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Hexagonal vortices enable faster colloidal crystal grain coarsening
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We find that localized rotations of hexagonal clusters of particles occur during rapid dissolution of grain
boundary loops in two-dimensional colloidal crystals. These particle vortices, or rotating “granules,” are distinct
from established models for grain boundary diffusion, which predict that a crystal grain enclosed within another
crystal will dissolve at a constant rate. Our measurements of colloidal crystal experiments and Brownian
dynamics simulations reveal grain boundary motion that is described by two distinct processes: slow dissolution
due to the diffusion of individual particles, and rapid dissolution due to collective granule rotation. In the latter
process, hexagonal clusters of particles rotate together in granules whose shape and position are determined
by the underlying moiré pattern. Furthermore, these vortices guide cooperative strings of particles that move
along the edges of the hexagonal granules. Including this vortex mechanism may improve models for grain
coarsening in polycrystalline materials, ultimately offering improved predictions for the time evolution of
material properties.
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I. INTRODUCTION

Most crystalline materials are polycrystalline, containing
many crystal grains separated by disordered interfaces called
grain boundaries. Grain boundaries critically influence ma-
terial properties ranging from yield strength to electrical
conductivity [1–3]. Experimental studies of grain boundaries
in colloidal crystals have provided insights into physical phe-
nomena such as thermal grain boundary fluctuations [4,5],
responses to macroscopic mechanical perturbation [6,7], and
the kinetics of grain rotation [8–10]. Established continuum
theories for grain boundary motion treat grain boundaries as
continuous surfaces (in 3D crystals) or curves (in 2D crystals)
that disrupt the local order of the crystal and therefore cost the
system free energy [11–14]. Consequently, in two dimensions
a grain boundary loop that completely encloses a crystal grain
within a surrounding crystal is predicted to shrink at a constant
rate so that the number of particles in the grain decreases lin-
early in time [12,13,15–17]. Moreover, the grain dissolution is
predicted to occur via the diffusion of individual particles or
atoms across the grain boundary [15,16,18,19], or via rotation
of the entire inner grain until it matches the orientation of the
outer grain [20–27].

Our colloidal experiments and simulations demonstrate
that grain dissolution occurs via two distinct processes,
one with individual particle diffusion, and another that is
characterized by vortices of hexagonal particle clusters, or
“granules,” that rotate to switch from one grain to another.
We observe that granule rotation is a common event in the
motion of a grain boundary loop, and we find that the event
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is correlated with rapid dissolution of the grain boundary.
During granule rotation, particles undergo cooperative re-
arrangements that are guided by the underlying hexagonal
moiré pattern formed by the two lattices that share the grain
boundary. The incorporation of granule rotation into models
of grain boundary motion could improve predictions of grain
coarsening and deliver more accurate expectations for how
polycrystalline materials perform.

II. COLLOIDAL EXPERIMENTAL METHODS

We prepare monolayer colloidal polycrystals using
1.3-µm-diameter silica spheres (Sekisui Micropearl Spacers,
Dana Enterprises International, CA) suspended in dimethyl
sulfoxide. We contain the suspension in a sealed wedge-
shaped glass cell as previously described [28] and tilt the
cell to allow the particles to sediment into the gap, where
they form a crystalline monolayer. To create grain boundary
loops within the crystalline monolayers, we use the “optical
blasting” technique, described previously in Refs. [10,29].
Briefly, because the refractive index of the particles is less
than that of the suspending fluid, a standard optical tweezer
setup (800 mW, 1064-nm-laser focused through a 100X Zeiss
Plan-Apochromat objective) repels the particles, which move
radially outward from the laser axis while remaining in the
monolayer. We use optical blasting to create space that then
attracts grain boundaries [29]. By repeatedly using optical
blasting near an existing grain boundary, we create a bulge
and ultimately detach it to generate a grain boundary loop that
is disconnected from other grain boundaries.

We characterize local crystal orientation using the order
parameter �6 = 1

N

∑
n e6i�n , where the sum is taken over a

particle’s N nearest neighbors, and �n is the angle between
the nth neighbor separation vector and the horizontal axis
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FIG. 1. Dissolution of experimental grain boundary loops. (a) A
micrograph of a typical grain boundary loop. Each colloidal particle
is colored by local crystal orientation, quantified by the phase of
�6, and φ denotes the misorientation angle between the inner and
outer grain. Color scale: red–purple is max–min of range. Scale bar:
10 µm. (b) Scaled grain size vs scaled time for multiple experiments.
Notably, the dissolution curves do not collapse onto a single line.
Each follows a distinct sequence of slow dissolution plateaus and
steps. The data shown with black X-shaped markers comes from a
naturally occurring grain, while the others are from grains created
using optical blasting.

[30]. Each particle’s nearest neighbors are determined using
Delaunay triangulation. In Fig. 1(a) the color of the ith col-
loidal particle indicates the phase ψi of the local �6(i), which
is averaged over the ith particle and its nearest neighbors.
Variations in local orientation show up as color modulations,
which are clearly visible both inside and outside of the grain
boundary loop, which is shown in black [Fig. 1(a)]. Further-
more, although we attempt to create initially circular grains,
thermal fluctuations roughen and reshape the grains even as
they form during optical blasting. This is distinct from the
perfectly circular grain boundary loops previously created in
colloidal experiments by rotating a block of particles using
optical tweezers [8,9]. To locate grain boundaries within ex-
perimental images, we model the polycrystal as a graph, with
each colloidal particle as a vertex connected to its nearest
neighbors with edges, and then partition the graph using a
minimum cut algorithm to identify separate grains [10].

In total, we observed 16 grain boundary loops, of which
two were naturally occurring and the others were created
using optical blasting. No qualitative difference was observed
between experiments involving grains that formed naturally
and those that were fabricated. All loops were disconnected
from any other grain boundaries. The enclosed “inner” grains
varied in initial size within the range of approximately

FIG. 2. Plateaus and steps within a single grain dissolution
experiment correspond to qualitatively different types of particle
displacements. (a) The number of particles in the inner grain over
time decreases in slow plateaus and fast steps. (b) Both lower panels
show particle displacements over a 1-min interval, but organized
particle cluster rotations only occur in the right panel. The location
of the grain boundary at the start of the 1-min interval is shown in
white, and the final grain boundary is shown in black.

200–3000 colloidal particles, and the initial misorientation
angles varied between 12◦ and 29◦ (note that in a triangular
crystal, the maximum misorientation angle is 30◦). Each grain
boundary loop was observed until it fully dissolved, a pro-
cess we call “grain dissolution,” with dissolution durations, or
“grain lifetimes,” ranging between about 30 min and 6 h. A
table of the experimental data is provided as Table S1 in the
Supplemental Material [31].

III. GRAIN DISSOLUTION EXPERIMENTS

In our colloidal experiments, we find that the number of
particles in the inner grain does not decrease linearly in time.
Indeed, we find that grain dissolution occurs via steplike
sequences characterized by plateaus when grain size slowly
decreases, punctuated by rapid drops (or sometimes increases)
in grain size. Figure 1(b) shows six experimental datasets of
the scaled grain size N/N0 plotted against the scaled time t/T ,
where N is the number of particles in the inner grain at time
t , N0 is the initial number of particles in the inner grain, and
T is the grain lifetime. Notably, when scaled in this way, the
curves do not collapse onto a single line, but instead, each has
a distinct pattern of plateaus and steps.

We find that the plateau and step regimes of grain
dissolution are correlated with two distinct particle-scale
mechanisms. As shown in Fig. 2, the slowly sloping plateaus
are characterized by the random diffusion of individual parti-
cles along and across the grain boundary, while the rapid steps
occur when larger clusters of particles cooperatively rotate
to switch from the inner grain orientation to the outer. Both
of the lower panels of Fig. 2 show particle displacements

014608-2



HEXAGONAL VORTICES ENABLE FASTER COLLOIDAL … PHYSICAL REVIEW E 110, 014608 (2024)

FIG. 3. Vorticity highlights granule rotations during rapid drops
in grain size. Inset: Vorticity is calculated for each triangle of the
Delaunay triangulation of particle positions as v = ∑

ri × �ri. (a) A
crystal grain shrinking over a 1-min interval, with initial grain bound-
ary (white) and final grain boundary (black) plotted over vorticity
color map with clockwise (counterclockwise) vorticity indicated by
yellow (blue). Over this plateaulike interval, there are not hexagonal
vortices. (b) The same crystal grain shrinking over a different 1-
min interval during a more rapid drop in grain size. Here a clear
hexagonal pattern emerges in the vorticity.

over a time interval of 1 min. In Fig. 2(a) a few individual
particles diffuse across the grain boundary, and there is no
clear pattern in their displacements. However, in Fig. 2(b)
the particle displacements are arranged in orderly circulation,
indicating clusters of particles rotating together.

IV. VORTICITY

To distinguish between the two observed mechanisms of
grain boundary motion, we measure the local vorticity in the
particle displacement field as v = ∑

ri × �ri, as defined in
[32]. As depicted in the inset of Fig. 3, the sum is over three
initially adjacent particles whose positions form the vertices
of a triangle; ri is the vector from the center of the triangle to
the ith initial particle position, and �ri is the displacement of
the ith particle over a time interval �t . Typical time intervals
range from 15 s to 2 min. We define vortices that point into
the page (i.e., clockwise) as positive, and use the magnitude
and sign of the vorticity as a color map for each triangular
region bounded by particles in our system (Fig. 3). The vor-
ticity color map reveals hexagon-shaped vortices during steps
in grain size. The vortices in Fig. 3(b) comprise clusters or
“granules” of particles cooperatively rotating counterclock-
wise, surrounded by outlines of clockwise rotation due to
the relative motion of adjacent vortices. By contrast, during
the plateaus in grain size, particle motion is not organized
into such vortices but instead proceeds through random par-
ticle diffusive motion near the grain boundary, as shown in
Fig. 3(a).

The rotation of individual granules generally proceeds in
one sense, e.g., counterclockwise in Fig. 3(b), causing the
inner grain to shrink. However, we also occasionally observe
granule rotation in the opposite direction, causing the inner
grain to grow (see Supplemental Material, Fig. S1 [31]). These

FIG. 4. Rotating hexagonal granules are defined by the under-
lying moiré pattern. (a) Hexagonal pattern in vorticity data from
colloidal experiments is overlaid with a moiré pattern (pink) de-
termined from the lattices of the inner and outer grains’ crystal
orientations. (b) Granule size, measured as center-to-center spacing
in lattice constants (LC) in Brownian dynamics simulations of grain
dissolution, decreases with misorientation angle following the pre-
diction (solid line) based on the underlying moiré pattern. Error bars
indicate the standard error of the mean.

clockwise and counterclockwise granule rotations are respec-
tively reminiscent of the “couple grain boundary migration”
and “grain boundary sliding” mechanisms that have been pre-
viously explored in [27]. Here, the locking of crystal rows in
the former and sliding of crystal rows in the latter occur at the
boundaries of the granules rather than at the boundary of the
shrinking grain.

V. MOIRÉ PATTERN

The characteristic hexagonal shape of the rotating granules
directly reflects the underlying moiré pattern that can be con-
veniently visualized by overlaying the crystal lattice of the
inner grain with that of the outer grain. As described previ-
ously [10], the centers of the hexagonal regions in the moiré
pattern are spaced by a distance � according to the misorien-
tation angle φ between the two lattices as � = [2 sin(φ/2)]−1,
measured in units of lattice constants (LCs). To verify that the
observed hexagonal vortices align with the moiré pattern, we
determine the best-fit triangular lattices to match the crystal
orientation of the inner and outer grains, and overlay those lat-
tices to determine the bounds of the moiré pattern hexagons.
The result of this is shown as pink hexagonal outlines in
Fig. 4(a).

We further confirm the role of the moiré pattern in dictating
the shapes and positions of the rotating granules using results
from Brownian dynamics simulations. We simulate systems of
approximately 25000 particles interacting as hard Brownian
disks as previously described [29], and initialize the particles
in two crystal grains as in the experiments: one “inner grain”
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completely enclosed within a larger “outer grain.” During
the simulation, the inner grain dissolves until ultimately the
entire system has a single-crystal orientation matching that of
the outer grain. As in the colloidal experiments, we observe
hexagonal patterns in the vorticity of particle displacements
during portions of the grain dissolution. We systematically
vary the misorientation from 5◦ to 20◦ and observe particle
displacements over the first 500 frames to identify hexago-
nal vortices. We measure the spacing � between centers of
adjacent hexagonal granules and find that these follow the
prediction based on the moiré pattern, with zero fitting pa-
rameters [Fig. 4(b)].

Due to the finite size of individual particles in the crystal,
there is a lower limit to the size of hexagonal granules. The
smallest granule centered on a particle contains seven particles
and is spaced by a distance of

√
7 lattice constants from the

adjacent granule. This corresponds to a misorientation angle
of approximately 22 degrees. Indeed, we have not observed
clear, recognizable hexagonal vortices in experiments or sim-
ulations with misorientation angles above this value.

Our observation of hexagonal granule rotation fits into the
context of other recent studies of grain loops in colloidal
crystals, particularly [9], which investigates a critical grain
radius R∗ for a given misorientation angle φ below which
the grain rotates rigidly to snap into alignment with the sur-
rounding crystal. This collective grain rotation is reminiscent
of the cooperative granule rotation we have observed. In fact,
there is a direct relationship between the granule size and the
minimum critical size found in [9]. The latter was determined
by finding the minimum grain radius that would allow for six
dislocations to be spaced by the predicted average distance
between dislocations in low-misorientation grain boundaries,
which is 1/φ in units of lattice constants. Equating 2πR∗/6 =
1/φ results in the minimum critical size R∗ = 3/(πφ). For
low misorientation angles, the granule size � = [2 sin(φ/2)]−1

reduces to 1/φ, i.e., the mean distance between dislocations.
The relative difference between � and 1/φ is <1% for all
misorientation angles up to the maximum value of 30◦. Thus,
the minimum critical size from Ref. [9] can be written as
R∗ = 3�/π . That is, the minimum critical grain size is directly
proportional to the size of the hexagonal granules determined
by the underlying moiré pattern, hinting that such grains may
rotate rigidly because they cannot split into multiple smaller
granules.

VI. COOPERATIVE MOTION
DURING GRANULE ROTATION

Cooperative motion, in which particles move in stringlike
sequences, is a phenomenon well studied in glassy materi-
als [33–35] that has also been observed in particles at grain
boundaries of colloidal crystals [36]. Here we observe coop-
erative particle motion during granule rotation. This is similar
to the previously observed cooperative motion at grain bound-
aries, but here we find that the underlying moiré pattern directs
the stringlike particle displacements so that they trace out the
edges of the hexagonal granules.

Following [36], to identify cooperative motion we focus
on the particles with the top 0.5% largest displacements over
a set time period (�t = 180 s). We find that during gran-

FIG. 5. Particles move cooperatively during granule rotation.
(a) During a period of rapid grain dissolution, granules rotate, and
the particles with the top 5% largest displacements (white arrows)
move in cooperative motion strings along the edges of the hexagons
defined by the underlying moiré pattern. (b) Time intervals that
are characterized by both high vorticity and cooperative strings in
colloidal particle motion indicate hexagonal granule rotation, and
these correlate with periods of rapid grain dissolution.

ule rotation, these particles move cooperatively in stringlike
displacement sequences in which one particle moves out of
its position and is replaced by another particle at the end
of the time interval. We identify pairs of particles within a
sequence as those for which the initial position of the first
particle is the same as the final position of the second particle
within an uncertainty of 60% of a particle diameter D. That
is, particles are linked into the same stringlike cooperative
rearrangement sequence if |�r1(t = 0) − �r2(t = �t )| < 0.6D.
Notably, we find that the strings show a spatial pattern that
follows the edges of the hexagonal vortices [Fig. 5(a)]. Thus,
unlike the random particle strings observed in [36], here the
cooperative motion is directed by the geometry of the under-
lying moiré pattern.

To quantify the occurrence of cooperative motion during
grain dissolution experiments, we count the number of parti-
cles moving in a stringlike sequence over each 180-s interval.
In Fig. 5(b), intervals in which there are at least three parti-
cles moving in cooperative motion are highlighted with blue
shading. Meanwhile, the yellow shading indicates intervals
characterized by high vorticity, quantified as more than 5% of
particle trios having vorticity higher than three times the stan-
dard deviation in vorticity. Intervals that have both significant
vorticity and significant cooperative motion are highlighted
with green shading. We note that the green-shaded regions
faithfully track the regions with rapid grain dissolution, in-
dicating that the observed periods of rapid dissolution occur
via both cooperative motion and high vorticity. These are both
signatures of hexagonal granule rotation.

VII. EFFECT OF LATTICE CONSTANT

Controlling the spacing between particles allows us to tune
the grain dissolution mechanism: tightly packed crystals dis-
solve primarily via cooperative granule rotation, while looser
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FIG. 6. Simulated crystals with higher lattice constants dissolve
through random motion that is not coordinated into hexagonal gran-
ule rotation. For each panel, left is the initial particle configuration,
and right is the final configuration after 20 000 simulation frames,
once the embedded grain has completely dissolved. Particles are
colored according to their initial moiré hexagon. The grain in (a) has
a lattice constant of 1.05 particle diameters and shrinks primarily due
to hexagon rotation, so the hexagonal regions retain their shape in the
final particle configuration. The grain in (b) has a lattice constant of
1.08 particle diameters, and many particles move in random diffusive
motion rather than rotating in cooperative granules. Consequently,
the colors are scrambled in the final configuration.

crystals allow more individual particle diffusion. We exploit
this tendency to investigate how the rate of grain dissolution is
related to hexagonal granule rotation. To this end, we measure
grain lifetimes in Brownian dynamics simulations with varied
lattice constants from 1.03 to 1.08 times a particle diameter
D. This corresponds to a range of 0.855–0.778 in particle area
fraction. This overlaps the range observed in our colloidal
experiments (see Supplemental Material, Table S1 [31]). For
all simulations, a circular inner grain is initialized within
a surrounding outer crystal grain, with misorientation angle
φ = 12◦. At higher area fractions, we observe that nearly
all particle motion is restricted to granule rotations; at lower
area fractions, particle motion is diffusive and does not fol-
low hexagonal granule rotation (Fig. 6). To track the degree
to which particle motion differs from granule rotations, we
use the underlying moiré pattern to identify which hexago-
nal granule each particle initially lies in. Once the grain has
completely dissolved, particles that only moved according to
granule rotation remain located in the same hexagonal gran-
ule that they started in. Conversely, particles that moved by
diffusive, random displacements that are not determined by
granule rotation can end up “scrambled” into a new granule
other than the one they started in. In Fig. 6 particles are
colored according to their initial hexagon granule—panel (a)
shows a tightly packed crystal simulation with lattice spacing
of 1.05 particle diameters, in which nearly all particles remain
situated in their initial granules, while panel (b) depicts a
loosely packed crystal simulation with lattice spacing of 1.08

FIG. 7. Grain lifetime increases when fewer particles move in
granule rotation. (a) The number of particles in the inner grain
decreases more rapidly for the crystal with tighter particle spacing.
This corresponds with a higher fraction of particles participating in
hexagon rotation. (b) Grain lifetime is plotted against the fraction
of particles that get scrambled into new moiré hexagons. Error bars
indicate the standard error of the mean.

particle diameters, where more particles scrambled into new
granules.

Interestingly, we find that the more tightly packed crystals
in which particles move primarily in granule rotation dissolve
much more quickly than those looser crystals in which more
particles diffuse out of their original moiré hexagon and get
scrambled into a new hexagon. That is, we observe that grain
lifetime is correlated with the fraction of particles that get
scrambled out of their initial granules during grain dissolution
(Fig. 7). A table showing data for each simulation run is pro-
vided in the Supplemental Material, Table S2 [31]. This result
from simulations aligns with our experimental observation
that periods of faster dissolution are correlated with granule
rotation in hexagonal vortices.

VIII. SEQUENTIAL MOTION
DURING GRANULE ROTATION

Granule rotation dictated by the underlying moiré pattern
has been observed previously during grain splitting, a very
rapid process in which the granules rotate synchronously [10].
In such cases the free energy peaks during rotation, leading to
a barrier that prevents grain splitting from occurring in all but
very small crystal grains wedged between two neighboring
grains with low misorientation angles [10]. This differs from
the current observation of widespread granule rotation during
the dissolution of a single inner grain embedded within a
single outer grain. The key difference is that here the granules
do not rotate simultaneously but instead proceed through se-
quential particle motion. Particles move in cooperative strings,
advancing into the empty spaces left behind by other particles,
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as shown in a colloidal experiment in the Supplemental Ma-
terial, Video S1, and in a Brownian dynamics simulation in
Video S2 [31].

Because granule rotation occurs through sequential particle
motion, the free energy cost is significantly lower than what
would be needed to rotate all the granules simultaneously.
Following [10], the time evolution of the free energy can
be determined by finding the area of the free space avail-
able to each particle. The free space is computed as F =
−kBT

∑
i ln vi

π (D/2)2 , where kB is the Boltzmann constant, D is
the particle diameter, and vi is the area of free space available
to the ith particle. Thus, free energy is lower when parti-
cles have more free space available to them on average. The
sequential cooperative motions of particles during granule
rotation avoid synchronous rotations that would compress the
crystal, as shown in the Supplemental Material, Video S3 [31].
This reduced free energy cost indicates that granule rotation
likely plays a frequent role in the normal motions of grain
boundaries, unlike grain splitting, which is predicted to occur
only in rare situations.

IX. DISCUSSION AND CONCLUSIONS

We have observed that the motion of grain boundaries
during the dissolution of a single grain embedded within a
surrounding crystal is described by a combination of a slow
mechanism characterized by random particle motions and a

faster granule rotation mechanism in which particles move
cooperatively in hexagonal vortices. The shape and placement
of the rotating granules is determined by the underlying moiré
pattern of the lattices of the inner and outer crystal grains. We
find that during granule rotation, strings of cooperatively mov-
ing particles follow the edges of the rotating granules, which is
distinct from previously observed random cooperative motion
at grain boundaries [36]. This organized cooperative motion
is reminiscent of the polygonlike cooperative rearrangements
recently observed in “avalanche-driven” grain boundary
diffusion [37].

Future studies of fluctuations of grain boundaries could
determine whether this mechanism also occurs in situations
where there is not a single grain boundary loop surrounding
an inner grain. Incorporation of granule rotation into models
for grain coarsening could help provide more accurate predic-
tions for how self-assembled crystals age. Furthermore, since
similar vortices have been observed in crystals composed of
active rather than thermal particles [38], this mechanism could
occur broadly in many polycrystalline systems across scales
and across diverse energy sources.
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