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Strong-coupling effective-field theory for asymmetrically charged plates with counterions only
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We are interested in rationalizing the phenomenon of like-charge attraction between charged bodies, such as
a pair of colloids, in the strong coupling regime. The two colloids are modelled as uniformly charged parallel
plates, neutralized by mobile counterions. In an earlier work [Palaia et al., J. Phys. Chem. B 126, 3143 (2022)],
we developed an effective-field theory for symmetric plates, stemming from the ground-state description that
holds at infinite couplings. Here, we generalize the approach to the asymmetric case, where the plates bear
charges of the same sign, but of different values. In the symmetric situation, the mobile ions, which are localized
in the vicinity of the two plates, share equally between both of them. Here, the sharing is nontrivial, depending
both on the coupling parameter and the distance between the plates. We thus introduce a counterion occupation
parameter that is determined variationally to ensure minimum of the free energy. The analytical results for the
pressure as a function of the plate-plate distance d agree well with our Monte Carlo data, in a large interval of
strong and intermediate coupling constants �. We show in particular that within this description there exists a
range of large distances at which the attractive pressure features a 1/d2 behavior.
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I. INTRODUCTION

Mesoscopic bodies (macroions or colloids), immersed in
a polar solvent like water, release from their surfaces (due
to efficient solvation) mobile “counterions.” Ions in Coulomb
fluids are generically of both signs, however, one can reach
experimentally the limit of deionized (salt-free) suspensions
with no “coions” [1–3]. The curved surface of the large
colloid is usually approximated by a planar surface and the
modulated charge density fixed on colloid’s surfaces by the
uniform one. Counterions in the vicinity of a charged col-
loid form an electric double layer (EDL) [4–6]. The study
of the effective interaction between two like-charged EDLs,
mediated by counterions, is of special experimental and the-
oretical interest in many branches of physics, chemistry and
biochemistry [7–11].

Like-charged macroions always repel one another in
the high-temperature (weak coupling, WC) regime de-
scribed by the mean-field Poisson-Boltzmann (PB) theory
[12–16] as well as its functional improvement via a loop
expansion [17–19].

At low enough temperatures, i.e., in the strong-coupling
(SC) regime, a counterintuitive attraction of like-charged
macromolecules was observed by computer simulations
[20–22] as well as experimentally [23–27]. Different theo-
retical treatments have been proposed for the SC regime.
In the virial SC approaches [28–30], the leading SC term
of the counterion density corresponds to a single particle
theory in the electric potential of charged wall(s); resulting
densities have been confirmed by Monte Carlo (MC) simula-
tions [28,29,31–33]. Next correction orders in inverse powers
of the coupling constant, obtained within a virial fugacity

expansion, require a renormalization of infrared divergencies;
comparison with MC simulations shows that the first correc-
tion term has the correct functional form in space, but an
incorrect prefactor. Another type of SC theories was based on
the classical Wigner crystal of counterions created on the wall
surfaces at zero temperature [11,34,35]. A harmonic analysis
of counterion deviations from their ground-state Wigner posi-
tions [36,37] reproduces correctly the leading single-particle
picture of the virial SC approach. The first correction term
to the counterion density is in excellent agreement with MC
data for strong as well as intermediate Coulombic couplings.
To adapt the Wigner SC approach to the fluid phase, the
Wigner structure was substituted by a correlation hole (i.e., the
depletion region around a charge due to Coulomb repulsion of
the same charges) in Refs. [38,39].

For two parallel symmetrically charged planar surfaces,
it was recently shown [40] that the relevant physics for the
like-charge attraction is the ground-state one. The method
[40] is based on the introduction of effective fields which
reflect the partial screening of the electric field induced by the
fixed surface charge density of a plate by counterion layers.
According to Earnshaw’s theorem [41], in the ground-state
counterions stick to the surfaces of the confining plates. Upon
changing the distance between plates from 0 to ∞, a se-
quence of five Wigner phases I–V emerges at zero temperature
[42–47]. These staggered phases consist of two equivalent
lattice structures on the left and right plates, shifted with
respect to one another by a half period in both spatial di-
rections. Since each plate as a whole (i.e., the surface charge
density plus the corresponding counterions) is electroneutral,
the effective interaction between the walls is short-ranged (ex-
ponentially decaying) at large distances. The extension of the
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ground-state effective fields to nonzero temperatures leads to a
formula for the pressure which interpolates between the “ideal
gas” regime for small inter-plate distances and the “Wigner”
regime at large distances. The pressure fulfills known exact
requirements and its dependence on the inter-plate distance is
in a perfect agreement with MC data, in a large interval of
strong and intermediate values of the coupling constant.

The aim of this paper is to extend the effective-field
method [40] to asymmetric parallel plates; throughout this
paper, asymmetrically charged plates refers to surfaces with
unequal but same-sign surface charge densities. The ground
state of asymmetric plates was studied by using analytical
and computational evolutionary techniques [48,49], as well as
unsupervised learning [50]. In comparison with the symmet-
rically charged plates, the asymmetric system exhibits much
more phases, sometimes of exotic nature (pentagonal, snub
square, etc.). Each plate as a whole (i.e., the surface charge of
the plate plus the counterions attached to that plate) is, in gen-
eral, not neutral which implies a long-ranged (inverse-power
law) effective interaction between the plates at large distances
between them. This nonneutrality phenomenon complicates
substantially the analytic treatment of the asymmetric prob-
lem because of the presence of an additional free parameter
into the theory, namely the one related to the counterion oc-
cupations of the plates. In the ground state, this parameter is
determined variationally to ensure minimum of the ground-
state energy. In this paper, we go to nonzero-temperature
and construct the free energy of the system in the strong-
coupling regime, in terms of deviations of counterions from
their ground-state positions. The counterion occupation pa-
rameter is determined variationally to ensure minimum of
the free energy. Applying then the effective-field idea [40],
analytic results for the pressure as a function of the distance
d between the plates agree very well with our MC data in a
large interval of strong and intermediate coupling constants.
For large enough distances d of the attractive regime, the
pressure is shown to scale like 1/d2, with the nonuniversal
prefactor which carries the structural information about the
Wigner ground state and depends on the asymmetry parameter
of the plates. We stress that at asymptotically large distances,
the pressure is expected to follow the Poisson-Boltzmann
behavior, and to be repulsive there, decaying as 1/d2.

The paper is organized as follows. Section II brings basic
setup for the asymmetric model, together with the nota-
tion used. The ground-state structures for symmetrically and
asymmetrically charged plates are summarized in Sec. III. The
emphasis is put on the regions of small and large interplate
distances characterized by a few notable bilayer phases. Al-
though Secs. II and III summarize in a relatively detailed way
the known results from previous papers, they make the pre-
sentation self-contained. The presented formulas are crucial
for a clear understanding of original results derived in the
succeeding sections and help the potential reader to reproduce
the obtained analytic results. Section IV concerns the analytic
effective-field treatment of the asymmetric model at nonzero
temperatures, within the SC regime. The pressure is obtained
from either the contact value theorem (Sec. IV A) or the
thermodynamic route (Sec. IV B). Details of MC simulations
performed in this paper are described in Sec. V. The compar-
ison of the analytic and MC results for intermediate values

−e
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FIG. 1. The geometry (along the z axis) of two parallel walls at

distance d . There is a homogeneous surface charge density eσL fixed
on the left wall and eσR on the right wall. The pointlike counterions
of charge −e, moving freely between the walls, are pictured as black
circles.

of the coupling constant � = 30, 100 is made in Sec. VI.
The emphasis is put on both the small-distance region, where
the attractive pressure exhibits its minimum, as well as large-
distance region, where the attractive pressure exhibits the 1/d2

decay with a nonuniversal prefactor. Section VII is a short
recapitulation, together with some concluding remarks.

II. BASIC SETUP FOR THE ASYMMETRIC MODEL

A. Notation

Let us consider a pair of parallel plates at distance d ,
in the three-dimensional (3D) Cartesian space of points r =
(x, y, z); see Fig. 1. The left and right plates of the same (large)
surface S spread along the two-dimensional (2D) plane (x, y),
their positions along the perpendicular z axis being 0 and
d , respectively. The left (right) plate carries a homogeneous
surface charge density eσL (eσR) where e is the elementary
charge. Colloids acquire, in most cases, their charge from
a chemical equilibrium, of, e.g., ions or charged molecules,
between their surface and the solution medium; this equilib-
rium depends, in general, on the thermodynamic parameters
[15,16]. The investigation of the surface charge regulation,
where σR and σL would no longer be constant, goes beyond
the scope of this work. We note that some surfaces like mica
are structural and cannot change their charge density; this
includes a number of mineral surfaces. For titratable surfaces
the surface charge would indeed vary, but this relies also on
a salt reservoir which we do not allow for. Nevertheless, in
the most frequent common chemical equilibrium when the
solution’s pH is far away from the colloid’s pKa values, the
colloid can essentially be regarded as having a fixed surface
charge.

There are N classical counterions with charge say of unit
valence −e which move in the space between the plates � =
{r, 0 < z < d}. The requirement of the overall neutrality reads

N = (σL + σR)S. (2.1)

The counterions are considered to be pointlike. This sim-
plification is suitable especially for low temperatures when
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counterions maximize their separation within the counterion
layer and their size will be irrelevant up to the spacing of the
counterion structure [51].

Without any loss of generality one can assume that σL > 0.
Rescaling appropriately the model’s parameters, it is sufficient
to consider the asymmetry parameter

A = σR

σL
(2.2)

inside the interval [−1, 1]; the limiting value A = −1 cor-
responds to the trivial case σR = −σL with no counterions
between the plates, A = 1 corresponds to the symmetrically
charged plates σL = σR. Likely charged asymmetric plates
with

0 < σR < σL, (2.3)

i.e., A ∈ (0, 1), are of special interest. Let the dielectric con-
stant of the walls εW be the same as that of the medium the
counterions are immersed in ε, εW = ε, i.e., there are no im-
age charges. The vacuum ε = 1 is taken for simplicity, again
without loss of generality. The system is considered either at
zero temperature T = 0 or in thermal equilibrium at nonzero
temperatures T > 0.

B. Zero temperature, T = 0

In the ground state (T = 0), according to Earnshaw’s the-
orem [41], the Coulomb charges are expelled from the slab
interior and stick to the surfaces of the confining plates. In par-
ticular, NL (NR) counterions collapse on the left (right) plate
surfaces, N = NL + NR and organize themselves onto certain
left (right) crystal structures. The densities of counterions at
the surfaces of the plates are given by

nL = NL

S
, nR = NR

S
. (2.4)

According to the overall electroneutrality condition (2.1), the
counterion densities at plates are constrained by

nL + nR = σL + σR. (2.5)

It is useful to introduce the (occupation) order parameter

p ≡ NR

NL + NR
= nR

σL + σR
(2.6)

by using of which one can express nL and nR as follows:

nL = (1 − p)(σL + σR), (2.7)

nR = p(σL + σR). (2.8)

If the local electroneutrality holds on both plates, i.e., nL = σL

and nR = σR, then the order parameter p equals to

pneutr = A

1 + A
. (2.9)

(1) For the symmetric case A = 1 with σL = σR = σ ,
upon changing the distance between plates from 0 to ∞, a
sequence of five phases I–V emerges [42–47]. These stag-
gered phases consist of two equivalent lattice structures on
the left and right plates, shifted with respect to one another by
a half period in both spatial directions. Phase I, the monolayer

hexagonal structure, exists only at zero interplate distance
d = 0 [44,47]. Phase II corresponds to a staggered rectangular
bilayer with the aspect ratio 1 < � <

√
3, phase III is a stag-

gered square bilayer, phase IV a staggered rhombic bilayer
with a deformation angle ϕ < π/2, and phase V a staggered
hexagonal bilayer. Since NL = NR = N/2 for each of the
phases, it holds that nL = nR = σ or, equivalently, pgs = 1

2
where the subscript “gs” means “ground state.” Each plate as a
whole (i.e., the surface charge density plus the counterions) is
thus neutral. As a consequence, the walls are bounded at large
distances by short-ranged (usually exponentially decaying)
forces.

(2) The asymmetric case 0 < A < 1, studied by using both
analytical calculations and computational evolutionary tech-
niques as well as unsupervised learning in Refs. [48–50],
exhibits much more phases. In an interval of small distances
up to a critical one, 0 � d < dc(A), phase I with all counteri-
ons collapsed onto the hexagonal monolayer on the left plate
is dominant, i.e.,

nL = σL + σR, nR = 0. (2.10)

Consequently,

pgs(d ) = 0 for 0 � d � dc(A). (2.11)

In the opposite asymptotic limit of large distances d → ∞,
the local neutralization of each of the plates by the corre-
sponding counterions takes place:

lim
d→∞

nL(d ) = σL, lim
d→∞

nR(d ) = σR. (2.12)

Consequently,

lim
d→∞

pgs(d ) = pneutr. (2.13)

As a rule, pgs(d ) grows from 0 to pneutr monotonously
with increasing distance d . In general, for finite interplate
distances d , the counterion densities nL �= σL and nR �= σR

do not neutralize locally the corresponding surface charge
densities at the plates. This implies long-ranged (inverse-
power law) effective interactions between the plates at large
distances [48,49].

C. Nonzero temperatures, T > 0

As soon as T > 0, the counterions can move into the slab
interior. When the temperature is low, the counterions are still
localized in the neighborhood of the plate they belonged at
zero temperature and one can adopt plausibly the counterparts
of the densities nL and nR; they do not represent the counterion
densities at the walls but rather under the effect of the effective
fields generated by the corresponding walls.

(1) For the symmetrically charged plates, the reflection
symmetry of the system keeps the local electroneutrality of
the plates, nL = nR = σ , and so, likewise in the ground state,
p = 1

2 . This is behind the success of the method of interest
[40] to describe the thermodynamics for nonzero temperatures
in terms of ground-state effective fields.

(2) For asymmetrically charged plates, in close analogy
with the zero temperature, the counterion densities are not ex-
pected to neutralize locally the corresponding surface charge
densities at the plates for finite distances, i.e., in general,
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nL �= σL and nR �= σR. A crucial complication for asymmetric
plates is a discontinuous change of counterion densities nL

and nR when passing from zero to nonzero temperatures. As
will be shown later both analytically as well as numerically,
the counterion densities skip from values nL = (σL + σR) and
nR = 0 to nL = nR = (σL + σR)/2 at asymptotically small dis-
tances, as soon as T goes from 0 to a nonzero value. This is
because for small interplate distances the counterions move
freely in the electric field created by the uniformly charged
plates (the potential difference between the plates is very
small) and the neighboring counterions are sufficiently far
away from each other for having any effect on the electric field
in the direction perpendicular to the plates. Consequently,

p(d ) ∼ 1
2 for d → 0+. (2.14)

We conclude that for small distances going from T = 0 to
T > 0 induces a discontinuity in p from pgs = 0 (2.11) to
p = 1

2 (2.14), respectively. To extend the ground-state descrip-
tion in terms of effective fields to nonzero temperatures is then
nontrivial due to atypical entropy contributions.

III. GROUND-STATE PICTURE

To neutralize the plate surface with a fixed surface charge
density eσ by a regular lattice structure of point charges −e,
the lattice constant should be of order 1/

√
σ . At zero temper-

ature, the distance between the plates will be considered in the
dimensionless form

η = d

√
σL + σR

2
. (3.1)

Roughly speaking, the parameter η is the ratio of the distance
between the plates d and the characteristic distance between
the nearest-neighbor counterions on the plates.

There are two ways to obtain the ground-state pressure:
either via the counterion density at the wall contact (contact
theorem, see below), or the energy change with the interplate
distance.

A. Contact pressure

Under the term “effective field” we understand the fac-
tor by which the electric field created by the fixed surface
charge density of a plate is screened by counterion layers.
Let us derive first, in Gaussian units, the effective field act-
ing on counterions constrained to the left plate. The electric
field generated by the uniform surface charge density eσL is
given by

EL = 2πeσL. (3.2)

For a single counterion on the left plate (z = 0), the layer
of counterions on the same plate induces a symmetric po-
tential V (z) = V (−z) and therefore the electric field E =
−∂V (z)/∂z, proportional to z, is subdominant with respect
to Eq. (3.2). The discrete layer of ions on the opposite right
plate, together with the uniform surface charge density eσR on
that plate, renormalize the bare field EL by a factor κL which
depends on the distance η. For small distances η → 0, each
counterions on the left plate feels the electric field generated
by the two plates only 2πe(σL − σR), while discrete layers of

other counterions are too far away compared to the interplate
distance to contribute to the energy, i.e., κL = (σL − σR)/σL.
For large distances η → ∞, the discrete character of the coun-
terion layer on the opposite right plate becomes irrelevant and
together with the fixed surface charge density they form a
neutral entity, i.e., κL = 1. To summarize,

κL ∼
η→0

1 − A, κL ∼
η→∞ 1. (3.3)

Note that these limiting values of the effective field are not
restricted to the ground state, but they apply also to nonzero
temperatures.

Each ion at the contact with the left plate pushes on it with
a force κLeEL; since there are nL ions per unit surface, the re-
pulsive force per unit surface is κLenLEL. However, there is an
electrostatic force acting on the left plate due to the presence
of two (left and right) ion layers and of the surface charge on
the right plate. Since the corresponding surface charge density
−eσL is opposite to the original one on the left plate, the
attractive force per unit surface is −2π (eσL )2 = −eσLEL. The
total force per unit surface, i.e., the pressure, is the sum of the
contact and electrostatic forces:

P0 = κLenLEL − eσLEL

= 2πe2
(
κLσLnL − σ 2

L

)
. (3.4)

In this paper, we follow the convention of Refs. [37,52] that
all thermodynamic quantities will be rescaled to their dimen-
sionless forms with respect to the left plate. In particular, the
pressure will be considered in the dimensionless form

P̃0 ≡ P0

2πe2σ 2
L

. (3.5)

Thus, the dimensionless form of the relation (3.4) reads as

P̃0 = κLnL

σL
− 1. (3.6)

An analogous analysis for the counterions on the right plate
implies that

P̃0 = A2

(
κRnR

σR
− 1

)
. (3.7)

Here, the factor κR renormalizes the bare field induced by the
right plate ER = −2πeσR due to the presence of the homoge-
neous surface charge density and the discrete layer of ions on
the opposite left plate. The counterparts of the limiting values
(3.3) read as

κR ∼
η→0

1 − 1

A
, κR ∼

η→∞ 1. (3.8)

The two equivalent relations for the pressure (3.6) and (3.7)
imply the equality

κLnLσL − κRnRσR = σ 2
L − σ 2

R (3.9)

or, equivalently,

κL(1 − p) − κRAp = 1 − A. (3.10)

B. Pressure obtained via the thermodynamic route

Definitions (3.6) and (3.7) of the dimensionless pressure
were given in terms of the quantities at the plate contacts. Let
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us introduce the auxiliary quantity E0(η, p) as the ground-
state energy per unit surface in the subspace with a fixed
order parameter p. One can define the pressure alternatively
as (minus) the total derivative of this energy with respect to
the distance:

P0(η, p) = − d

dd

E0(η, p)

S

= − e2

√
2

(σL + σR)2 d

dη

E0(η, p)

Ne2
√

σL + σR
; (3.11)

hereinafter, if not necessary, the explicit dependence of quan-
tities on the asymmetry parameter A will not be indicated. The
ground-state value of p is determined by the condition of the
energy minimum:

∂E0(η, p)

∂ p

∣∣∣∣
p=pgs

= 0,
∂2E0(η, p)

∂ p2

∣∣∣∣
p=pgs

< 0. (3.12)

The dimensionless pressure (3.5) is thus expressible as

P̃0(η, p) = − 1

23/2π
(1 + A)2 ∂

∂η

E0(η, p)

Ne2
√

σL + σR
, (3.13)

where the interchange of the total derivative by the partial
one is possible due to the stationarity condition (3.12). In the
ground state, the physical values of all considered quantities
is taken at p = pgs, in particular,

P̃gs(η) = P̃0(η, pgs). (3.14)

From Eq. (3.6) one can express the combination
κLnL

σL
= 1 + P̃0(η, p). (3.15)

With regard to Eq. (2.7), it holds that

κL(η, p) = 1

(1 − p)(1 + A)
[1 + P̃0(η, p)]

= 1 − A + ApK0(η, p), (3.16)

where the function K0(η, p) is defined by

K0(η, p) = P̃0(η, p) + A2 + p(1 − A2)

p(1 − p)A(1 + A)
. (3.17)

Similarly, it follows from Eq. (3.7) that

κRnR

σR
= 1 + 1

A2
P̃0(η, p). (3.18)

Since nR = p(σL + σR), one ends up with

κR(η, p) = 1

p(1 + A)

[
A + 1

A
P̃0(η, p)

]
= 1 − 1

A
+ (1 − p)K0(η, p). (3.19)

The ground-state values of the effective fields are given by

κ
(gs)
L (η) = κL(η, pgs), κ

(gs)
R (η) = κR(η, pgs). (3.20)

C. Ground-state structures

The above discussion was quite general, valid for any type
of the bilayer. In what follows, we shall restrict ourselves to
the description of the relevant phases present in the phase

diagram at small and large values of the distance η. The exotic
(snub square, pentagonal,...) phases, taking place at interme-
diate interplate distances, are irrelevant for our purposes.

According to the general analysis presented in Appendix A
of Ref. [49], the total energy E (η, p, A) of any bilayer sys-
tem with nonneutral (surface charge plus counterions) plates
can be expressed in terms of the total energy of the bilayer
system with “neutralized” plates, keeping the same values of
η, p and fixing the neutral value of the asymmetry parameter
A = p/(1 − p), as follows:

E0(η, p; A)

Ne2
√

σL + σR
= Eneutr

0 (η, p; A = p/(1 − p))

Ne2
√

σL + σR

+ 23/2πη

(
p − A

1 + A

)2

. (3.21)

The second term on the right-hand side of this equation is
simply the excess energy due to the nonneutrality of each of
the two plate’s entities.

1. Structures I and Ip emerging at small η

As was mentioned in the Introduction, at small distances
η ∈ [0, ηc(A)], all counterions collapse onto the left plate in
the so-called phase I [48,49], see the relations (2.10) imply-
ing that pgs = 0. Here, ηc(A) is a critical distance at which
a second-order transition from phase I to another one with
pgs > 0 and a smaller energy takes place. The value of ηc(A)
increases with decreasing A; it goes from ηc = 0 for the sym-
metrically charged A = 1 plates up to ηc → ∞ when A = 0
(σR = 0). The lattice spacing a of the hexagonal structure
of counterions at the left plate is determined by the relation√

3a2(σL + σR)/2 = 1. The energy of phase I, EI(η, A), is
given by [48,49]

EI(η, A)

Ne2
√

σL + σR
= c + 23/2πη

(
A

1 + A

)2

, (3.22)

with

c = 1

23/2
√

π

∫ ∞

0

dt√
t

{[
θ3(e−√

3t )θ3(e−t/
√

3) − 1 − π

t

]
+

[
θ2(e−√

3t )θ2(e−t/
√

3) − π

t

]}
= −1.960515789 . . . , (3.23)

being the Madelung constant of the 2D hexagonal struc-
ture; here, θ2(q) = ∑∞

j=−∞ q( j− 1
2 )2

and θ3(q) = ∑∞
j=−∞ q j2

are Jacobi theta functions with zero argument. According to
Eq. (3.13), the dimensionless pressure

P̃gs(η) = −A2 (3.24)

is constant in phase I. The same result follows directly by
inserting nR = 0 into the formula (3.7) which confirms the
consistency of the ground-state formalism.

When η exceeds its critical value ηc(A), some of the coun-
terions on the left plate start to jump perpendicularly to the
right plate, i.e., the projections of the counterions of both
layers onto one plane still form the hexagonal lattice. The
corresponding phase with the given value of p is referred
to as phase Ip. There are specific “commensurate” values of
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p ∈ { 1
2 , 1

3 , 1
4 , 1

7 , 1
9 , ...} for which the counterions on the right

place form an energetically favorable hexagonal lattice with
spacing b � a. The interaction Coulomb energy of phase Ip is
presented in Appendix A. Since the distribution of commen-
surate values of p becomes denser and denser as p → 0, it is
natural to extend the formulas for the energy (A1) and (A2) to
continuous values of p in this limit of p → 0.

In the region of small p, the expression for the energy (A1)
can be expanded systematically in powers of p [49]:

EIp (η, p) − EI(η, p)

Ne2
√

σL + σR
= f (η)p + 23/2π

λ
η2 p5/2 + O(p7/2),

(3.25)
where

f (η) = 23/2π
1 − A

1 + A
η − 1√

2π

∫ ∞

0

dt√
t

(
1 − e−η2t

)
× [θ3(e−√

3t )θ3(e−t/
√

3) − 1 + θ2(e−√
3t )θ2(e−t/

√
3)]

(3.26)

and

λ = 4π

31/4ζ
(

3
2

)[
ζ
(

3
2 , 1

3

) − ζ
(

3
2 , 2

3

)] 	 0.999215. (3.27)

Here, ζ (s, q) = ∑∞
j=0 1/(q + j)s is the Hurwitz ζ function

which represents the generalization of the Riemann ζ function
ζ (s) ≡ ζ (s, 1). The extremum condition for the energy of
phase Ip (3.25) reads as

0 = f (η) + 5
√

2π

λ
η2 p3/2 + O(p5/2). (3.28)

For a given A, the critical value of the dimensionless dis-
tance is identified with the condition f (ηc) = 0, i.e.,

4π
1 − A

1 + A
ηc = 1√

π

∫ ∞

0

dt√
t

(1 − e−η2
c t )

× [θ3(e−√
3t )θ3(e−t/

√
3) − 1

+ θ2(e−√
3t )θ2(e−t/

√
3)]. (3.29)

The function f (η) (3.26) is dominated by the positive linear
term for small η, so that f (η) > 0 for 0 � η < ηc and f (η) <

0 for η > ηc. In the region 0 � η < ηc, in the vicinity of
the critical point, f (η) can be expanded as f (η) ∼ g(ηc − η)
with a positive prefactor g > 0. In the region 0 < η < ηc,
the extremum equation (3.28) has no real solution for p; the
minimum energy is determined by p = 0 (phase I) in that
region. However, the extremum equation (3.28) has a positive
(real) solution for p in the region η > ηc, p(η) ∝ (η − ηc)2/3,
which grows continuously from 0 at η = ηc. It is simple to
verify that this solution provides the minimum of the energy
within the phase Ip.

2. Structure Vp emerging at large η

The energy of phase Vp is presented in Eq. (B1). The large-
η asymptotic of the integral (B2) was calculated by using the
saddle-point method in Appendix E of Ref. [49], with the
result

J (η, p) ∼
η→∞ −35/4

√
2

p
√

1 − p exp

(
−4π

√
1 − p

31/4
η

)
. (3.30)

This integral decays exponentially in η and therefore it can be
neglected comparing the term of the order η in Eq. (B1), i.e.,

EVp (η, p)

Ne2
√

σL + σR
∼

η→∞ 23/2πη

(
p − A

1 + A

)2

+ c[(1 − p)3/2 + p3/2]. (3.31)

According to Eq. (3.13), the dimensionless pressure
behaves as

P̃0(η, p) = −(1 + A)2

(
p − A

1 + A

)2

(3.32)

and the function K0(η, p) (3.17) is constant:

K0(η, p) = 1 + A

A
. (3.33)

The effective fields

κL(η, p) = 1 − A + p(1 + A), (3.34)

κR(η, p) = 2 − p

(
1 + A

A

)
(3.35)

depend only on the order parameter p.
For fixed values of the parameters (η, A), the ground-state

value of p is determined by the condition of the energy mini-
mum (3.12) as follows:

25/2πη

(
pgs − A

1 + A

)
+ 3

2
c(

√
pgs − √

1 − pgs) = 0.

(3.36)
Consequently, at large η,

pgs ∼
η→∞ pneutr − 3(−c)

27/2π

1 − √
A√

1 + A

1

η
. (3.37)

Since c is negative, pgs tends to its asymptotic value pneutr =
A/(1 + A) from below; this means that the number of coun-
terions on the right plate NR < σRS and the number of
counterions on the left plate NL > σLS. The ground-state en-
ergy of phase Vp has the large-η asymptotic

Egs(η)

Ne2
√

σL + σR
∼

η→∞ c
1 + A3/2

(1 + A)3/2

− 9c2

211/2π

(1 − √
A)2

1 + A

1

η
. (3.38)

Inserting into Eq. (3.32) p = pgs from Eq. (3.37), the ground-
state pressure exhibits the following asymptotic behavior

P̃gs(η) ∼
η→∞ − 9c2

27π2
(1 −

√
A)2(1 + A)

1

η2
. (3.39)

This formula is nonuniversal because it contains the Madelung
constant c of the hexagonal Wigner structure and the asymme-
try parameter A. As P̃gs goes at asymptotically large distances
to 0 from below, the asymmetric plates attract one another.

In the symmetric case A = 1, the leading long-range 1/η2

term in Eq. (3.39) vanishes and the standard short-range ex-
ponential attraction [47]

P̃gs(η) ∼
η→∞ −3 exp

(
− 4πη√

231/4

)
(3.40)
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takes place. This results does not contradict the previous
formula since exponentially decaying contributions were ne-
glected in the derivation of Eq. (3.39).

IV. NONZERO TEMPERATURES

The system is considered to be in thermal equilibrium at
the inverse temperature β = 1/(kBT ). Besides the dimension-
less distance η (3.1) introduced in the ground state, there are
two other length scales relevant for nonzero temperatures.
The Bjerrum length �B is the distance at which two unit
charges interact with the thermal energy kBT , �B = βe2. Re-
specting our convention, the Gouy-Chapman length μ is the
distance from the left plate at which the potential energy in-
duced by the surface charge density eσL equals to the thermal
energy kBT ,

μ = 1

2π�BσL
. (4.1)

The perpendicular z coordinate will be expressed in units
of μ:

z̃ ≡ z

μ
. (4.2)

The dimensionless coupling parameter �, reflecting the
strength of electrostatic correlations, is defined as the ratio of
the two length scales,

� ≡ �B

μ
= 2π�2

BσL. (4.3)

The dimensionless distance η (3.1) is expressible in terms of
d̃ = d/μ as follows:

η = √
1 + A

d̃

2
√

π�
. (4.4)

As in the ground state, the pressure can be obtained via
either the contact theorem or the thermodynamic route.

A. Contact pressure

At nonzero yet not too large temperatures, the smear of
the (left or right) ionic layer due to thermal noise is much
smaller than the interion spacing within the given layer. One
can thus adopt the single-particle ground-state picture with the
precisely same effective fields acting on counterions close to
the left and right plates. There is an effective electric field
κLEL [with EL given by Eq. (3.2)] acting on counterions
attached to the left plate, the corresponding potential reads
as VL(z) = −κLELz. Thermal equilibrium at nonzero tem-
perature is turned on via the position-dependent counterion
density in space nL(z) which is proportional to the one-body
Boltzmann factor exp[−β(−e)VL(z)]:

nL(z) = CL exp (−κL̃z). (4.5)

The 2D surface density of counterions nL (which has di-
mension 1/(length)2) is given as the integral along the
perpendicular z axis of the density of counterions in 3D space
nL(z) [which has dimension 1/(length)3]:

nL =
∫ d

0
dz nL(z). (4.6)

This normalization condition determines the prefactor CL as
follows:

CL = κLnL

μ

1

1 − e−κL d̃
. (4.7)

Analogously, the spatial density of counterions attached to the
right plate reads as

nR(z) = CR exp[−κRA(d̃ − z̃)], (4.8)

where the prefactor CR is determined by the normalization
condition nR = ∫ d

0 dz nR(z) as follows:

CR = κRnRA

μ

1

1 − e−κRAd̃
. (4.9)

The total density of counterions in space n(z) is the sum of the
left and right counterion densities:

n(z) = nL(z) + nR(z). (4.10)

The order parameter p, introduced in the analytic treat-
ment of asymmetric plates, cannot be deduced from numerical
simulations at nonzero temperatures because it is not clear
from the actual position of a counterion which is its plate
of origin at zero temperature. However, the knowledge of
the density profile in simulations motivates us to employ the
half-space occupation quantity τ as the ratio of the number of
counterions to the right of the midplane between the plates,
N>, to the total counterion number N ,

τ = N>

N
. (4.11)

This quantity has already been introduced in Ref. [53] under
the name “the total diffuse charge near the cathode.” Since
N> = N>

L + N>
R , where

N>
L = S

∫ d

d/2
dz nL(z) = SCLμ

∫ d̃

d̃/2
dz e−κL z̃ (4.12)

and

N>
R = S

∫ d

d/2
dz nR(z) = SCRμ

∫ d̃

d̃/2
dz e−κRA(d̃−z̃), (4.13)

the theoretically predicted value of τ takes the explicit form

τ (η, p) = (1 − p)
1

eκLd̃/2 + 1
+ p

1

e−κRAd̃/2 + 1
. (4.14)

The limiting η → 0 and η → ∞ values of τ coincide with
those of p:

lim
η→0

τ = 1

2
, lim

η→∞ τ = A

1 + A
. (4.15)

Having the density profile of counterions, the pressure Pc

can be obtained by applying the contact value theorem for
planar wall surfaces [54–57]. With respect to the left plate,
the pressure is given by

βPc = n(0) − 2π�Bσ 2
L

= CL + CR exp(−κRAd̃ ) − 2π�Bσ 2
L . (4.16)

Introducing the dimensionless pressure

P̃c ≡ βPc

2π�Bσ 2
L

, (4.17)
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one gets that

P̃c = κLnL

σL

1

1 − e−κLd̃
+ κRnR

σR
A2 1

eκRAd̃ − 1
− 1. (4.18)

With respect to the right plate, the pressure is given by

βPc = n(d ) − 2π�Bσ 2
R

= CL exp(−κLd̃ ) + CR − 2π�Bσ 2
R , (4.19)

so that

P̃c = κLnL

σL

1

eκLd̃ − 1
+ κRnR

σR
A2 1

1 − e−κRAd̃
− A2. (4.20)

The requirement of the equivalence of the two pressure
representations (4.18) and (4.20),

κL(1 − p) − κRAp = 1 − A, (4.21)

coincides with the ground-state constraint for the left and right
effective fields (3.10).

In analogy with the ground-state Eqs. (3.16) and (3.19),
this constraint is fulfilled by the ansatz

κL(η, p) = 1 − A + ApK (η, p), (4.22)

κR(η, x) = 1 − 1

A
+ (1 − p)K (η, p), (4.23)

with K (η, x) being an arbitrary function. The basic idea of
the theory in Ref. [40] dealing with the symmetric case was
that extending the ground-state effective fields to nonzero
temperatures is a plausible approximation. The same idea is
adopted to our asymmetric case by setting

K (η, p) = K0(η, p), (4.24)

with K0(η, p) defined by Eq. (3.17), in relations (4.22) and
(4.23). In this way one obtains the ground-state representa-
tions (3.16) and (3.19).

Using formulas (4.18) and (4.20) for the effective fields,
the pressure can be expressed in a symmetrized form:

P̃c = 1

2

[
κLnL

σL
coth

(
κLd̃

2

)
+ κRnR

σR
A2 coth

(
κRAd̃

2

)]

− 1 + A2

2
. (4.25)

Applying here the expansion formula

coth t = 1

t
+ t

3
+ O(t3), (4.26)

the limiting η → 0 values of κL (3.3) and κR (3.8) and the
constraint (3.9), the small-distance expansion of the pressure
is expressible explicitly up to the first order in d̃:

P̃c = 1 + A

d̃
− 1 + A2

2
+ (1 − A)2(1 + A)

d̃

12
+ O(d̃2).

(4.27)

B. Pressure obtained via the thermodynamic route

In the canonical ensemble, having NL counterions attached
to the left plate and NR counterions attached to the right plane,
the free energy F (NL, NR) is defined as

−βF (NL, NR) = ln Z (NL, NR), (4.28)

where Z (NL, NR) is the partition function

ZN = 1

(NL + NR)!

∫
�

NL∏
j=1

dr j

λ3

NR∏
k=1

drk

λ3

× exp[−βE (η, x; {r j}, {rk})], (4.29)

where λ stands for the thermal de Broglie wavelength and
� = {r, 0 < z < d} denotes the slab between the plates.

The total energy of counterions E (η, x; {r j}, {rk}) can be
expanded around the ground-state energy in small deviations
from their ground-state positions, as is done for symmetrically
charged plates in Ref. [37],

βE ({r j}, {rk}) = βEgs + κL

NL∑
j=1

z̃ j + �B

2a3
L

NL∑
j=1

(
x2

j + y2
j

)

+ κRA
NR∑

k=1

(d̃ − z̃k ) + �B

2a3
R

NR∑
k=1

(
x2

k + y2
k

)
+ · · · . (4.30)

Here, aL ∝ 1/
√

nL and aR ∝ 1/
√

nR are the lattice spacings
of counterion structures created on the left and right plates, re-
spectively; the prefactors, which depend only on the particular
lattice structures, are irrelevant for our purposes. Higher-order
terms in Eq. (4.30) scale like 1/�(a−2)/4 (a = 3, 4 . . .) and
therefore vanish in the limit � → ∞.

The integration of the Boltzmann factor with the energy
(4.30) can be performed straightforwardly in Eq. (4.29) for
the perpendicular z components:∫ d

0

dz j

λ
e−κL z̃ j = μ

λ

1 − e−κL d̃

κL
, j = 1, . . . , NL (4.31)

and∫ d

0

dzk

λ
e−κRA(d̃−z̃k ) = μ

λ

1 − e−κRAd̃

κRA
, k = 1, . . . , NR.

(4.32)

The parallel components x, y are trickier. Let us assume first
that due to strong electrostatic repulsions in the parallel (x, y)
plane a given counterion (say the one sitting on the left plate)
is constrained to the space S/NL = 1/nL reserved for one
counterion, namely to a disk of radius RL given by R2

L =
1/(πnL ). In radial coordinates, the integration over coordi-
nates x, y reads as∫ RL

0
2πrdr exp

(
− �B

2a3
L

r2

)
= 2πa3

L

�B

∫ �B
2πnL a3

L

0
dt e−t . (4.33)

Since the upper limit of integration

�B

2πnLa3
L

∝ �B

aL
∝

√
�

√
nL

σL
, (4.34)

the integral over t in Eq. (4.33) equals to 1 in the large-� limit.
Consequently, the integration over coordinates x, y implies for
every counterion the factor ∝ n−3/2

L where the explicit form of
the constant prefactor is irrelevant. Similarly, the correspond-
ing factor for each counterion sitting on the right plate can be
shown to be ∝ n−3/2

R .

014609-8
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To summarize the above paragraph, the free energy (4.28)
can be expressed as

−βF (NL, NR) = const − βEgs

+ NL ln

(
1 − e−κLd̃

κL

)
− 3

2
NL ln nL

+ NR ln

(
1 − e−κRAd̃

AκR

)
− 3

2
NR ln nR.

(4.35)

Thus, the free energy per counterion f = F/(NL + NR) is
given by

β f (η, p) = const + βEgs(η, p)

N
− (1 − p) ln

(
1 − e−κL d̃

κL

)

+ 3

2
(1 − p) ln(1 − p) − p ln

(
1 − e−κRAd̃

AκR

)

+ 3

2
p ln p. (4.36)

The thermodynamic pressure is defined as (minus) the total
derivative of the free energy with respect to the distance:

Pth(η, p) = − d

dd

F (η, p)

S

= − 1√
2

(σL + σR)3/2 df (η, p)

dη
. (4.37)

The value of the order parameter p is determined by the
variational condition of the free-energy minimum:

∂ f (η, x)

∂x
= 0,

∂2 f (η, x)

∂x2
< 0. (4.38)

The dimensionless thermodynamic pressure P̃th ≡
βPth/(2π�Bσ 2

L ) is thus expressible as

P̃th(η, p) = − 1

23/2π
(1 + A)2 ∂

∂η

β f (η, p)

�B
√

σL + σR
, (4.39)

where the replacement of the total derivative by the partial one
is possible due to the stationarity condition (4.38).

As soon as the temperature is nonzero, i.e., for any fi-
nite value of the coupling constant �, the effective force
(pressure) between two symmetrically charged walls at
asymptotic (in fact, extremely large) distances between the
walls d → ∞ is expected to be repulsive, of the PB power-law
type [30,35,58–60]

βP ∼
d→∞

π

2�B

1

d2
, P̃ ∼

d̃→∞
π2

d̃2
. (4.40)

The validity of this asymptotic relation for asymmetric plates
(but with the same sign of the charge) was shown in Ref. [52].
Note the universal independence of the repulsive pressure
(4.40) on the surface charge densities of the plates, the only
condition is that the plates bear surface charges of the same
sign. For asymmetric plates, the scaling (4.40) is fulfilled at
larger distances compared to symmetric plates.

As was shown in the previous section, at zero temperature
phase Vp is relevant at asymptotically large distances, leading

to an attractive pressure with the asymptotic nonuniversal
behavior (3.39) which has the same 1/d2-dependence on the
distance as the PB pressure (4.40). At low enough tempera-
tures, the attractive regime still exists and spreads over a large
interval of distances, except for asymptotically large distances
where the PB repulsion takes place. One can intuitively expect
the impact of phase Vx on the large-distance behavior of the
attractive pressure within the given interval of distances. To be
more particular, let us consider the ground-state energy (3.31)
with the effective fields (3.34) and (3.35) in the expression
for the free energy (4.36). The exponentially decaying terms
of type exp(−κLd̃ ) and exp(−κRAd̃ ) are negligible compar-
ing with their inverse-power-law counterparts, thus the free
energy is given by

β f (η, p)

�B
√

σL + σR
= const + 23/2πη

(
p − A

1 + A

)2

+ c[(1 − p)3/2 + p3/2] +
√

2π

(1 + A)�

×
{

(1 − p) ln[1 − A + p(1 + A)]

+ 3

2
(1 − p) ln(1 − p)

+ p ln[2A − p(1 + A)] + 3

2
p ln p

}
. (4.41)

The variational condition (4.38) implies that for large η

p ∼ A

1 + A
+ a

η
, a = 3c

27/2π

1 − √
A√

1 + A
− 5

8
√

π�

ln A√
1 + A

.

(4.42)

In the zero-temperature limit � → ∞, this formula reduces
to the previous ground-state one (3.39) as it should be. The
thermodynamic pressure (4.39) behaves for large η as follows:

P̃th = −(1 + A)2

(
p − A

1 + A

)2

∼ −(1 + A)2 a2

η2
. (4.43)

This scaling dependence on the distance between the plates,
which holds exclusively in the large-distance region of the
attractive pressure, has the functional form of the repulsive
PB pressure (4.40), with a nonuniversal prefactor.

V. MONTE CARLO SIMULATIONS

Metropolis MC simulations were carried out in a quasi-2D
slab geometry, where x and y directions are periodic. The
last z direction is bound by two charged, planar, and hard
surfaces, with uniform surface charge densities σL and σR.
We used N = 384 mobile point charges, which neutralize the
surface charges, and varied both the electrostatic coupling
parameter � and separation d between the two charged plates.
The point charges were confined to the slab between the two
surfaces. Electrostatic interactions were handled with standard
Ewald summation techniques, where we introduced an extra
vacuum slab between the periodic images in the z-direction,
with corrections for the quasi-2D dimensionality and the extra
vacuum slab [61,62]. The correction term in our case (keeping
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only terms dependent on the mobile charges positions) equals

βUq2D = 2π lB

[
1

(d + v)S

(∑
i

qizi

)2

+ (σL + σR)

(d + v)

∑
i

qiz
2
i + (σR − σL )

∑
i

qizi

]
, (5.1)

where v is the length of the vacuum slab, S the area of either
of the surfaces, zi the perpendicular position of the charges
(where the midplane is defined as z = 0), and qi the valency
of charge i. The vacuum slab was usually set to be v = 200 μ

wide. Tests with larger slabs were performed but without
any detectable difference. We also varied the precision of the
Ewald summation, including more terms in the Fourier space
summation and faster damping of the real part, but again,
without any detectable differences compared to the reported
data. New trial configurations were generated by randomly
displacing them a certain distance, with an acceptance ratio
close to around 30–50% using the Metropolis MC algorithm.
For a tenth of these displacements, we also tried to mirror a
point charge around the midplane to the other surface. All
data points were pre-equilibrated for 104 MC cycles, where
one cycles corresponds to N trial displacements. Pressures
and ion density profiles were then collected over 105 MC
cycles. Pressures were either calculated by estimating the
contact value of the ion densities at the respective surface,
minus either 2πσ 2

L or 2πσ 2
R accounting for the electrostatic

interaction between the smeared-out charge of the surfaces
with the rest of the system, or over the midplane. The latter
involves both estimating the midplane concentration and all
the electrostatic forces acting across the midplane [20]. While
both estimates of the pressures are the same, the latter is usu-
ally more precise. Standard errors in pressure were estimated
by applying block-averages, using ten blocks.

VI. COMPARISON OF THE THEORY
WITH MONTE CARLO DATA

All MC simulations were done with the asymmetry param-
eter A = 1

2 . The thermodynamic quantities of interest are the
(dimensionless) pressure P̃ (4.17) and the half-space occupa-
tion parameter τ defined by Eq. (4.11).

For very large values of the coupling constant � > 300, the
results of the theory agree remarkably with MC data; to spare
space we do not present them.

The results for the pressure P̃ as the function of the distance
d̃ for the intermediate value of the coupling constant � = 100
are presented in Fig. 2. The MC data are represented by solid
line and the results of the present theory by dashed line; the
thermodynamic route to obtain the pressure provides more
reliable results than the contact value theorem, so theoretical
results are taken for that pressure. The results of the present
theory are limited to the range of distances 0 < d̃ � 25, where
the ground state corresponds to the phases I and Ix; for larger
distances where the phase Vx prevails, see the large-distance
analysis of the attracive pressure at the end of Sec. IV. It is
seen that the agreement of the theory and MC simulations is
excellent also for this not too-large value of �. The leading
term of the virial SC (VSC) theory for the asymmetrically

0 10 20 30 40
d̃

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

P̃

FIG. 2. The pressure P̃ versus the distance d̃ for the asymmetry
parameter A = 1

2 and the coupling constant � = 100. Solid line
corresponds to MC data, dashed line to the present theory with the
pressure obtained via the thermodynamic route and dash-and-dot line
to the leading term of the VSC theory [52], see Eq. (6.1).

charged plates [52], given by

P̃VSC = −1

2
(1 + A2) + 1

2
(1 − A2) coth

(
1 − A

2
d̃

)
, (6.1)

is represented by the dash-and-dot curve. The VSC theory
gives reasonable values of the pressure only for small values
of d̃ corresponding to the repulsive regime of the pressure.

The results for the half-space occupation parameter τ as the
function of the distance d̃ for the coupling constant � = 100
are presented in Fig. 3. As before, the MC data are represented
by solid line and the results of the present theory by dashed
line. The agreement of the theory and MC simulations is very
good as well. The limiting η → 0 and η → ∞ values of τ

satisfy the requirements (4.15). It is interesting that the plot
of τ (d̃ ) is not monotonous. For very small distances between
the walls the numbers of counterions attached to the left and
right walls are equal, then increasing the distance counterions
migrate from the right to the left walls. The half-space oc-
cupation parameter is minimal when counterions maximally
attach to the left wall. For larger d , beyond this minimum,
counterions move to the right. For infinite d , counterions fully
screen the surface charge of both plates.

The results for the pressure P̃ and the half-space occupation
parameter τ as the functions of the distance d̃ for the coupling
constant � = 30 are presented in Figs. 4 and 5, respectively.
The agreement of the theory and MC simulations is very good
also for this value of �.

Let us now discuss the asymptotic large-distance behavior
of the pressure P̃ observed in MC simulations. For large values
of the coupling constant �, there is an apparent scaling regime
for the attractive P̃ < 0 in the region of large (but not too
large) distances as predicted by the relations (4.42) and (4.43).
At the same time, the PB regime (4.40) of the repulsive P̃ > 0
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0 10 20 30 40
d̃

0.0

0.2

0.4

0.6

0.8

1.0
τ

FIG. 3. The half-space occupation parameter τ versus the dis-
tance d̃ for the asymmetry parameter A = 1

2 and the coupling
constant � = 100. Solid line corresponds to MC data and dashed
line to the present theory. The horizontal dotted line shows the large-
distance asymptotics as given by Eq. (4.15), yielding here τ = 1

3 .

takes place at extremely large distances which are usually
not accessible to standard MC simulations due to the lack
of accuracy. The scaling region for the attractive P̃ becomes
less pronounced when decreasing � and it even disappears
for small values of �. As concerns the scaling PB region
for the repulsive P̃, it moves down to smaller distances when
decreasing � and for small values of � it is readily accessible
by using standard MC simulations.

0 5 10 15 20 25
d̃

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

P̃

FIG. 4. The pressure P̃ versus the distance d̃ for the asymmetry
parameter A = 1

2 and the coupling constant � = 30. The notation is
the same as in Fig. 2.

0 5 10 15 20 25
d̃

0.0

0.2

0.4

0.6

0.8

1.0

τ
FIG. 5. The half-space occupation parameter τ versus the dis-

tance d̃ for the asymmetry parameter A = 1
2 and the coupling

constant � = 30. The notation is the same as in Fig. 3.

To be more particular, the log-log plot of the absolute value
of the pressure |P̃| versus the distance η for the coupling con-
stant � = 300 is pictured in Fig. 6. MC data are represented
by open symbols (circles) for repulsive forces (pressures)
and filled ones for attractive forces. The vacuum gap is here
800 μ units. Dotted line is the theoretical prediction of the

10−2 10−1 100 101
η

10−6

10−5

10−4

10−3

10−2

10−1

100

|P̃
|

FIG. 6. The log-log plot of the absolute value of the pressure |P̃|
versus the distance η for the coupling constant � = 300. MC data are
represented by open/filled circles for repulsive/attractive forces. The
theoretical prediction of the asymptotic behavior (6.2) is represented
by dotted line.
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asymptotic behavior of the attractive pressure

P̃th ∼ −0.00177046...
1

η2
(6.2)

obtained from the relations (4.42) and (4.43) taken at A = 1
2

and � = 300. The agreement between MC data and this pre-
diction is remarkable. It is seen that for the coupling constant
� = 300 the scaling regime for the attractive pressure (6.2)
starts at η ≈ 3; where it stops is hard to judge, as we lose
numerical precision (for the MC simulations) around η = 10
for this �-value. We add that at the ground state characterized
by � → ∞, the asymptotic behavior of the pressure for A = 1

2
takes the form with a quite distinct (almost doubled) prefactor:

P̃th ∼ −0.00352357...
1

η2
. (6.3)

VII. CONCLUSION

In the context of the effective interaction between sym-
metrically charged parallel plates mediated by counterions,
it was shown in Ref. [40] that the effective fields created at
zero temperature by the plate surface charges and the lattice
structures of counterions on the plates are also relevant at
nonzero temperatures, and rule the density profiles (hence also
rule the pressure). The present work extends this effective-
field method to asymmetrically charged plates. The technical
complication in the asymmetric problem comes from the fact
that each plate as a whole (i.e., the surface charge density plus
the cloud of counterions attached to that plate) is not neutral.
This causes stronger long-ranged interaction effects between
the plates and requires the introduction of an additional (occu-
pation) order parameter p (2.6) into the theory. This parameter
is defined unambiguously in the ground state (counterions
stuck on the plate surfaces) and its value is determined vari-
ationally to ensure the minimum of the energy (3.12). At
nonzero temperatures, the order parameter p represents an
auxiliary variational quantity which ensures the minimum of
the free energy (4.38). Since at T > 0 the order parameter p
cannot be measured in MC simulations, we have introduced
the half-space occupation parameter τ (4.11) whose values are
available in simulations. The theoretical results for the dimen-
sionless pressure P̃ and the half-space occupation parameter
τ agree very well with MC data, for the intermediate coupling

constant � = 100 (see Figs. 2 and 3) as well as � = 30 (see
Figs. 4 and 5). By construction, our treatment improves in
accuracy when � is increased. It becomes exact for � → ∞.

An interesting result following from the present work deals
with the asymptotic scaling behavior of the attractive pres-
sure. It is known that at nonzero temperatures the pressure is
repulsive at asymptotically large distances between the plates
and takes the universal (i.e., independent of the like surface
charge densities on the plates) Poisson-Boltzmann (PB) form
(4.40). On the contrary, the asymptotic pressure is attractive at
zero temperature, see the nonuniversal formula (3.39) which
contains the Madelung constant of the hexagonal structure c
and the asymmetry parameter A. The attraction phenomenon
exists also for nonzero temperatures where two regions of
large distances exist: extremely large distances at which the
repulsive PB pressure (4.40) takes place and large distances
at which the attractive pressure prevails, with the finite-�
correction in the nonuniversal prefactor given by Eqs. (4.42)
and (4.43). We are thus in the situation of an intermediate
asymptotics. The MC data of the pressure versus distance for
the coupling constant � = 300 in Fig. 6 are in perfect agree-
ment with our theoretical prediction represented by dotted
line. Of course, going to higher temperatures the full region
of the attractive pressure diminishes and finally disappears for
high enough temperatures.

Since the present method relies on the effective fields act-
ing in the ground state, it is applicable to the region of large
coupling constants �. The fact that it provides reasonable
results for the pressure P̃ and half-space occupation parameter
τ for a coupling constant � as small as 30, see Figs. 4 and 5,
is rather surprising. It would be useful to establish a theory
covering both � → ∞ and � → 0 limits, to see the mutual
interconnection and the corresponding ranges of the attractive
and repulsive scaling regions of the pressure. A possible can-
didate is the SC method based on the idea of correlation holes
substituting the Wigner crystal of counterions [39].
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APPENDIX A: PHASE Ip

The energy of phase Ip with commensurate values of p ∈ {1/2, 1/3, 1/4, 1/7, 1/9, · · · } is given by [49]

EIp (η, p)

Ne2
√

σL + σR
= 23/2πη

(
p − A

1 + A

)2

+ c + p√
2

[−K(η) + √
pK(

√
pη)], (A1)

where

K(η) = 1√
π

∫ ∞

0

dt√
t

(1 − e−η2t )

{[
θ3(e−√

3t )θ3(e−t/
√

3) − 1 − π

t

]
+

[
θ2(e−√

3t )θ2(e−t/
√

3) − π

t

]}
. (A2)

Introducing the generalized Misra functions

zν (x, y) =
∫ 1/π

0

dt

tν
e−xt e−y/t , (A3)
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in terms of the functions

I2(x, y) = 2
∞∑
j=1

(−1) j

[
z3/2

(
x, y +

√
3 j2

)
+ z3/2

(
x, y + j2

√
3

)]
+ 4

∞∑
j,k=1

(−1) j+kz3/2

(
x, y +

√
3 j2 + k2

√
3

)
,

I3(x, y) = 2
∞∑
j=1

[
z3/2

(
x, y +

√
3 j2

)
+ z3/2

(
x, y + j2

√
3

)]
+ 4

∞∑
j,k=1

z3/2

(
x, y +

√
3 j2 + k2

√
3

)
− πz1/2(x, y),

I4(x, y) = 4
∞∑

j,k=1

z3/2

(
x, y +

√
3( j − 1/2)2 + (k − 1/2)2

√
3

)
− πz1/2(x, y), (A4)

K(η) can be expressed as

K(η) = 1√
π

[I2(0, 0) − I2((πη)2, 0) + 2I3(0, 0) − I3((πη)2, 0) − I3(0, η2) + I4(0, 0) − I4(0, η2)]. (A5)

APPENDIX B: PHASE Vp

The energy of phase Vp with commensurate values of p ∈ {1/2, 1/4, 1/5, 1/8, 1/10, · · · } is given by [49]

EVp (η, p)

Ne2
√

σL + σR
= 23/2πη

(
p − A

1 + A

)2

+ c[(1 − p)3/2 + p3/2] + J (η, p), (B1)

where

J (η, p) = p
√

1 − p
1

23/2
√

π

∫ ∞

0

dt√
t
[−e−η2(1−p)t +

√
3e−3η2(1−p)t ]

×
{[

θ3(e−√
3t )θ3(e−t/

√
3) − 1 − π

t

]
+

[
θ2(e−√

3t )θ2(e−t/
√

3) − π

t

]}
. (B2)

The first term on the right-hand side of Eq. (B1) corresponds to the Coulomb energy due to the nonneutrality of plate’s entities.
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