the maximum value (see
below), reflecting that gravity is irrelevant. Also, for �̃b = 10,
the MSD on z̃ is almost identical to the MSD on x̃ and ỹ,
meaning that the particle is moving equally in all directions,
as a consequence of the irrelevance of gravity. Finally, note
that for a confined system, the MSD saturation value in any
coordinate equals twice the variance of the position on that co-
ordinate. Indeed, limt̃→∞〈�r̃2

i (t )〉 = limt̃→∞[〈r̃2
i (t̃ + t̃0)〉 +

〈r̃2
i (t̃0)〉 − 2〈r̃i(t̃ + t̃0)r̃i(t̃ )〉] = 2〈r̃2

i 〉, where we used that for
long times the positions are uncorrelated. This relation is
shown in the inset of Fig. 3(c). For a particle confined in a
sphere, the position variance is naturally bounded. Assuming
that the particle distribution is isotropic, the maximum value
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�̃b

τ̃b

FIG. 2. Probability density function for the planar dimensionless position, p(ρ̃), for different values of the control parameters. From
bottom to top: τ̃b = 0.1 (red), 1.0 (cyan), and 10 (blue), and from left to right: �̃b = 0.1, 1.0, and 10. Insets: Probability density function of
the three-dimensional dimensionless radius, p(r̃). For the cases where the inset is not shown, p(r̃) is essentially equal to the (a) subplot. The
solid and dashed black lines in panels (e) and (i) represent the theoretical probability distributions of the planar radius for a particle uniformly
distributed on the inner surface and in the volume of a sphere [punif.surf. (ρ̃) and punif.vol.(ρ̃)], respectively. The dashed line in the inset of (i) shows
the theoretical probability distribution of the three-dimensional dimensionless radius for a particle uniformly distributed in the volume of a
sphere, punif.vol.(r̃). The dotted lines show the stationary probability distributions obtained in Refs. [40,41] for a particle subject to a harmonic
potential.

for the variance is when the particle uniformly moves on the
surface of the sphere, in which case the variance on each
coordinate is R2/3. Consequently, in Fig. 3, the dimension-
less MSDs are compared with 2/3, which is their maximum
possible value.

According to the Green–Kubo relation, the long-term dif-
fusion coefficient of the particle is given by the integral
of its time-delayed velocity correlation function, Cṽi(t̃ ) =
〈ṽi(t̃0)ṽi(t̃ + t̃0)〉. As the spherical confinement imposes a null
diffusion coefficient for long times, as evinced in the satura-
tion of the MSD for long times, the integral of Cṽi(t̃ ) must
vanish identically. Given that Cṽi(0) = 〈ṽ2

i 〉 is strictly posi-
tive, the velocity correlation function must necessarily take

negative values during some periods of time. Figures 3(d)–3(f)
present the results of the simulations for different values of the
parameters. In all cases, Cṽi(t̃ ) decreases to zero nonmonoton-
ically, passing through a single negative minimum. Consistent
with the MSD, the dynamics in z̃ is equal to that of x̃ and ỹ
when �̃b is large.

III. HARMONIC APPROXIMATION

When the active bath is weak enough compared with grav-
ity such as to keep the particle near the equilibrium position,
the spherical confinement can be approximated by a harmonic
trap. Indeed, for a particle that moves in contact with the
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�̃b

FIG. 3. (a)–(c) Mean square displacement. (d)–(f) Time-delayed velocity correlation function. The solid lines are the simulation results for
the average in the x̃ and ỹ coordinates, while the dashed lines are for the z̃ coordinate. The horizontal black dashed lines in the top panels are
placed at the maximum possible saturation MSD value, equal to 2/3. In the bottom panels, the black dashed lines show Cṽ = 0 for reference.
From left to right �̃b = 0.1, 1.0, 10 and, in each panel, τ̃b = 0.1 (red), 1.0 (cyan), and 10 (blue). The inset in panel (c) shows the linear relation
between the variance and the saturation of the MSD for the nine combinations of �̃b and τ̃b presented in the plots.

surface, the gravitational potential U = �Mgz becomes a
function only of the planar radius ρ because we can sub-
stitute z = ±(R2 − ρ2)1/2. For small values of ρ, assuming
a downward sedimentation of the particle, it is possible to
expand this expression hence resulting in a harmonic poten-
tial U ≈ −�MgR + �Mgρ2/(2R). With this approximation,
an effective linear restoring force Feff = −kρ results, with
k = �Mg/R, the harmonic strength. Indeed, the stationary
probability distributions for the position are well captured
by this model for small ρ̃ [40,41] (see Fig. 2). Figure 4(a)
shows the quality of this approximation, where it is shown
that the relative error in the resulting force on the particle is
smaller than 2% when ρ � 0.20R. In Fig. 4(b), we present the
variance of ρ̃ in the parameter space (�̃b, τ̃b), obtained from
the numerical simulations of Sec. II, indicating as a reference
the threshold 〈ρ̃2〉 = 0.202 = 0.04 found above. The variance
increases with �̃b and decreases with τ̃b. Thus, the harmonic
approximation seems appropriate for a wide range of parame-
ters for τ̃b large and �̃b small; that is, when ũb is small.

Therefore, in this limit, this results suggests that it is le-
gitimate to consider that the motion of the confined particle
can be modeled by an effective two-dimensional dynamics
of a particle experiencing a spring-like force in the (x, y)
plane. The advantage of this model, compared with the full
three-dimensional confined system, is that it can be solved
analytically. Moreover, it has been used in experimental and
numerical configurations to describe particles confined by
optical traps under the influence of an active bath [25,31,32].

Again, R is used as a characteristic length and τs as a
characteristic time to nondimensionalize the variables. The
equation of motion for the particle in the harmonic approxi-
mation is

˙̃ρi = ũi(t̃ ) − ρ̃i

τ̃sh
, i = x̃, ỹ, (8)

where we have defined τsh = γ /k, the relaxation time associ-
ated with the confinement in the harmonic model. Although
formally the expression is the same as for τs, we keep the
alternative notation to differentiate between the models. The
dimensionless τ̃sh = τsh/τs should be equal to unity, but we
leave it as a parameter to be fitted to the simulation results
(see below).

The active flow induced by the bacterial suspension ũ(t̃ ) is
also modeled as an OUP with

〈ũi(t̃ )〉 = 0, (9)

〈ũi(t̃ )ũi(t̃
′)〉 = ũ2

bhe−|t̃−t̃ ′|/τ̃bh , (10)

where we have defined ubh and τbh as the velocity and mem-
ory time of the bath in the harmonic model, and the tilded
variables as their respective dimensionless counterparts.

The solution of Eq. (8) is

ρ̃i(t̃ ) =
∫ t̃

−∞
e−(t̃−s̃)/τ̃sh ũi(s̃) ds̃, (11)
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FIG. 4. (top) Comparison of the normalized restoring force
(nondimensionalized with �Mg/R) as a function of the planar radius
ρ̃ for the particle moving on the surface of the sphere using the
full expression (solid blue line) and the harmonic approximation
(dashed cyan line) for the gravitational potential. The relative er-
ror is shown with a red dotted line, where the threshold of 2% is
indicated with a horizontal gray band. The associated threshold in
the planar radius is shown with vertical lines at ρ̃ ≈ 0.20. (bottom)
Variance of ρ̃ as a function of the control parameters �̃b and τ̃b. As a
reference, the solid line indicates the threshold 〈ρ̃2〉 = 0.202 = 0.04
above which the relative error in the force is smaller than 2% on
average.

where we use that, as the particle is confined, the inte-
gral can be done from minus infinity without divergences,
avoiding then the use of initial conditions. Using the statistical
properties of ũ, the mean square displacement is found to be
[23,32]

〈
�ρ̃2

i (t̃ )
〉 = 2ũ2

bhτ̃
2
shτ̃bh

τ̃ 2
sh − τ̃ 2

bh

[τ̃sh(1 − e−t̃/τ̃sh ) − τ̃bh(1 − e−t̃/τ̃bh )].

(12)

In the short-time limit the MSD is ballistic, limt̃→0〈�ρ̃2
i (t̃ )〉 =

ũ2
bhτ̃sht̃2/(τ̃sh + τ̃bh), and for long times it saturates to

limt̃→∞〈�ρ̃2
i (t̃ )〉 = 2ũ2

bhτ̃bhτ̃
2
sh/(τ̃sh + τ̃bh).

Similarly, the time-delayed velocity autocorrelation func-
tion is

Cṽi(t̃, t̃ ′) = 〈 ˙̃ρi(t ) ˙̃ρi(t̃
′)〉

=
〈(

ũi(t̃ ) − ρ̃i(t̃ )

τ̃sh

)(
ũi(t̃

′) − ρ̃i(t̃ ′)
τ̃sh

)〉
(13)

= ũ2
bhτ̃sh

τ̃ 2
sh − τ̃ 2

bh

(τ̃she−|t̃−t̃ ′|/τ̃bh − τ̃bhe−|t̃−t̃ ′|/τ̃sh ). (14)

This two-exponential function captures the long-time decay
and the presence of a single negative minimum observed in
the simulations (Fig. 3, bottom). It also satisfies the zero time
integral demanded by the confinement. Evaluating it at equal
times gives the mean square velocity of the particle,

〈
ṽ2

i

〉 = Cṽi(t̃, t̃ ) = ũ2
bhτ̃sh

τ̃sh + τ̃bh
, (15)

which is consistent with the velocity of the ballistic regime
found from the MSD. Interestingly, the particle velocity is
different from that of the bath, meaning that it does not
thermalize except when the memory of the bath is negligi-
ble. Indeed, thermalization for this limiting case is expected
as it merely corresponds to a bath in thermal equilibrium.
In all other cases, the particle moves at smaller velocities
than the bath as a result of the action of the restoring force.
In fact, for a bath that pushes persistently (τ̃bh > 0), it is
more probable that the particle position in the trap has the
same sign as the instantaneous forcing bath velocity. Math-
ematically, this can verified using Eq. (11) to evaluate the
correlation 〈ρ̃i(t̃ )ũi(t̃ )〉 = ũ2

bhτ̃shτ̃bh/(τ̃sh + τ̃bh), which is in-
deed positive whenever the bath memory is finite. Then, by
writing Eq. (8) as ṽi = ũi − ρ̃i/τ̃sh, it is immediate to see that
on average the particle speed will be smaller than that of the
bath.

The harmonic model yields closed-form analytical func-
tions for the MSD and the velocity correlation function that
can be used to extract the parameters of the active bath.
However, as the two descriptions are not equivalent (one be-
ing three dimensional in a confined geometry and the other
two dimensional with a harmonic force), the mapping is not
expected to be perfect. Moreover, we note that, apart from a
trivial rescaling in ũbh, the two timescales τ̃sh and τ̃bh play a
symmetric role in the mean square displacement (12) and the
velocity correlation function (14) expressions. Consequently,
by observing the temporal evolution of the tracer and fitting
it to these expressions, it would be impossible, in principle,
to determine which of the two exponential timescales corre-
sponds to τ̃sh or τ̃bh, unless additional information is available.
Experimentally, this can be a subtle point that should be
considered with care. In the case we are considering here, we
break the symmetry between the two timescales by using that,
by the dimensional analysis, τ̃sh should be one or close to it.

We fit the harmonic model [Eq. (12)] to the MSD curves
for the planar directions obtained from the simulations of the
three-dimensional confined system. For that, we minimize the
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FIG. 5. Fitted parameters for the harmonic model in the (�̃b, τ̃b) space, when the timescale τ̃sh is fixed to one (protocol 1). (a), (b) Fitted
values for the harmonic model parameters τ̃bh and ũbh. (c), (d) Fitted values for the harmonic model parameters normalized to the values in the
simulations τ̃bh/τ̃b and ũbh/ũb. The level curves at 1, that is when the fitted parameters match the imposed ones, are shown in black. (e) Mean
square error of the fit.

mean square error defined as

ε2 = 1

n

n∑
i=1

[log10 MSDsim(ti ) − log10 MSDmodel(ti )]
2, (16)

where, to give equal weights to the different part, the n evalua-
tion times ti are sampled uniformly distributed in a logarithmic
scale (see Ref. [44] for a discussion on possible issues when
fitting MSD curves).

As a first protocol, we use ũbh and τ̃bh as fitting parameters,
while τ̃sh is fixed to one. The results are shown in Fig. 5
as a function of the system parameters �̃b and τ̃b. When the
harmonic model is a good approximation [region above the
solid line in Fig. 4(b)], one expects to find that ũbh = ũb and
τ̃bh = τ̃b. Indeed the results in Fig. 5 confirm this, showing that
the harmonic model is a quantitatively good approximation
for the system when τ̃b is large and �̃b is small. Moving away
from the parameter region where the position variance is
small, the fitted parameters start to deviate strongly from
their expected values. More importantly, the quality of the fit
degrades considerably, with large mean square errors. This is
manifest when comparing the best fitted MSD to the simula-
tion one, shown in Fig. 6. The imposed condition that τ̃sh = 1
makes that for �̃b � 1.0, it is impossible to obtain a good fit,
and the obtained parameters lack of any meaning.

To overcome the difficulties stated above, we use a second
protocol to obtain the model parameters. Here, ũbh, τ̃bh, and
τ̃sh are all fitting parameters. To break the symmetry between
the two timescales, we choose τ̃sh as the one that is closest
to one. That is, if |τ̃sh − 1| � |τ̃bh − 1|, the fitted parameters
are left unchanged, but on the opposite case, the two times
are exchanged and the bath velocity is rescaled as ũbh →
ũbh

√
τ̃sh/τ̃bh, as shown by Eq. (12).

The resulting fitted parameters as well as the mean square
error are presented in Fig. 7. Noticeably, as the condition
to exchange the two fitted times is nonanalytic, the fitted
parameters are also nonanalytic in the parameter space and
discontinuities appear where both fitted times are close to
unity. We first note that the mean square error of the fits is
dramatically reduced and that in all the explored parameter
space it takes values smaller than 10−3. This is corrobo-
rated by observing the quality of the resulting fits in Fig. 6,
where the simple expression of the harmonic model (12)
is almost indistinguishable with the simulated MSD for the
three-dimensional system. Despite this, the fitted parameters
do not match those used in the simulations in all the parameter
space. However, the region where the agreement is good and
the fitting procedure allows us to extract the system parame-
ters is much larger when compared with the outcomes of the
first protocol. Also, τ̃sh, which was let as a free parameter,
still took values close to one. In the region �̃b � 1 and τ̃b � 1,
both bath parameters τ̃bh and ũbh, as well as the sedimen-
tation time τ̃sh, are underestimated. Indeed, in this region
the harmonic approximation is poor, with the particle largely
departing from the equilibrium position (Fig. 4). Also, in this
region the dimensional reduction used in characterizing the
three-dimensional motion with just the planar trajectory is less
appropriate as the particle moves frequently away from the
surface [see Fig. 2(i)] and, therefore, there are many possible
three-dimensional trajectories which are compatible with the
same planar MSD.

In summary, although the full dynamics is very different of
a simple harmonic model, the MSD is extremely well captured
by the linear dynamics represented by the model, but the
parameters do not exactly match.
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FIG. 6. Examples of the fit procedure of the MSD using both protocols. The simulation results are shown as back dots (sampled
logarithmically in time) and best fit of the model (12) using the first protocol (fixing τ̃sh to one) with a cyan line and the second protocol
(leaving both times as fitted parameters) with a red line. From left to right, �̃b = 0.1, 1.0, and 10, while τ̃b is fixed to 0.1. Insets: fitted
parameters and the mean square errors.

IV. DISCUSSION

In this work, we have shown that the parameters charac-
terizing the activity of a colored noise bath can be extracted
from the dynamics of a passive probe particle immersed in
the bath enclosed by a spherical confinement. Notably, despite
the motion of the tracer being three dimensional, it is possible
to extract the bath parameters using only the information of
the two-dimensional motion. For that, we fitted the planar
MSD to a curve obtained from the analytical solution of a
particle trapped in a harmonic potential that deviates from
the equilibrium position when driven by the active bath. Al-
though such a harmonic trap approximation is expected to
hold only when the probe particle remains near the equi-
librium position, we find that this strategy yields reasonable
results even when the particle explores a rather large region
of the sphere, up to variances 〈ρ2〉 � 0.5R2. In principle, the
parameters of the active fluid could be obtained similarly

from a fit of the velocity correlation function to the ana-
lytical form stemming from the harmonic model, Eq. (14).
However, the particle velocities are not directly accessible but
are rather obtained numerically by differentiating the sampled
particle positions, and hence would lead in practice to noisier
results.

Importantly, in the harmonic model, the memory time of
the flow and the relaxation time associated with the confine-
ment play a symmetric role in the expressions for the MSD
and velocity correlation function. This symmetry impedes
in principle to distinguish between these two timescales by
only observing the dynamics of the particle. Additional in-
formation is needed to break this degeneracy, which in the
case of the particle confined inside the sphere was provided
by our knowledge of the sedimentation time. Our selection
criterion leads to discontinuities of both times in the explored
parameter space, when both times have similar values close
to the sedimentation time. Such discontinuities do not have

FIG. 7. Fitted parameters for the harmonic model in the (�̃b, τ̃b) space, will all model parameters free and choosing τ̃sh to be the closest to
one (protocol 2). (a)–(c) Harmonic model parameters τ̃bh, ũbh, and τ̃sh. (d), (e) Harmonic model parameters normalized to their expected values
τ̃bh/τ̃b and ũbh/ũb. (f) Mean square error of the fit.
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a physical meaning, such as in Ref. [45], instead they reflect
the limitation to distinguish between the two timescales by the
harmonic model.

The model we consider has a constant sedimentation speed,
independent on the particle position, meaning that we neglect
hydrodynamic lubrication effects. This approximation is con-
sistent with considering that the induced flow u is independent
of particle position, which allowed us to model u(t ) as a
stationary autonomous stochastic process. For all simulation
conditions, with the sole exception of very large bath veloc-
ities ũb, the simulations show that the probe particle remains
almost all the time in contact with the surface. This implies
that the friction coefficient of the inner particle may not be
that of a particle in the bulk, but is eventually modified by hy-
drodynamic lubrication. This value depends logarithmically
on the gap distance Ro − Ri [46,47] and therefore may change
on time. Hence, in our model, γ should be understood as
the friction coefficient averaged over the possible gap values.
Interestingly, the second fitting protocol we present, leaving
the sedimentation time as a free parameter, allows us to obtain

the effective friction coefficient. However, to apply the pro-
tocol, some prior estimation of its value should be available
to break the symmetry between the two times obtained from
the fit.

Finally, if the thermal diffusivity DT is comparable to the
active one, thermal noise should be added to the model. By
fitting the MSD to the extended model, the value of DT can be
obtained together with the other model parameters.
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