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Shape-dependent motility of polar inclusions in active baths
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Collections of persistently moving active particles are an example of a nonequilibrium heat bath. One way to
study the nature of nonequilibrium fluctuations in such systems is to follow the dynamics of an embedded probe
particle. With this aim, we study the dynamics of an anisotropic inclusion embedded in a bath of active particles.
By studying various statistical correlation functions of the dynamics, we show that the emergent motility of
this inclusion depends on its shape as well as the properties of the active bath. We demonstrate that both the
decorrelation time of the net force on the inclusion and the dwell time of bath particles in a geometrical trap
on the inclusion have a nonmonotonic dependence on its shape. We also find that the motility of the inclusion
is optimal when the volume fraction of the active bath is close to the value for the onset of motility induced
phase separation.
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I. INTRODUCTION

The study of systems driven out of equilibrium by a
throughput of energy at the level of the individual units has
revealed a rich set of nonequilibrium collective states [1–4].
The physical realization of such active materials range from
molecular motors inside cells driven by ATP to mechanically
agitated granular materials. Active particles which form the
basic constituents of these materials are typically anisotropic
in shape with associated orientational degrees of freedom. The
hydrodynamic theory of such active liquid crystals has been a
topic of great interest in the past decades [2,5].

A complementary direction of research considers isotropic
particles with an energy throughput in the system that breaks
the fluctuation-dissipation theorem and rendering the parti-
cle dynamics active [6,7]. Examples of such systems include
Janus particles with asymmetric surface reactions, spherical
droplets with asymmetric internal flows, and driven isotropic
granular particles. Such active particles form the basis of
scalar active matter [8]. Three commonly studied models of
active particles are the run-and-tumble particles (RTPs), active
Brownian particles (ABPs), and active Ornstein-Uhlenbeck
particles (AOUPs). An emergent property seen in systems of
such particles with purely repulsive interactions is a nonequi-
librium “condensed” phase arising due to the interplay
between activity and density. This motility-induced-phase-
separation (MIPS) is, in fact, seen in homogeneous systems
of RTPs, ABPs, and AOUPs [6,9–12].

Interacting systems of active particles provide examples
of nonequilibrium heat baths and studying the dynamics of
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probes embedded in such reservoirs provide insight into the
statistical properties of active baths. For instance, the dynam-
ics of tagged active particles have recently been observed to
display universal behaviors across the three models mentioned
above both in a single-file geometry [13] and in harmonic
chains [14]. Another approach would be to embed tracers
or inclusions in active heat baths, and follow their dynam-
ics. Systems composed of active particles with embedded
isotropic passive inclusions can have depletion forces that
can be either attractive or repulsive [15–17]. Essentially, the
accumulation of active particles near boundaries changes the
nature of the depletion forces between passive colloidal par-
ticles [3]. It is well appreciated that these fluctuation-induced
depletion forces are sensitive to the shape of the inclusions in
equilibrium systems [18]. Such depletion forces also arise in
active baths [19–21]. However, for passive inclusions embed-
ded in active heat baths, the role of geometry of embedded
objects has not received much attention [22–30].

In this study, we explore the emergent dynamics of a
passive polar inclusion embedded in a nonequilibrium ac-
tive bath. In particular, we focus on how the shape of the
inclusion affects its macroscopic behavior. Generically, fore-
aft asymmetry and an energy flux can lead to net currents
in many-body systems. Does a polar inclusion in an active
heat bath display persistent motion? How does the persistent
velocity of the inclusion depend on its shape? How does
the interaction between shape polarity and activity translate
to emergent motility of the inclusion? Active particles are
known to accumulate near static boundaries [31]. In fact,
static wedge-shape objects are known to trap active particles
moving around them [32,33]. How does the accumulation of
the active bath particles around a polar and movable inclusion
lead to its emergent motility? How do the parameters of the
active bath affect the movement of the embedded inclusion?
Our results are as follows: (i) we find emergent persistent
dynamics of the inclusion in active baths composed of RTPs,
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FIG. 1. A polar inclusion in an active heat bath. The anisotropic
inclusion is constructed from NI particles rigidly connected to each
other in the geometry shown schematically. The inclusion, with
opening angle ψ and the radius R defining its overall shape, has
its center-of-mass at R and its orientation is given by the unit normal
n̂ = −(cos � x̂ + sin � ŷ) where � is the angular orientation. The
nonequilibrium heat bath is composed of active particles either of
the RTP, ABP, or AOUP kind. These active particles [whose instanta-
neous direction of self-propulsion is indicated by the blue/gray (dark
gray/light gray) semicircles] exert forces on the embedded inclusion
due to their persistent motion. Note that the active particles interact
amongst themselves and also with the particles that make up the
inclusion via the same repulsive WCA potential (1).

ABPs, and AOUPs, (ii) there is an optimum shape of the
inclusion that leads to an enhanced motility; the correlations
of the net force on the inclusion and the typical dwell time
of the active particles in a trap around the inclusion have a
similar nonmonotonic dependence on the inclusion geometry,
(iii) the motility of the inclusion is controlled by the volume
fraction of the active particles in the heat bath; in particular,
the motility is optimal for a volume fraction close to the onset
of MIPS in the heat bath.

The paper is organized as follows. In Sec. II, we discuss
the construction of the polar inclusion and the parameters that
characterize its shape, and present the governing dynamical
equations for both the inclusion and the active particles that
make up the heat bath. Next in Sec. III, we describe our results
on the emergent motility of the inclusion and its dependence
on geometry. We end with a summary of our study and an
appropriate discussion in Sec. IV.

II. MODEL

We study a passive polar inclusion embedded in an active
nonequilibrium “heat bath” with a distinct fore-aft asymmetry
as shown in Fig. 1. The impacts of the active particles on the
inclusion are the driving force for its dynamics. The inclusion
is constructed by rigid bonds between NI particles placed in an
appropriate geometry. The nonequilibrium heat bath consists
of NB scalar active particles with short-range repulsive inter-
actions between themselves and also with the particles that
constitute the inclusion. Without loss of generality, we choose
the purely repulsive interaction to be the Weeks-Chandler-

Anderson (WCA) potential

U (r) = ε

{
1
4 + (

σ
r

)12 − (
σ
r

)6
, r < a,

0, r > a,
(1)

where ε and σ are the characteristic energy and length scales
of the potential, and a = 21/6σ is the interaction range which
also determines the effective size of the particles. The over-
damped dynamics of ri, the position ith active particle is

dri

dt
= vi − μ

⎡
⎣ NB∑

j=1, j �=i

∇riU (ri − r j ) +
NI∑

p=1

∇riU (xp − ri )

⎤
⎦

+
√

2μkBT ηi(t ), (2)

where vi is the active self-propulsion velocity, μ is the trans-
lational mobility, and ηi(t ) is a Gaussian white noise with
zero mean and unit variance. In the above equation, xp is the
position of the pth particle making up the inclusion where
p = 1, 2, . . . NI . The rigid inclusion is characterized by its
center of mass position R and its orientation � (see Fig. 1). As
such, R and � evolve in response to the net force and torque
applied on the inclusion from the impacts of the bath particles.
The overdamped evolution equations for these quantities are

dR
dt

= Mt F(t ) +
√

2Mt kBT N (t ), (3)

d�

dt
= Mr T(t ) +

√
2MrkBT Z (t ), (4)

where Mt (Mr) is the translational (rotational) mobility of
the inclusion, while N (t ) and Z (t ) are Gaussian white noises
with zero mean and unit variance, and the force F and the
torque T on the center-of-mass of the inclusion due to the
impacts of the bath particles are

F = −
NI∑

p=1

NB∑
i=1

∇xpU (xp − ri ), (5)

T = −ẑ ·
NI∑

p=1

NB∑
i=1

(xp − R) × ∇xpU (xp − ri ). (6)

Notice that if the active noise vi = 0, then Eqs. (2)–(4) rep-
resent the dynamics of a polar inclusion in an equilibrium
heat bath. In this case, both the bath particles and the inclu-
sion will have the Boltzmann distribution as their steady-state
probability. However, when the bath-particles are active, the
polar shape of the inclusion can lead to nontrivial emergent
dynamics. Before we discuss this dynamics, we first describe
the kind of active particles that we consider in this study.

The active nature of the nonequilibrium heat bath arises
from the persistent self-propelled motion of its constituent
particles. We consider three kinds of active baths: those com-
posed of (1) run-and-tumble particles (RTPs), (2) active Brow-
nian particles (ABPs), and (3) active Ornstein-Uhlenbeck
particles (AOUPs). These three scalar active particle mod-
els differ in the nature of the active stochastic forces that
propel them. Specifically, the active velocity of the ith-RTP
is given by vRTP

i = vR (cos θi, sin θi ), where the direction of
self-propulsion 0 � θi < 2π tumbles at a Poisson rate γ and
vR is the speed during the active runs. In other words, the
orientation θi of each RTP changes abruptly and stochastically
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after a mean run-time 1/γ . However, the internal orientation
ϕi of the ith-ABP performs rotational diffusion and also gov-
erns the instantaneous active velocity,

dϕi

dt
=

√
2Dr ξi(t ), vABP

i = vA (cos ϕi, sin ϕi ), (7)

where vA is the self-propulsion speed, Dr is the rotational
diffusion constant, and ξi(t ) is a Gaussian white noise with
zero mean and unit variance. Thus, the orientation of the ABPs
evolves continuously in time. Finally, the active velocity of
AOUPs is governed by the following equation:

τ
dvAOUP

i

dt
= −vAOUP

i +
√

2� ζi(t ), (8)

where τ is the persistence time of self-propelled motion, �

is the noise strength and ζi(t ) is a Gaussian white noise. A
characteristic active speed for AOUPs can be defined as vO =√

�/τ . Note that, the mean-squared-displacement (MSD) for
free active particles (of the three kinds discussed above) have
the same universal form [13]. All three active models can be
characterized by a generalized active speed u and a persistence
rate ω. One can easily show that u = vR = vA/

√
2 = vO and

ω = γ = Dr/2 = 1/(2τ ).

III. RESULTS

We study the system of active particles and anisotropic
passive inclusion with an opening angle ψ and a radius R
in a two-dimensional periodic box of side L. The schematic of
our model system is shown in Fig. 1. The inclusion has differ-
ent shapes depending upon its opening angle ψ . The active
bath is characterized by a Pèclet number Pe = u/(aω) and
an area fraction φ = (NBπa2 + Ainc)/L2 where we approxi-
mate the area enclosed by the inclusion Ainc ≈ (π − ψ/2)R2.
We choose σ , σ 2/με, and ε/σ , respectively, as the units of
length, time, and force. Equations (2)–(4) together with the
dynamical equations for the bath particles are numerically
integrated using the Euler-Maruyama scheme with a nondi-
mensional time step �t = 10−3. We fixed the thermal energy
at kBT/ε = 0.01, the radius of the inclusion at R/σ = 5
(unless specified), and the linear size of the simulation do-
main at L/R = 10. All simulations are run for long times
(∼150 ω−1) and various statistical averages and correlations,
denoted by 〈. . .〉, are computed after the system reaches a
steady state, and the error bars are calculated over several
realizations.

A. Emergent active dynamics of the polar inclusions

We find that for a large range of parameter values, i.e., the
opening angle of the inclusion ψ , the area-fraction φ and the
Péclet number Pe, the polar inclusions show persistent motion
for short times. In Fig. 2, we plot the typical trajectories of the
center-of-mass of the inclusion R at three different opening
angles ψ for the three models that we study. We notice that for
small ψ the trajectories do not display persistent motion. This
is also true for large ψ . When ψ ∼ π/2, we see long stretches
of persistent motion of the inclusion. However, at long times,
the movement of the inclusion is diffusive in nature for all
angles ψ . In other words, a polar inclusion in an active bath
shows persistent motion at short times and crosses over to

FIG. 2. Typical trajectories (all of duration 25 ω−1) of the center-
of-mass R of the inclusion at Pe = 66 and φ = 0.3 for various ψ

in a bath of (a) RTPs, (b) ABPs, and (c) AOUPs. The colors of the
trajectories correspond to various values of the opening angle ψ , and
thus the shape of the inclusion. Notice that the persistent motion
of the inclusion scales up to several R. This persistent motion is
pronounced when ψ ∼ π/2. See Supplemental Movies [34].

diffusive dynamics at long times—the inclusion itself behaves
as an “emergent active particle.” This behavior can also be
seen in the Supplemental Movies [34].

To further study this persistent motion of the inclusion,
we plot in Figs. 3(a)–3(c) the mean-squared displacement
(MSD) 〈[�R(t )]2〉 = 〈[R(t ) − R(0)]2〉 for the three mod-
els and various opening angles ψ at φ = 0.3 and Pe = 66.

(h) (i)

(f)

(g)

(d) (e)

(c)(a) (b)

FIG. 3. Dynamical correlations of the polar inclusion at Pe = 66
and φ = 0.3. Mean-squared displacement of the inclusion in a bath
of (a) RTPs, (b) ABPs, and (c) AOUPs. All models display a transi-
tion from an initial ballistic behavior ∼t2 to an asymptotic diffusive
behavior ∼t confirming the persistent motion of the inclusion at short
times. (d)–(f) The orientatation correlations as a function of time
for three different models. The orientation correlation Cnn decays
monotonically for the AOUP bath (f) while for (d) RTP and (e) ABP
baths, it has a negative minima around ωt ∼ 2 for inclusion shapes
that show enhanced persistent motion. The two-point correlation
function of the force on the inclusion (9) shows approximately an
exponential decay in time for all three models (g)–(i). However, the
decay time τF is a nonmonotonic function of ψ (see Fig. 4).
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The MSD shows ballistic behavior 〈[�R(t )]2〉 ∼ t2 for short
times which eventually crosses over to diffusive dynamics
〈[�R(t )]2〉 ∼ t at times larger than ω−1.

An alternate measure of the persistent motion of the inclu-
sion is to calculate the auto-correlation Cnn(t ) = 〈n̂(0) · n̂(t )〉
of the unit-vector n̂ = − cos � x̂ − sin � ŷ (see Fig. 1). The
dependence of Cnn(t ) is shown in Figs. 3(d)–3(f) for the three
active bath models. We observe that Cnn decays to zero at long
times t � ω−1. However, while Cnn(t ) decays monotonically
to zero for the AOUP bath, it shows oscillations for the RTP
and ABP baths. This is attributed to the different stochastic
nature of the active velocity: the magnitude of the active
velocity is fixed for RTPs and ABPs, whereas for AOUPs it
is drawn from a Gaussian distribution with a characteristic
value u. As such the orientation of the inclusion decorrelates
quickly for the AOUP bath. This is also observed in the MSD
of the inclusion angle 〈[��(t )]2〉 where the crossover to the
diffusive regime occurs at timescales t � 1/ω for AOUP bath
whereas it occurs at timescales t � 1/ω for RTP and ABP
baths.

The short-time ballistic dynamics of the MSD seen in
Figs. 3(a)–3(c) and the long-lived two-point correlations of
the unit normal vector Figs. 3(d)–3(f) clearly indicate persis-
tent motion of the inclusion. However, this behavior is in the
configurational degrees of freedom, i.e., R and n̂, of the inclu-
sion. How does this persistence emerge from the coordinated
impacts on the inclusion due to active particles constituting
the bath? To answer this question, we look at the force F
on the center-of-mass of the inclusion defined in Eq. (5). In
the steady state, the average force vanishes 〈F(t )〉 = 0. To
quantify the temporal dynamics of F(t ), we measured the
normalized two-point force correlation function:

CFF(t ) = 〈F(t ) · F(0)〉
〈F(0) · F(0)〉 . (9)

Figures 3(g)–3(i) show that CFF(t ) decays exponentially for
all opening angles ψ and the decay time τF ∼ ω−1. In other
words, the dynamical force acting on the inclusion has the
characteristics of an exponentially correlated noise [28]. The
torque T, defined in Eq. (6), on the center-of-mass of the in-
clusion vanishes on the average. And its two-point correlation
function decays exponentially as well. However, we found
that the decay time of this torque-torque correlation function
is largely independent of ψ . This suggests that the dynamics
of the orientational degree of the inclusion � does not depend
on its shape.

We note from Figs. 3(g)–3(i) that the decay time τF of
CFF(t ) has a nonmonotonic dependence on ψ . In fact, τF has
a maximum around ψ ∼ π/2 as seen in Fig. 4(a). In other
words, the persistent active forces on the inclusion from the
heat bath depend in a nontrivial way on the shape of the
inclusion. It is important to realize that the inclusion is a
polar object for all angles ψ . However, for ψ < π the re-
gion enclosed by the inclusion is a nonconvex region, while
for ψ � π the enclosed region is convex. Specifically, the
nonconvex shapes represent a wedgelike trap that can lead to
enhanced accumulation of the active particles in this region
thus leading to stronger persistent motion of the inclusion.

(a) (b)

FIG. 4. (a) The decay time τF of the two-point correlation func-
tion CFF(t ) of the force shows a peak as the shape of the inclusion
is changed by varying the opening angle ψ . Although the location
of the peak coincides for all the three models, the maximal value of
τF for the AOUP bath is lower than that for the RTP and ABP baths.
(b) The probability distribution of the normal component of the force
Fn = F · n̂ on the inclusion at various values of ψ for the ABP bath.
Notice that the location of the peak of this distribution changes with
ψ while its width is largely unchanged. We observe a similar result
for the RTP and AOUP baths. Here Pe = 66 and φ = 0.3.

B. Shape-dependent motility of the polar inclusion

Though 〈F〉 = 0 in a fixed frame, the component of F
along the normal to the inclusion defined as Fn ≡ F · n̂ has
a nonzero average. In Fig. 4(b), we plot the distribution of
Fn for the ABP model at various opening angles ψ . We note
that while 〈Fn〉 depends on ψ , the variance of the distribution
is largely independent of the opening angle of the inclu-
sion. These observations hold for the RTP and AOUP models
as well.

Clearly, Fn controls the emergent motility of the inclusion.
We define the motility of the inclusion as

Vinc =
〈

dR
dt

· n̂
〉

= Mt 〈F · n̂〉. (10)

Note that, in principle Vinc can change sign when the shape
of the inclusion changes, unlike the active speed u > 0. In
Fig. 5(a), we show the variation of Vinc as a function of the
opening angle ψ for an area fraction φ = 0.3 and Pe = 66. It
is immediately obvious from the figure that Vinc has a maximal
value around ψopt ∼ π/2. Several points are to be noted from
Fig. 5(a). First, the variation of Vinc as a function of ψ has
a similar behavior across all three models. In fact, even the
numerical values are also very similar. This trend is consistent
with the variation of τF seen in Fig. 4(a). Second, Vinc > 0 for
all angles ψ . This is rather surprising since it is possible that
the emergent velocity of the inclusion could change sign with
its shape. In particular, for ψ � π , the inclusion has a non-
convex shape and changes over to a convex shape for ψ > π

(see Fig. 2). As such, one might have expected a sign reversal
of Vinc around ψ ∼ π . Our numerical simulations, however,
show that this is not the case. Third, as might be expected,
Vinc vanishes both at ψ ∼ 0 and ψ ∼ 2π . For small ψ , the
opening wedgelike region is not wide enough to trap sufficient
active particles, while for ψ ∼ 2π the inclusion approaches
the shape of a line. In both cases, the inclusion does not have
any net polarity in its shape. Fourth, to check how Vinc depends
on the overall size of the inclusion, we considered the ABP
model and varied the radius R. We found that the optimum
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(a) (b)

(c)

FIG. 5. (a) The variation of the mean persistent motility of the
inclusion defined in Eq. (10) as a function of its shape. Vinc peaks
around ψ ∼ π/2 for all models. Interestingly, the numerical values
of Vinc are also similar for all ψ across the three models. Remarkably,
we observe that Vinc does not change sign as the shape of the inclusion
changes from a nonconvex region (for ψ < π ) to a convex region
(for ψ > π ). In other words, the emergent mean velocity of the
anisotropic inclusion is always along n̂. (b) The optimum angle ψopt

at which Vinc peaks decreases with the radius R of the inclusion.
(c) The time spent by the active particles in the wedgelike trapping
region follows an exponential distribution with a characteristic dwell
time τdwell. This dwell time depends on the shape of the inclusion and
shows a peak around ψ ∼ π/4. The value of τdwell is higher for RTP
and ABP baths compared to the AOUP bath. In this plot, Pe = 66
and φ = 0.3.

speed Vopt = Vinc(ψopt ) is largely independent of R. However,
the optimal angle ψopt decreases with R as shown in Fig. 5(b).
Finally, we note that Vinc is comparable in magnitude to the
coefficient of the ballistic term in the MSD of the inclusion
shown in Figs. 3(a)–3(c).

As remarked above, the accumulation of the bath parti-
cles in the wedgelike region has a nontrivial effect on the
motility of the inclusion. This wedgelike region exists only
for opening angles ψ < π . The bath particles dynamically
enter and leave this region as the inclusion moves around.
What is the mean dwell time of the bath particles within
this region? The dynamics of a bath particle deep inside this
wedgelike region, i.e., ρ 
 R, is hindered by the subsequent
accumulation of other active particles at ρ � R. As such, the
dwell time would be an increasing function of R. At a given
R, the opening angle ψ also influences the dwell time with
small values of ψ being more effective. However, the impacts
due to the small number of particles at small ψ would not lead
to a substantial net force on the inclusion. However, for larger
values of ψ ∼ π , the trap does not present a confining region.
As such, we expect that there is an optimum opening angle at
which this trapping effect is maximal. To quantify this effect,
we measured the amount of time tdwell that a particle spends
in the wedgelike region. Specifically, we considered a bath
particle to be “trapped” whenever ρ/R < cos(ψ/2) where ρ

is its distance from the geometrical center of the inclusion
and ω tdwell > 1/20. We find that the dwell times follow an
exponential distribution with a characteristic timescale τdwell.
We plot τdwell as a function of ψ in Fig. 5(c) and find that
there is an optimum opening angle when this characteristic
dwell time is a maximum. Thus, the anisotropic shape and
the wedgelike trapping region of our inclusion serve to trap

(a) (b)

FIG. 6. (a) The variation of the optimal velocity Vopt (defined
as the value of Vinc at the optimal angle ψopt; see Fig. 5) with the
volume fraction φ at Pe = 100. The peak seen in Vopt results from a
shielding effect of the active particles on the inclusion (see text). The
dashed line denotes the value of φ at the MIPS phase boundary for
ABPs [35]. (b) At φ = 0.5, Vopt is a monotonic function of the Péclet
number Pe. The dotted lines are linear fits to the data.

the bath particles and lead to its emergent shape-dependent
motility characteristics.

To decipher how the characteristics of the active bath con-
trols the motility of the inclusion, we plot the variation of
Vopt with the volume fraction φ in Fig. 6(a). We observe
that Vopt is a nonmonotonic function of φ and has a peak
around φ = 0.3. How do we understand this optimum volume
fraction? At small φ, most of the active particles accumulate
in the wedgelike region of the inclusion. As such, increasing
φ leads to an initial increase in Vopt. This trend continues
until the wedgelike region is completely occupied by the
bath-particles. With a further increase in φ, the large number
of particles present in the active bath now start clustering
around the inclusion in an isotropic manner. In other words,
the anisotropic inclusion is increasingly shielded by a cloud of
active particles at large φ. This effectively nullifies the shape
anisotropy of the inclusion and leads to a decrease in Vopt.
Note that this behavior is displayed by all the three active bath
models and, concomittant with the results in Fig. 5, Vopt is
larger for AOUP baths compared to the RTP and ABP baths.
Thus, the volume fraction of the bath has a nontrivial effect on
the emergent motility of the inclusion. However, an increase in
the Péclet number Pe leads to an expected monotonic increase
in Vopt as shown in Fig. 6(b).

IV. DISCUSSION

We observe the following points from our study. First, the
emergent motility of the inclusion arises from a combined
effect of the dynamics of the inclusion as well as the dynamics
of the active particles in the heat baths. In other words, the
polar inclusion in our study is not a passive tracer [22,29], nor
a stationary trap designed to capture active particles [32] or
traps with prescribed dynamics [33]. Rather, the degrees of
freedom of our inclusion evolve naturally due to the impacts
of the bath particles. It should also be noted that the net
motility of the inclusion is a consequence of the nonequilib-
rium nature of the heat bath. In an equilibrium heat bath, the
inclusion would not display any net motility, even if it had
a polar shape. Second, the active particles in our heat baths
are isotropic in shape. This should be contrasted with baths
consisting of rodlike active particles. In the case of active
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baths with polar particles, the orientational degrees of freedom
of the bath particles has a significant effect on their trapping
dynamics in a static wedge [36]. Third, previous studies have
considered wedgelike inclusions (nonclosed shape) in active
baths and have measured their emergent motility [37,38].
While the emergent dynamics depends on the opening angle
of the wedges, the open shape does not allow constructing
shapes like that of our inclusion for ψ > π . As remarked
earlier, our polar inclusion always moves along n̂ and does
not reverse its direction of motion even when ψ > π . This is
a novel feature of the closed shape of our inclusion. Fourth,
the motility of the inclusion arises from the net force on it
due to impacts of the bath particles. This impact force has
nontrivial correlations in time [28,29]. This is not surpris-
ing since the active forces on the bath particles themselves
are correlated in time, i.e., they have persistent driving. But
what we have demonstrated in our study is that the shape of
the inclusion controls, in a nontrivial manner, the temporal
correlations of the net force due the bath particles, and thus
its emergent motility. Fifth, concomitant with our observation
that increasing φ beyond a critical value leads to a decrease in
Vinc at a fixed Pe, we observe that the emergent motility of the
inclusion is optimum at the value of φ near the MIPS phase
boundary [9,35]. We notice that below the MIPS transition,
the suboptimal accumulation of particles on the inclusion
will lead to a decrease in motility. However, deep in the
MIPS regime, enhanced accumulation of the active particles
around the inclusion will “isotropize” the polar shape of the
inclusion and thus reduce its emergent motility. As such, the
region around the MIPS phase boundary in the Pe-φ plane
seems optimal to transduce the forces from the active bath
into enhanced motility of the inclusion. However, we do not
see a similar peak when Pe is varied at a fixed area fraction
φ = 0.5. Sixth, all three models of active particle leads to
similar emergent dynamics of the inclusion. This is in line
with the observation that these models also display universal
scaling features in a one-dimensional single file geometry
[13].

Our study reveals optimum shapes for inclusions that leads
to enhanced motility. These results could potentially have
implications for designing the shapes of embedded objects in
active baths [39]. Thus, an inclusion that controls its shape in
a dynamical manner can control its emergent active motility
when placed in an otherwise isotropic and unbiased active
heat bath. For instance, moving cells or droplets, wherein their

shape is controlled by other mechanisms, could display varied
motility characteristics in medium wherein the impacts of the
bath particles are not governed by a Boltzmann distribution.
In principle, it should be possible to calculate the pressure
exerted by the bath of active particles on the polar inclusion
[40]. While this is reasonably possible in systems with sim-
ple geometries, the complexity of the boundary of the polar
inclusion in our study makes this a nontrivial task.

In summary, we have studied the dynamics of a polar
inclusion in three different active baths, namely ABPs, RTPs,
and AOUPs. We see that the inclusion behaves as an emergent
active particle with short-time ballistic behavior and long-
time diffusive behavior. This emergent motility arises from
the nontrivial correlations of the impact force exerted by the
bath particles on the inclusion. These correlations, in turn,
are controlled by the shape of the inclusion. In particular, the
inclusion (with R/a = 5) has a maximum motility around an
opening angle of ψ ∼ π/2. Surprisingly, the inclusion does
not reverse the sense of its motion relative to its normal vector
even when it changes from a nonconvex shape to a convex
shape. Remarkably, we find that the inclusion motility peaks
close to the volume fraction of the bath particles that corre-
sponds to the onset of MIPS. An emergent shielding effect of
the active particles deep in the MIPS regime seems to lead
to a reduction in the inclusion motility. It would be interest-
ing to study the emergent interactions between such passive
inclusions embedded in active baths to explore the interplay
between active fluctuations and the geometry of shape [41].
Finally, our predictions can be tested in various experimental
systems, for instance, in vibrated granular systems with em-
bedded inclusions.
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