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Self-aligning active agents with inertia and active torque
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We extend the study of the inertial effects on the two-dimensional dynamics of active agents to the case
where self-alignment is present. In contrast with the most common models of active particles, we find that self-
alignment, which couples the rotational dynamics to the translational one, produces unexpected and nontrivial
dynamics, already at the deterministic level. Examining first the motion of a free particle, we contrast the role
of inertia depending on the sign of the self-aligning torque. When positive, inertia does not alter the steady-state
linear motion of an a-chiral self-propelled particle. On the contrary, for a negative self-aligning torque, inertia
leads to the destabilization of the linear motion into a spontaneously broken chiral symmetry orbiting dynamics.
Adding an active torque, or bias, to the angular dynamics, the bifurcation becomes imperfect in favor of the
chiral orientation selected by the bias. In the case of a positive self-alignment, the interplay of the active torque
and inertia leads to the emergence, out of a saddle-node bifurcation, of solutions which coexist with the simply
biased linear motion. In the context of a free particle, the rotational inertia leaves unchanged the families of
steady-state solutions but sets their stability properties. The situation is radically different when considering the
case of a collision with a wall, where a very singular oscillating dynamics takes place which can only be captured
if both translational and rotational inertia are present.

DOI: 10.1103/PhysRevE.110.014606

I. INTRODUCTION

Self-propelled agents, the “big atoms” of active mat-
ter, consume energy to produce directed motion [1–4]. In
many cases, such as bacteria [5–8], cells [9–11], manmade
Janus [12–17], or rolling colloids [18,19], the agent size to-
gether with the viscosity of the surrounding medium ensure
that the dynamics take place at sufficiently low Reynolds
number and inertia can be neglected [4].

There are, however, other cases, where this simplification
does not hold, as, for instance, with the flight of birds [20,21],
the motion of vibrated polar grains [22–25], or that of cen-
timetric robots [26–29]. An important effort has been made
to upgrade the model of active Brownian particles (ABPs)
by including inertia in both translational and orientational
motion [30,31]. Analytical results were obtained for the
orientational and translational correlation functions of single-
particle dynamics with good agreement with experimental
results from vibrated granular systems. More exact analytical
predictions for higher-order statistics were also obtained in
devising an inertial active Ornstein-Uhlenbeck particle, which
further simplifies the ABP dynamics by enforcing Gaussian
fluctuations [32]. More specifically, it was shown that ro-
tational inertia is fundamentally relevant to reproduce the
temporal delay between the active force and particle velocity
observed for a single active granular particle.

Another important ingredient to describe polar agents, es-
pecially those which take their momentum from a substrate,
is self-alignment [33]. Self-alignment was introduced as early
as 1996 in the pioneering work of Ref. [34], stemming from
the very basic observation that the heading and velocity of
a polar body do not need to be parallel. When they are not,
the distribution of propulsive and dissipative forces is gener-
ically not symmetric concerning the body axis and therefore
exerts a torque on the agent body, promoting the reorientation
of the latter towards or opposite to its direction of motion.
Self-alignment was reintroduced independently in Ref. [9] to
describe the collective migration of tissue cells, in Ref. [35]
to study active jamming, in Ref. [27] to describe an as-
sembly of wheeled robots, and in Refs. [23,24,36], where
it was shown to be a key ingredient for the emergence of
collective motion in a system of self-propelled polar disks.
More recently, it has started to attract more attention in the
context of dense and solid active matter. It was introduced in
vertex models [37–40], in phase field models [11], and in a
model experimental system of active elastic networks where
its central role was elucidated [41,42]. Finally, self-alignment
was recently used as a morphological asset in the context of
swarm robotics [29].

In light of this growing interest for self-aligning active
agents, it is of increasing importance to compute the type
of dynamics that arise when self-alignment takes place in
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FIG. 1. A few instances of unexpected dynamics observed with an inertial self-aligning agent. (a) A vibebot, combining a standard Kilobot
platform [28] with a custom-designed exoskeleton, featuring toothbrush legs in place of the original three metallic rod legs. (b) Such a robot,
moving at 10 cm/s, is kicked by an external perturbation while performing a rather large gyration radius circular trajectory, and switches
to a rapidly spinning dynamics (see also Supplemental Material Movie 1 [43]). When such augmented Kilobot collisions with a wall with
small enough velocity (c) oscillates near its impact point, reorienting periodically (d) (see also Supplemental Material Movie 2), eventually,
when the incoming velocity is large and the oscillation amplitude is large enough, the robot escapes the wall (see also Supplemental Material
Movie 3).

the presence of inertia, both for a-chiral and chiral agents.
Our initial motivation arises from the observations of un-
expected dynamics, which we observed while designing
low-cost robots. These dynamics are reported on Fig. 1. Fol-
lowing a collision or a manual perturbation, a single freely
moving robot can abruptly switch from a circularlike motion
to a spinning one, revealing an unexpected coexistence of
two very different dynamics for the same value of the control
parameters. Collisions with a linear wall revealed even more
curious behavior, with the robot facing the wall, while per-
forming a curious angular and translational oscillating motion,
around its point of impact. The amplitude of the oscillations
increase with the incoming speed, eventually reorienting the
robot away from the wall. Such qualitatively intriguing dy-
namics are absent when the angular dynamics decouples from
the translational motion. Our goal is to decipher the respective
role of active torque and inertia in setting up these dynamics
for self-aligning polar agents. Because the significance of the
present paper lies in the generic presence of self-alignment for
self-propelled particles taking their momentum from a sub-
strate, we shall also explicitly elucidate the connection of the
model equations with the mechanism of motion of an active
agent. This analysis further provides a design route to select
the sign of the self-aligning torque, as reported in Ref. [29].

The paper is organized as follows. Having shown how self-
alignment arises from the distribution of masses and forces
on the agent body, we first discuss the case of a free particle
before considering the interaction with a linear wall. In the
first part, we show that the role of translational inertia de-
pends on the sign of the self-aligning torque. When positive,
inertia does not modify the steady-state linear motion of an
a-chiral self-propelled particle. However, its interplay with
an additional angular bias leads to the emergence, out of
a saddle-node bifurcation, of truly unqiue solutions, which
coexist with the simply biased linear motion. On the contrary,
for a negative self-aligning torque, inertia leads to the desta-
bilization of the linear motion into a spontaneously broken
chiral symmetry orbiting dynamics. An additional bias sim-
ply turns the bifurcation into an imperfect one in favor of

the chiral orientation selected by the bias. As long as a free
particle is considered, the rotational inertia leaves unchanged
the families of steady-state solutions, except for their linear
stability. In the second part, we show that the situation is
radically different when considering the case of a collision
with a wall. This very singular oscillating dynamics described
above can only be captured if both translational and rotational
inertia are present.

The active agent considered in this paper is a vibebot, a
minimal robot equipped with a small engine that makes it
vibrate vertically. Each time, the robot hits the ground, the
shape and location of its legs, together with the distribution
of mass, transfer a part of the vertical momentum provided
by the vibration into horizontal momentum. This propulsion
mechanism is common to most artificial walkers used in the
field of active matter, from vibrated polar discs [23] to centi-
metric vibebots [26–29]. Let us first provide an initial intuition
of the mechanical origin of self-alignment, following simple
symmetry considerations. The first element of design of a self-
propelled polar agent is a unit vector n̂ describing the tail-head
axis of the agent, also called a polar axis, along which it gains
momentum due to self-propulsion. For an unbiased agent, the
design needs to respect the mirror symmetry of the body with
respect to the polar axis, including the distribution of mass,
but also the spatial distribution of propulsive and dissipative
forces. It is then clear that the very same distribution of mass,
propulsive, and dissipative forces are not axially symmetric
with respect to the direction of motion, as soon as it is mis-
aligned with the polar axis. This asymmetric distribution of
forces exerts a torque on the agent body, which thus rotates its
polar axis towards the direction of motion or its opposite.

More formally, the two-dimensional Newton’s equa-
tions describing the deterministic motion of a self-aligning
polar agent heading along n̂ = (cos θ, sin θ ) in the direction
θ read

mr̈ = Fan̂ + F̃ext (r) − γ ṙ, (1a)

J̃ θ̈ = T̃a + ζ (n̂ × ṙ) · ez − γr θ̇ . (1b)
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where m r and J̃ , respectively, are the mass, position, and in-
ertial momentum of the agent, and γ , γr , respectively, encode
the translational and rotational damping, which are assumed
to be scalar. The first equation describes the inertial transla-
tional motion of an active agent self-propelled by an active
force Fan̂, subject to an external force F̃ext (r) and experi-
encing a drag force −γ ṙ. The second equation expresses the
inertial reorientation of the active force, subject to an active
torque T̃a, self-alignment, and angular damping. The active
torque arises from a possible chirality of the active particle,
also called bias if undesired. The self-aligning term expresses
the coupling between the velocity of the particle and the orien-
tation of the active force when they are not colinear. When ζ

is positive, respectively, negative, the coupling tends to align,
respectively, antialign, n̂ with ṙ. More precisely, the active
torque and the self-aligning term arise from the distribution
of the contacts of the agent with the ground. Consider a two-
dimensional rigid body, with N contacts located at positions
ri. These contacts are the points of application of the pro-
pelling forces f a

i and dissipative forces −γi ṙi, where γi, the
damping coefficient, may vary from one contact to another.
The kinematics of a rigid body imposes that

ṙi = ṙcm + � × (ri − rcm), (2)

with rcm the center of mass and � = θ̇ez the solid body ro-
tation. The total momentum arising from the contact with the
ground,

T =
∑

i

(ri − rcm) × (
f a

i − γi ṙi
)
, (3)

thus reads

T = T̃ a − γ (rc f − rcm) × ṙcm − γr θ̇ez, (4)

where T̃ a = ∑
i(ri − rcm) × f a

i is the active torque, γ =∑
i γi is the total damping coefficient, rc f = ∑

i γiri/γ is the
center of friction, and γr = ∑

i γi|ri − rcm|2 is the rotational
damping. For a mirror symmetric body with respect to the po-
lar axis, rc f − rcm and n̂ are colinear, so the law of momentum
reads as Eq. (1b), with ζ = γ (rcm − rc f ) · n̂. One sees that the
sign of ζ is directly set by the position of the center of friction
relatively to the center of mass, along the polar axis.

Equations (1) were shown to faithfully describe the mo-
tion of a self-propelled polar agent in a harmonic potential,
as experimentally observed with the simple Hexbug robot
device running in a parabola dish [44]. The onset of collec-
tive motion in a system of self-aligning hard disks was also
captured [36,45], as observed experimentally and numerically
in a system of vibrated polar grains [23,24,46]. Note that in
some other context [9,34,35], the self-aligning torque can be
normalized by the norm of ṙ.

In the following, we shall respectively use m, the body
length d of the agent, and d/v0, with v0 = Fa/γ the free flight
velocity, as the mass, length, and time units. The dimension-
less equations then read

τv r̈ = n̂ − ṙ + Fext (r), (5a)

J θ̈ = Ta + ε(n̂ × ṙ) · ez − τnθ̇ , (5b)

with Fext = F̃ext
γ v0

and Ta = T̃a
|ζ |v0

, J = J̃v0
|ζ |d2 , τv = mv0

γ d , τn = γr

|ζ |d
and ε = sign(ζ ).

II. FREE PARTICLE DYNAMICS

In the absence of external force, the isotropy of space
imposes that only the difference of orientation between n̂ and
v = ṙ matters. Introducing the orientations φ of v = v(cos φ

sin φ )

and θ of n̂ = (cos θ

sin θ ), together with their difference α = θ − φ,
one obtains the equations for the free particle dynamics:

τvφ̇ = 1

v
sin α, (6a)

τvv̇ = cos α − v, (6b)

α̇ = ω − 1

τvv
sin α, (6c)

Jω̇ = Ta − εv sin α − τnω, (6d)

where ω = θ̇ . The last three equations form a closed system
for the variable (v, α, ω), the solution of which sets the dy-
namics of φ through the first equation.

The steady-state dynamics are obtained by solving for
the fixed points of equations (6) and performing their linear
stability analysis. Equations (A1b) and (A1c) readily lead to
v∗ = cos α∗ and ω∗ = 1

τv
tan α∗. Substituting in Eq. (A1d) and

denoting t = tan α∗, one finds the third-order polynomial in t ,
the roots of which set the fixed points:

τn

τv

t3 − Tat2 +
(

ε + τn

τv

)
t − Ta = 0. (7)

A. Unbiased inertial dynamics, Ta = 0

It is instructive to start with the case of an a-chiral, or un-
biased, particle, Ta = 0, for which obtaining the steady-state
solutions and their stability is straightforward. The results are
summarized in Fig. 2. One immediately identifies the trivial
fixed point t = 0, leading to v∗ = 1, α∗ = 0, ω∗ = 0, φ̇∗ = 0,
which corresponds to the particle performing straight mo-
tion at nominal velocity, with v and n̂ being aligned. In the
aligning case, ε = +1 (blue lines in Fig. 2), this is the only
fixed point and it is always linearly stable. In the antialign-
ing case, ε = −1 (green lines in Fig. 2), two mirror fixed
points, given by tan α∗ = ±√−(1 + ετv/τn)) emerge from a
a pitchfork bifurcation, when the linear motion turns unsta-
ble for τv/τn > 1. These fixed points describe clockwise and
anticlockwise circular trajectories, with an orbiting frequency
ω∗ = φ̇∗ = 1√

τnτv
sin α∗ and a radius R∗ = v∗/ω∗ = 1

τv sin α∗ .
Note the nonmonotonic dependence of the rotation frequency
with τv/τn: it arises from the combination of the fast in-
crease of α∗ at the onset of the instability and the 1/

√
τv

prefactor expressing the slowing down of the dynamics by
inertia.

The physical picture is as follows. In both cases, the ve-
locity v tends to align with the orientation n̂ imposed by the
active force. In the aligning case, n̂ rotates toward v, so inde-
pendently of the timescales of the dynamics, the two vectors
dynamics stabilize the steady state where they are aligned.
Conversely, in the antialigning case, n̂ rotates away from v.
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FIG. 2. Bifurcation diagram for the steady-state dynamics of a
free self-aligning particle with inertia and no bias: (a) angle between
the orientation and the velocity vector. Inset: While the aligning
dynamics is stabilizing the dynamics, the antialigning one is destabi-
lizing. (b) Orbiting frequency. In blue, respectively, green: aligning,
respectively, antialigning case. Continuous, respectively, dotted lines
denote linearly stable, respectively, unstable solutions.

Whenever τv/τn is too large, v cannot catch up with n̂, and
any small disturbance of the linear motion destabilizes it in an
endless orbiting motion. The angular inertia does not alter the
family of solutions, but as we shall discuss below, it conditions
the stability properties of these solutions. We conclude this
section by recalling that, to our knowledge, there is so far only
one experimental realization of an antialigning polar particle,
a kilobot augmented with a specific 3D exoskeleton described
in Ref. [29]. The orbiting solution pinpointed here was not
reported in that work; the reason being that the inertia of
such robots is small enough to avoid the destabilization of the
straight motion.

B. Inertial dynamics of chiral particles, Ta �= 0

In the presence of an active torque, the analytical solu-
tions provided by solving for the roots of Eq. (A3) have a
cumbersome dependence on the parameters. Their domains
of existence are provided in the Appendix. However, one can
make a few simple statements by considering limiting cases.
In the limit of vanishing translational inertia, τv

τn
→ 0, the

FIG. 3. Free inertial dynamics of aligning chiral particles.
(a) Misalignment, α∗, between the velocity and the orientation of the
self-propelling force and (b) angular frequency, ω∗, of the resulting
circular motions as a function of τv/τn for increasing values of the
bias, as indicated by the color code. Continuous, respectively, dotted
lines denote linearly stable, respectively, unstable solutions.

only solution is α∗ → 0, v∗ → 1 and ω∗ → Ta/τn. It cor-
responds to circular trajectories with a radius R∗ → τn/Ta,
which diverges in the a-chiral limit: they simply form the
generalization of the straight trajectories bended by the bias.
Conversely, in the limit of large translational inertia, τv

τn
→ ∞,

the situation becomes qualitatively different. For |Ta| < 1/2,
three solutions exists, one of which is given by α∗ → ±π

2 ,
v∗ → 0, and ω∗ → Ta/τn. For |Ta| > 1/2, only this solution
subsists. It corresponds to a purely spinning dynamics, where
the particle rotates on itself. The connection between the two
limits is summarized in Figs. 3 and 4 for the aligning and
antialigning case, respectively. In the aligning case, ε = +1,
one finds an unexpectedly rich bifurcation diagram. As ex-
pected, the linear motion obtained when Ta = 0 is replaced
by the slowly rotating circular motion, with ω∗ = tan α∗

τv
, the

radius of which R∗ = 1
τv sin α∗ decreases from infinity when the

bias grows from zero. This solution is always linearly stable.
More surprising are the two solutions which emerge from a
saddle-node bifurcation above a bias-dependent critical value
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FIG. 4. Free inertial dynamics of an antialigning chiral particle:
(a) Misalignment, α∗, between the velocity and orientation of the
self-propelling force and (b) angular frequency, ω∗, of the resulting
circular motions as a function of τv/τn for increasing values of the
bias, as indicated by the color code. Continuous, respectively, dotted
lines denote linearly stable, respectively, unstable, solutions.

of τv/τn. The fastest one, with a small radius of gyration,
converges to the spinning solution described above in the limit
of large inertia τv/τn → ∞ and is stable. The slower one
is always unstable. Below this bias-dependent critical value
of τv/τn, the lower branch disappears and the faster branch
merges with the slowly rotating circular motion inherited from
the straight motion, in the absence of bias.

Comparatively, the antialigning case, ε = −1, is a straight-
forward generalization of the bifurcation diagram obtained in
the absence of bias. For Ta < T ∗

a (τv/τn), the active torque
simply renders the pitchfork bifurcation imperfect in a way
analogous to the effect of an external field on a paraferro-
magnetic transition. The bifurcated branch compatible with
the bias merges continuously with the slowly rotating circular
motion inherited from the straight motion in the absence of
bias. The other one connects in a saddle-node bifurcation to
the one inherited from the linearly unstable straight trajectory.
For Ta > T ∗

a , only the linearly stable strongly biased solution
persists.

FIG. 5. Domain of existence and stability of the lowest branch of
the bifurcated solutions, in the case ε = −1: The grey area denotes
the region in the (τv/τn, Ta) plane, where the solution does not exist.
In the existence domain, the solution is stable to the left of a line,
the position of which is set by the angular inertia, as indicated by the
color code (τn = 1).

We close this section by discussing the nontrivial depen-
dence on the angular inertia of the linear stability of the
bifurcated solutions in the antialigning case. The solution
inherited from the linearly unstable straight trajectory remains
unstable, as it should. On the contrary, the linear stability of
the solution inherited from the bifurcated solution opposing
the bias depends on the angular inertia J and τn. Figure 5
displays the existence and stability domains of these solutions,
in the (τv/τn, Ta) plane for τn = 1 and different values of J .
As stated above, the bias sets the domain of existence of the
solutions: the larger Ta, the larger the value of τv/τn above
which these non-trivial solutions exist. A finite angular iner-
tia imposes a bias-dependent maximal value to τv/τn, above
which the solution turns linearly unstable. For small J , the
so-obtained domain of stability shrinks when J increases. For
J larger than a threshold of the order of τn, this tendency re-
verses: the linear stability enlarges with growing J , eventually
recovering stable solutions in all their domains of existence
in the limit J → +∞. A similar dependence is observed for
an increase of 1/τn at a fixed value of J , highlighting the
similar role played by the two quantities. The basis of the
linear analysis is provided in the Appendix.

In conclusion, the above results demonstrate the key role
of self-alignment, when it combines with translational iner-
tia, in producing qualitatively steady dynamics even in the
simplest case of freely moving particles. For the aligning
case, the straight-line trajectory remains the only solution in
the absence of bias. Any small amount of bias gives rise to
a branch of solutions disconnected from the previous one,
which corresponds to a rapidly spinning motion. Such a solu-
tion coexists with the quasilinear motion. For the antialigning
case, two branches of chiral orbiting solutions emerge at large
inertia even in the absence of bias. In the absence of external
forces, the rotational inertia only affects the stability of these
steady dynamics. We shall now see that it becomes a central
ingredient when describing the interaction of such a particle
with a linear hard wall.
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III. COLLISION WITH A WALL

Performing experiments with self-propelled agents, one
usually confines them in one way or another, typically using
lateral walls. Figures 1(c)–1(e) report the motion of an iner-
tial aligning agent, when it enters into contact with a wall.
For low enough incoming velocity, one observes that, after
a short transient, the self-aligning agent performs an endless
translational and orientational oscillation along the wall. The
amplitude of these oscillations increases with the incoming
speed. When the amplitude of the angular oscillation is so
large that it reorients the agent away from the wall, the latter
escapes the wall.

This intriguing dynamics is well captured by Eqs. (5),
where the external force now describes the interaction with
the wall. As we shall see, the bias is not a necessary ingredient
and we omit it from now on, for the purpose of simplicity.
Let us denote êx the direction towards the wall and êy the
direction parallel to the wall [see Fig. 1(c)] with the wall
sitting in the position x = 0. In light of the rolling motion
observed experimentally, the most general description of this
interaction is that of

(1) a repulsive force in the direction normal to the wall:
F⊥

w = − ∂Vw (r)
∂x = − εw

d Nw, with −Nw being the dimensionless
force normal to the wall;

(2) a tangential frictional force opposing the sliding veloc-
ity u: F ‖

w = −μu, with u = vy + d
2 θ̇ , where the second term

accounts for the rotation of the contact point with the wall;
and

(3) a torque resulting from the friction at contact: �w =
−μ d

2 u.
The precise choice of the repulsive potential is not crucial

as long as it is stiff enough. In the following, Vw is a Weeks-
Chandler-Andersen potential, leading to a normal force

Nw = 16n

((
σ

|x|
)2n+1

− 1

2

(
σ

|x|
)n+1

)
,

with σ = d/21+1/n and n = 6. Finally, the interaction with the
wall is truncated and set to zero when the distance to the wall
is |x| > 21/n d

2 . Altogether, the dimensionless equations de-
scribing the dynamics of a self-aligning agent in contact with
the wall read:,

τv ẍ = cos θ − ẋ − κNw(x), (8a)

τv ÿ = sin θ − ẏ − ν(ẏ + θ̇/2), (8b)

J θ̈ = ε(cos θ ẏ − sin θ ẋ) − τnθ̇ − τr (ẏ + θ̇/2), (8c)

where τv , J , τn, ε are as defined in the previous section and
the additional dimensionless parameters are κ = εw

γ v0d , ν = μ

γ
,

and τr = μd
2ζ

.
As a further simplification, we shall assume that the rel-

evant part of the dynamics takes place along the wall, while
the dynamics perpendicular to the wall consist of a rapid
equilibration of the propelling force and the repulsive one.
This is possible because the wall is not infinitely rigid and the
position within the wall can accommodate the variation of the
propelling force in the direction normal to the wall accord-
ing to the balance cos θ = κNw(x). Within this assumption,
Eqs. (8) reduce to four first-order differential equations for the

(a) (b)

(c) (d)

(e) (f)

FIG. 6. Linear stability of the fixed point against the wall in the
aligning case, ε = +1. (a)–(c) Real and imaginary parts of some,
including the largest, eigenvalues as a function of τv for τr = 2. For
large enough inertia, the fixed point facing the wall turns unstable via
a Hopf bifurcation (vertical dotted line). (b)–(d) Real and imaginary
parts of the eigenvalues as a function of τr for τv = 3 : For τr < 1,
there is always a positive real part and the fixed point is unstable; for
τr > 1, there is a small range of τr values for which the fixed point is
stable before it turns unstable via a Hopf bifurcation (vertical dotted
line). (e) The critical value of τv above which oscillations take place
depends in a nonmonotonous way on τr . (f) The oscillating dynamics
for τv = 3 and τr = 2. In all panels, J = τv, τn = 0.1, ν = 0.1.

variables (y, ẏ, θ, θ̇ ) provided in the Appendix. We shall verify
below that this assumption is valid by performing simulations
of the above equations, once a better understanding of the
mechanisms is at play, which will allow us to select the proper
range of values for the numerous control parameters.

The dynamics described by Eqs. (8), reduced to the dy-
namics along y and θ , have two infinite sets of fixed points
(y∗ = y0, θ

∗ = 0 or π, ẏ∗ = 0, θ̇∗ = 0) corresponding to the
active agent pointing statically into or outward the wall at any
position y0, the case where the agent points outward being
irrelevant here. In the absence of inertia, these fixed points
are marginally stable, reflecting the translational invariance
along y.

In the aligning case, ε = +1, for any small amount of
inertia, any of these fixed points becomes linearly unstable for
τr < 1 [Figs. 6(b) and 6(d)] and the dynamics obey another
steady solution given by (ys = v0t, θs = arccos(τr ), ẏs =
v0 = sin θs/(1 + ν), θ̇s = 0), describing the sliding motion of
the active agent along the wall. When τr > 1, the linear sta-
bility of the fixed point depends on the respective values of
all the parameters, but can be summarized as follows. For
a given value of the damping coefficients ν and τn, there is
a critical inertia above which the fixed point turns unstable
in favor of periodic dynamics through a Hopf bifurcation
[Figs. 6(a) and 6(c)], leaving the place for the oscillations
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(a) (b)

(c) (d)

(e) (f)

FIG. 7. Linear stability of the fixed point against the wall in the
antialigning case, ε = −1. (a)–(c) Real and imaginary parts of some,
including the largest, eigenvalues as a function of τv for τr = 2: for
large enough inertia, the fixed point facing the wall turns unstable via
a Hopf bifurcation (vertical dotted line). (b)–(d) Real and imaginary
parts of the eigenvalues as a function of τr for τv = 1: For large
enough friction with the wall, the fixed point facing the wall turns
unstable via a Hopf bifurcation (vertical dotted line). (e) The critical
value of τv above which oscillations take place is a simple increasing
function of τr . (f) The oscillating dynamics for τv = 1 and τr = 2. In
all panels, J = τv, τn = 0.1, ν = 0.1.

observed experimentally [Fig. 6(f)]. Both translational and
angular inertia must be nonzero for this instability to take
place. Increasing the damping coefficients simply increases
the value of the critical inertia. For a fixed ratio of angular to
translational inertia, the dependence of the critical inertia on
τr is not necessarily monotonic [Fig. 6(e)].

In the antialigning case, the situation is somehow simpler
because the sliding solution does not exist. The relevant fixed
points remain marginal in the absence of inertia [Figs. 7(a)
and 7(c)], whatever the value of τr . For large enough inertia
and not too large τr , any of the translationally equivalent
fixed point turns unstable via a Hopf bifurcation [Figs. 7(b)
and 7(d)], leading to the same type of oscillatory dynamics
as in the aligning case [Fig. 7(f)]. Here the critical inertia
is a simple increasing function of τr [Fig. 7(e)]. As in the
aligning case, increasing the damping coefficients ν and τn

simply increases the value of the critical inertia.
Both in the aligning and antialigning cases, one numeri-

cally checks that the amplitude of the oscillations increases
with inertia until eventually θ reaches values larger than π/2,
the agent leaves the wall, and the present simplified descrip-
tion stops holding.

As stated initially, the above reduction of the dynamics to
a simpler one-dimensional motion along the wall assumes a
permanent contact with the wall which is different from the
repeated collisions experienced by a real hard body active

(a) (d)

(b) (e)

(c) (f)

FIG. 8. 2D trajectories against the wall in the aligning case,
ε = +1: (a)–(c) y, coordinate along the wall, and θ , the orientation
of the active agent as a function of time for the sliding dynamics, the
static fixed point, and the oscillating dynamics, respectively; (d)–(f)
corresponding trajectories in the (x, y) plane. The vertical black line
denotes the position of the wall; the trajectories are color coded from
blue to red by increasing time; in the initial condition, the agent sits in
(x = −1, y = −0.5) and points in the direction θ = π/6. The param-
eter values are for (a), (d): τv = 0.5, J = 4, τr = 0.5, ν = 0.15, τn =
0.15; for (b), (e): τv = 1, J = 4, τr = 3, ν = 0.15, τn = 0.15; and for
(c), (f): τv = 1.5, J = 9, τr = 3, ν = 0.15, τn = 0.15.

agent, such as the vibebot of Fig. 1(a). Performing simulations
of the full set of Eqs. (8), we confirm the validity of the
approach, as the same dynamics are observed in the good
range of values for the control parameters. In the aligning
case, the three dynamics identified previously are reported
in Fig. 8. For τr < 1 [Figs. 8(a)–8(d)], the agent indefinitely
slides along the wall. This behavior was tested experimentally
using an alternative vibebot with a smaller τr value. Only the
sliding dynamics were observed (see Supplemental Material,
Movie 4). For τr > 1 and small inertia [Figs. 8(b) and 8(e)],
damped oscillations follow an initial bouncing regime before
the agent sets in a static position facing the wall. For τr > 1
and large inertia [Figs. 8(c) and 8(f)], sustained oscillations
follow the same initial regime. The two dynamics predicted
for the antialigning case are also recovered. Independently
of the value of τr , for small enough inertia [Fig. 9(a)], the
agent rapidly stabilizes into the static fixed point [Fig. 9(a)],
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(a) (b)

FIG. 9. 2D trajectories against the wall in the antialigning case,
ε = −1. (a), (b) y, coordinate along the wall, and θ , the orientation
of the active agent as a function of time for the static fixed point,
and the oscillating dynamics, respectively (insets); corresponding
trajectories in the (x, y) plane; the vertical black line denotes the
position of the wall; the trajectories are color coded from blue to
red by increasing time; in the initial condition, the agent sits in
(x = −1, y = −0.5) and points in the direction θ = π/6. The param-
eter values are for (a) τv = 0.2, J = 3, τr = 1, ν = 0.15, τn = 0.15
and (b) τv = 0.5, J = 3, τr = 1, ν = 0.15, τn = 0.15.

while for larger inertia the oscillations set in [Fig. 9(b)]. Note
the difference in the transitory regime, which is much more
localized around the impact point in the antialigning case than
in the aligning one.

IV. CONCLUSION

Coupling inertia with self-alignment considerably enriches
the deterministic dynamics of self-propelled active agents. As
in the case of standard active particles, translational inertia
hinders the agent’s ability to change the direction of its veloc-
ity in response to the active and external forces and angular
inertia does the same for the direction of the self-propulsion in
response to torques. Self-alignment, because of the coupling
with the translational degrees of freedom, does not simply
act like an active torque. In the aligning case, it reduces the
inertial delay between the orientation of self-propulsion and
the velocity. Conversely, in the antialigning case, it increases
this delay.

In light of the relevance of inertial self-alignment for large
active agents that take their momentum from a substrate,
such as walking robots and animals or rolling vehicles, the
dynamics discussed here could contribute to better control of
such agents. The role of inertia in the emergence of collective
dynamics in a large population of such agents is also a matter
of important concern. It was shown that collective motion
in a population of self-aligning particles arises from the re-
laxation dynamics of the polarities of the particles towards
their respective velocities, following collisions [36,45]. Our
results demonstrate that in the presence of angular inertia, the
collision rules are qualitatively different, suggesting here also
a major impact on the onset of collective dynamics. Finally,
the next step is obviously to consider the role of noise on such
dynamics, following the work of Refs. [30,31], a technical
challenge, given the coupling of positional and translational
degrees of freedom.
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APPENDIX

In this appendix, we provide more detailed calculations for
the linear stability analysis, of the steady dynamics reported in
the main text. More specifically, we provide the explicit form
of the Jacobian for each case.

1. Solutions and stability of the free particle dynamics

We start with Eqs. (6) of the main text:

τvφ̇ = 1

v
sin α, (A1a)

τvv̇ = cos α − v, (A1b)

α̇ = ω − 1

τvv
sin α, (A1c)

Jω̇ = Ta − εv sin α − τnω, (A1d)

where we recall that the last three equations form a closed
system for the variable (v, α, ω), the solution of which sets
the dynamics of φ through the first equation. Solving for the
fixed points, Eqs. (A1b) and (A1c) lead to v∗ = cos α∗ and
ω∗ = 1

τv
tan α∗. Substituting in Eq. (A1d) and denoting t =

tan α∗, one finds the third-order polynomial in t :

τn

τv

t3 − Tat2 +
(

ε + τn

τv

)
t − Ta = 0. (A2)

a. Case Ta = 0

The above equation reduces to

τn

τv

t3 +
(

ε + τn

τv

)
t = 0, (A3)

with solutions t0 = 0, which always exist, and t± =
±

√
−(1 + ε τv

τn
), which only exist if 1 + ε τv

τn
� 0, that is, for

ε = −1 (antialignment) and τv

τn
� 1.

The linear stability of these solutions is provided by the
analysis of the sign of the real part of the eigenvalues of the
Jacobian,

K0 =

⎛
⎜⎜⎝

− 1
τv

− sin α
τv

0
sin α
τvv2 − cos α

τvv
1

− ε sin α
J − εv cos α

J − τn
J

⎞
⎟⎟⎠, (A4)

evaluated at the solution of interest, (v0 = cos(arctan t0), α0 =
arctan t0, ω0 = t0/τv ), and, when they exist, (v± =
cos(arctan t±), α± = arctan t±, ω± = t±/τv ). For ε > 0,
all eigenvalues have negative real parts and the solution
(v0, α0, ω0) is linearly stable in all the parameter space.
For ε < 0, the solution (v0, α0, ω0) is stable, respectively,
unstable, for τv/τn < 1, respectively, τv/τn > 1, irrespectively
of the values of J .
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(a)

(b)

FIG. 10. Domains of existence of real fixed points: The polyno-
mial equation (A3) always has at least one real solution and three real
solutions in the shaded domains: (a) aligners, ε = +1; (b), fronters,
ε = −1.

b. Case Ta �= 0

Let us set Ta > 0, the case Ta < 0, being perfectly sym-
metric. The coefficients of the third-order polynomial (A3)
being real, the number of real solutions is given by the
sign of its discriminant �: there are three, respectively,
one, real solution, when � > 0, respectively, � < 0. In
the present case, � = 4T 4

a + (8a2 − 20aε − 1)T 2
a + (4aε3 +

12a2 + 12a3ε + 4a4), with a = τn/τv . The regions with
� > 0 are shaded in gray in Fig. 10 for, respectively, the
aligner and the fronter case. The corresponding families of
solutions are obtained semianalytically and are shown, respec-
tively, in Figs. 3 and 4.

The linear stability analysis follows the same path as
above, with the same Jacobian, because the active torque is
a simple constant. In the present case, one must evaluate the
sign of the real part of the eigenvalues numerically around
the solutions found above. In the case ε = +1, the stability

scheme is rather simple. The solution that deforms continu-
ously from the unique linearly stable solution obtained when
Ta = 0 remains stable. As expected for a saddle node bifur-
cation, one of the bifurcated solution is stable, here the one
with the largest α, and the other is linearly unstable. These
results are independent of the value of J. In the case ε = −1,
the numerical analysis leads to a less trivial dependance on J
summarized in Fig. 5.

2. Dynamics along the wall

We start with Eqs. (8) of the main text:

τv ẍ = cos θ − ẋ − κNw(x), (A5a)

τv ÿ = sin θ − ẏ − ν(ẏ + θ̇/2), (A5b)

J θ̈ = ε(cos θ ẏ − sin θ ẋ) − τnθ̇ − τr (ẏ + θ̇/2). (A5c)

The dynamics reduced to the motion along the wall can be
rewritten as four first-order differential equations for the vari-
ables (y, z = ẏ, θ, ω = θ̇ ),

ẏ = z, (A6a)

τv ż = sin θ − (1 + ν)z − νω/2, (A6b)

θ̇ = ω, (A6c)

Jω̇ = (ε cos θ − τr )z − (τr/2 + τn)ω, (A6d)

from which one finds the trivial fixed points (y =
0, z = 0, θ = 0, ω = 0) and (y = 0, z = 0, θ = π,ω = 0).
The first one is the only relevant one, since the second one
would describe a particle going away from the wall, and there-
fore escape the description of the dynamics reduced to the
direction along the wall. The Jacobian of the dynamics evalu-
ated at the fixed point (y = 0, z = 0, θ = 0, ω = 0) reads

K =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0

0 − 1+ν
τv

1
τv

− ν
2τv

0 0 0 1

0 ε−τr
J 0 − τr

2 +τn

J

⎞
⎟⎟⎟⎟⎟⎠, (A7)

where one immediately sees that there is a zero eigenvalue
associated with the marginal stability of the fixed point, for all
values of the parameters, that corresponds to the translational
invariance of the dynamics along the wall. In the absence of
a simple analytical expression for the eigenvalues, one has to
rely on a careful, but straightforward, parametric analysis of
the above Jacobian to derive the main features summarized in
the main text.
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