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Extreme heterogeneity in the microrheology of lamellar surfactant gels analyzed
with neural networks
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The heterogeneity of the viscoelasticity of a lamellar gel network based on cetyl-trimethylammonium chloride
and cetostearyl alcohol was studied using particle-tracking microrheology. A recurrent neural network (RNN)
architecture was used for estimating the Hurst exponent, H, on small sections of tracks of probe spheres
moving with fractional Brownian motion. Thus, dynamic segmentation of tracks via neural networks was used in
microrheology and it is significantly more accurate than using mean square displacements (MSDs). An ensemble
of 414 particles produces a MSD that is subdiffusive in time, ¢, with a power law of the form %4002 indicating
power law viscoelasticity. RNN analysis of the probability distributions of H, combined with detailed analysis of
the time-averaged MSDs of individual tracks, revealed diverse diffusion processes belied by the simple scaling
of the ensemble MSD, such as caging phenomena, which give rise to the complex viscoelasticity of lamellar

gels.
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I. INTRODUCTION

Particle tracking microrheology (PTM) has emerged in
the past 30—40 years as a standard tool for probing the mi-
crostructure and linear rheology of soft viscoelastic fluids
[1]. Compared to bulk rheology experiments, a much larger
frequency range can be accessed in a single PTM experiment
while using much less fluid [2]. PTM techniques are diverse in
their methodology, but all use the random, thermally driven,
motion of probe particles suspended in a solvent to discern
the rheological properties of the sample [1]. Modern PTM
techniques can broadly be split into two categories: passive
and active. In passive microrheology, the motion of the probe
particles is studied in the absence of an external driving force.
Such methods include diffusing wave spectroscopy (DWS)
[2], laser deflection particle tracking (LDTP) [3], and video
PTM [4-6]. Active microrheology methods, such as magnetic
tweezers [7], use an external force to move the probe particle,
while the fluid-dependent response is recorded. The funda-
mental measurement made in PTM experiments is the mean
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squared displacement (MSD), (r?), of the particles’ motion
[1]. In a viscous fluid, the MSD is related to time, ¢, via the
equation

(r*(t)) = 2nDt, (1)

where D is the diffusion coefficient and » is the number of
dimensions [1,8]. The use of the MSD in this context and its
linearity in time was devised by Einstein in his landmark 1905
paper [9]. Ninety years later, Mason and Weitz (1995) derived
a method for calculating the viscoelastic spectrum, G(s), from
(r?) in the Laplace domain [2],

kgT

Y raEe)

2)
where s is the Laplace frequency, a is the tracer particle radius,
kgT is the thermal energy, and a tilde corresponds to a variable
in the Laplace domain. This an expression of the generalized
Stokes-Einstein equation and neglects an inertial term that is
significant at high frequencies. One consequence of Eq. (2)
is that the creep compliance, J(¢), is linearly related to (r2)
by a constant of proportionality, without any need to change
domains [10,11]:
ma(r’(t))
J@)= ——. 3

Q) ioT 3)
So long as the size of the probe particles are larger than the
largest structure in the fluid [2], this directly links the MSD
to bulk linear rheological properties of the fluid. This is often
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inaccessible in complex fluids for mechanical rheometers as
fluid microstructures can be fragile and sensitive to deforma-
tion. As a result, PTM has been used in a huge variety of
media, including living cells [12—15], other biological sub-
stances [4—7,16—19], and many nonbiological complex fluids
[2,3,20,21]. For reviews of PTM, see Refs. [1,22].

Fluids that do not obey Eq. (1) are said to show anomalous
diffusion [8]. A common deviation is for the MSD to follow a
power law of the form

@) «t% 0<a<?2. 4)

When o = 1, the linearity of Eq. (1) for viscous fluids is re-
covered. The o < 1 case is labeled subdiffusion, while o > 1
is superdiffusion [8]. Despite its name, anomalous diffusion is
very common throughout the sciences [23,24] and naturally
arises in stochastic processes defined by the sum of many
microscopic events, where the macro-statistics are invariant
to the microstatistics [25]. In fluids, subdiffusion can arise
from physical or energy barriers temporarily capturing tracer
particles or the intrinsic viscoelasticity of the tracer-fluid mix-
ture [26]. Superdiffusion usually requires a driving force. As
such, it can often be found in living systems [12,13]. In inan-
imate nondriven systems, the average behavior at long times
is diffusive or subdiffusive to avoid breaking the second law
of thermodynamics. For example, it has been detected when
associated with fluctuating quantities in complex fluids such
as wormlike micelles [21,27,28].

Two of the most common models for anomalous diffusion
are the continuous time random walk (CTRW) and fractional
Brownian motion (fBm) [29,30]. Though the time dependence
of the MSD is similar [Eq. (4)], their mechanisms and the
real-world manifestation of their statistics are quite different
[31,32]. A CTRW is based on a particle taking discrete jumps.
In a decoupled case, it is governed by two independent prob-
ability distributions for the jump vector and the time before
a jump is made, t [33]. If the mean of the t distribution
is well-defined, the MSD will follow Eq. (1). If the mean
diverges, the process will occur at a slower rate and will be
subdiffusive, leading to Eq. (4) [23,26,34]. The distribution
in the latter case is nonstationary as large values of t corre-
spond to a lower probability of making a jump. fBm, By (),
is a generalization of Brownian motion to include correlated
steps [35]. The covariance function of fBm has the form
E[By (1)B (s)] = $(t1* + |s|*! — |t — s|*7), such that for
t =s, (r?) ot with 0 < H < 1. Accordingly, the ranges
0<H <1/2 and 1/2 < H < 1 correspond to subdiffusion
and superdiffusion, respectively. In the language of fBm, these
regimes are designated as antipersistent, where the steps are
negatively correlated, and persistent, where the steps are pos-
itively correlated. The only distribution governing fBm is the
step vector, which is stationary for unobstructed motion with
a single value of H.

An MSD can also be produced via a time average given by

[T + A) — r(0)Pdr
T—A

r2(A) = (5)
in the continuous case. The time lag, A, is the difference
in time between two points in the random walk, while T is
the total walk time. Throughout this paper, a bar above a

variable indicates a time average (TA) and angled brackets
an ensemble average (EA). TA MSDs provide better signal
to noise than EA and are often preferred in situations where
there are few tracks available. In Brownian fluids, if 7 is
large, r2(A) will tend to (r>(¢)) [36,37]. This is an expression
of ergodicity, where, given enough time, a random variable
will sample the entire phase space of a system [38]. Many
fluids are nonergodic. This can stem from locally varying
rheological properties due to spatial heterogeneity [36,39] or
an expression of nonstationary dynamics, such as that of t for
the subdiffusive CTRW [37,39-42]. In heterogeneous fluids,
probe particles will belong to subensembles based on their
environment. If particles are sampled proportionately from
every subensemble, then ergodicity will be recovered [36].
Since the only stochastic process governing fBm is stationary,
fBm is ergodic [32,35,43]. In complex fluids, fBm has been
observed using single-particle tracking [44,45].

Lamellar gel networks (LGNs) are complex, multiphase
structures, e.g., hair conditioners or pharmaceutical creams
[46]. They contain a lamellar gel phase made up of bilayers
of surfactant and fatty alcohol separated by water, bulk wa-
ter, and crystals of hydrated fatty alcohol [46—48]. At rest,
their microstructure is highly heterogeneous and anisotropic,
leading to elastic behavior [46,49,50]. The rheology of such
samples is very rich in phenomena and, consequently, poorly
understood [51], e.g., hysteresis, shear banding, and wall
slip are observed as characteristic of soft-glassy rheological
materials. This paper contains an analysis of the dynam-
ics of an LGN based on cetyltrimethylammonium chloride
(CTAC) using video particle-tracking microrheology. Both
time- and ensemble-averaged MSDs are used, revealing a
diverse microenvironment producing subdiffusion on average.
A recurrent neural network (RNN) method for estimating the
local Hurst exponent based on the feedforward neural network
of Han er al. (2020) [52] is then used to analyze the local
motion of the probe particles. We have combined single- and
multioutput neuron models to improve the accuracy of the
model for low Hurst exponents. The response of the combined
model to simulations is first detailed before the method is ap-
plied to heterogeneous dynamics in LGN. Experiments have
been chosen that highlight the rich phenomenology governing
diffusion in lamellar gel networks.

II. MATERIALS AND METHODS
A. Samples

The LGN used in these experiments is based on a 3:1
ratio of CTAC to cetostearyl alcohol. Other components
are demineralised water, versene N, crystals (a salt), and a
preservative, Kathon CG. This was provided by Unilever and
prepared according to the European patent by Casugbo et al.
(2014) [53] and also Cunningham et al. (2021) [54]. Iden-
tical samples were previously studied in optical coherence
tomography nonlinear rheology experiments [51]. To perform
PTM, microparticles must be suspended in the fluid. For this
purpose, carboxyl latex microbeads with a diameter of 0.5 um
(ThermoFisher Scientific) and 3 x 10% carboxyl groups per
sphere surface were chosen. Particles larger than this were
found to appear static due to the elasticity of the LGN, and
the finite resolution of our microscope to measure particle
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displacement (~10 nm). If directly mixed with the LGN, the
beads readily aggregate complicating the measurements. To
avoid this, long chains of poly(ethylene glycol) (PEG) were
added to the surface of the beads by covalent bonds with the
surface carboxyl groups, a process called PEGylation. The
exact method followed can be found on p. 560 of Hermanson
(2013) [55]. Hydrophilic PEG stabilizes the particles in sus-
pension by covering them in flexible polymers that provide a
repulsive steric potential that is entropic in origin. This repul-
sive steric potential limits aggregation of particles [55-58].

Once PEGylated, the spheres were added to the LGN. The
elasticity of the LGN at rest precludes standard methods of
homogenization, such as sonication, or the use of a centrifuge.
Instead, a vortex mixer was used for 5 min to fully suspend
the spheres. 10-20 ul of the suspension was then placed on
microscope coverslips and sealed with adhesive spacers. Once
sealed, the sample was left for several hours before use to
allow any residual mechanical stresses that may have been
introduced during preparation to fully relax.

B. Particle-tracking microrheology

Samples were loaded onto an Olympus IX-71 inverted mi-
croscope and illuminated by a CoolLED pE-100 light source.
The particles were viewed through a 100x immersion oil lens
and their motion was recorded on a Photron Fastcam PCI
camera. The whole microscope is mounted on an AVI350M
dynamic vibration isolation system to reduce the impact of
ambient vibrations combined with a sheet of acoustic isolation
foam and a large floated optical table. Videos were taken at
frame rates in the range 50-10,000 fps to access as large
a range of timescales as possible. The particles were then
tracked using an in-house program, POLYPARTICLETRACKER,
written in MATLAB by Rogers et al. (2007) [59]. This
software fits a 2D, fourth-order polynomial, weighted by a
Gaussian, to each particle. This tracking method is reasonably
flexible with respect to particle shape and also intrinsically
insensitive to the image background, while providing subpixel
accuracy on particle position.

C. Recurrent neural network

Han et al. (2020) used a deep learning feedforward neural
network (DLFNN) trained on fBm to study the intracellular
motion of both endosomes and lysosomes [52] via dynamic
segmentation of tracks. Building on this work, we have made
a RNN to estimate the Hurst exponent in 15-step segments of
fBm tracks. RNNs are known to be well-suited to sequential
time-series data due to their ability to remember past data,
which is crucial for non-Markovian processes [60,61]. Our
RNN has five hidden layers, and a single output neuron that
gives a continuous value for the estimated H, H.y;. The model
was trained on 10 000 instances of 15-step fBm created with
random simulated H exponents, Hgpn, generated using the
Hosking method [62]. fBm was chosen over other anoma-
lous diffusion processes because of its applicability on the
microlevel and its compatibility with the regularly sampled
time steps produced in video PTM experiments. The RNN
model hyperparameters, including layer structure, activation
function, number of neurons, and dropout rate, were chosen

0.150
\ --- DLFNN

— RNN,

0.125 4

0.100 -

MAE

0.075 4

0.050

0.00 0.25 0.50 0.75 1.00
H

sim

FIG. 1. Mean absolute error (MAE) as a function of the simu-
lated Hurst exponent, Hgy,, for the DLFNN used by Han et al. and
our RNN. The values Hg,, have been binned into intervals 0.02 wide.
The mean difference between H., and Hg, was then calculated to
produce the MAE. Both models have been trained on the same 10 000
2D fBm tracks.

via a Bayesian optimisation [63] routine with 700 iterations,
each using the same 10 000 tracks.

The DLFNN used by Han et al. was trained on 1D fBm.
However, the video PTM data collected here is 2D, so to
match the model to the experiment, we have used 2D training
data composed of two fBm simulations with the same length
and value of Hgy,. This small change alone decreases the
overall mean absolute error (MAE) of the DLFNN method by
~20% for a model with 15 steps. Switching to an RNN from
the DLENN brings an additional 6% improvement in MAE
from 0.1060 to 0.0993. Figure 1 shows how the MAE varies
with Hg,, for the 2D DLFNN and RNN. Before the tracks
are fed into a neural network (NN), they must be normalized
to stop step size becoming a factor in prediction. In the 2D

case, the overall displacement, r; = in2 + yiz, where x; and
y; are the displacements of the two simulated tracks after i
time intervals, is normalized between 0 and 1. The sequence
of step sizes, ri+1 — 1y, is then calculated and input to the NN.

When using a model with a single output neuron for short
tracks, we found that the range of H.y was truncated close to
H. = 0 and to a lesser extent H.y = 1. Similar artifacts are
observed using DLFNNs and are responsible for the increase
in MAE at low H, that can be seen in both models in
Fig. 1. To avoid this, we created another model with 21 output
neurons corresponding to discrete increments of H 0.05 apart
and used the two in tandem. The output activation function
for this model is a softmax function that gives each neuron a
normalized value between 0 and 1, interpreted as a probability
that the given neuron represents the closest value of H to the
true result. If the average response of all of the output neurons
is taken, a response very similar to that of the single output
neuron case is recovered. This suggests that the over/under
prediction at low and high H stems from trying to recreate the
full range of H behavior using a single weight and bias on the
output neuron. A simple algorithm was then used to find Hg.
If Hy,, and Hy;,, correspond to the prediction by the model with
1 and 21 output neurons, respectively, it can be stated as

(1) If Hy,, > 0.2: use Hy,.

(2) Else if Hyy, < 0.2: use Hyyy,.

(3) Else: use Hy,,.
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FIG. 2. The Gaussian KDE for the response of the one-neuron
and combined models to the same 10 000, 15-step fBm tracks with
random H;,, are (a) and (b), respectively. The color represents the
probability of H.y being predicted at a given Hgy,, with brighter
regions corresponding to a larger probability. The mean absolute
error, MAE, is plotted as a function of the simulated Hurst exponent,
Hg;n, for each method in (c).

The PC used to train the model also has a small impact
on the outcome, so to properly compare models, they must
be trained on the same computer and with the same training
data. A more detailed discussion of the model architecture and
computer can be found in Appendix A 1.

Gaussian kernel density estimate (KDE) plots for each
method can be found in Figs. 2(a) and 2(b). They were made
using the same 10 000 15-step fBm tracks with random values
of Hgm. The color on the plot represents the probability of
getting a value of Hy for a given value of Hgn,. A gap can
clearly be seen at low H in the one-neuron case [Fig. 2(a)]
corresponding to the overshoot previously mentioned. The use
of the 21-neuron model for low H estimation [Fig. 2(b)] has
filled in this gap, removing the floor for H.y. A comparison
of the MAE for each method can be seen in Fig. 2(c). The
overall MAE increases slightly to 0.1003 for the combined
method. This is mostly due to the artificially low error at
Hgimy =~ 0.2 in the 1 output-neuron model, originating from the
bunching of the values of H.y, increasing the likelihood of a
close prediction in that region.

III. RESULTS AND DISCUSSION

A. Simulations
1. Hurst exponent

If a real track moves with fBm, it should be possible to use
the distribution of H. to find the true value of H, even if there
is a systematic error associated with our model. To provide
a measure, fBm tracks with 10 000 steps and single Hurst

exponent, Hgn,,, were simulated and fed into our NN. Given
the nonlinearity inherent in NN methods and the bounds on H,
it is not clear what type of distribution H.g will take. The sim-
plest measures of the shape of a distribution are the first four
moments about the mean: mean (u), variance (o2), skewness
(m3), and kurtosis (14 ). Because the distributions are nonsym-
metric in general, the mean wi;l not necessarily correspond to
the peak position. A Gaussian KDE with a bandwidth of 0.075
was therefore used to fit a general nonparametric probability
density function (PDF) to each distribution, from which the
peak could be estimated. A Gaussian KDE takes the sum of
identical Gaussian distributions with centers at each value in
the real distribution to create an estimate for the underlying
PDF. This has the benefit of requiring no assumptions about
the shape of the distribution. However, as Gaussians have no
bounds, and 0 < H < 1, the resulting estimate is not a true
PDF. As such, the KDEs used here have been cut off at 0 and 1
and renormalized so the area under the curve is still equal to 1.
This has the effect of creating a discontinuity at the extremes
for some distributions, as can be particularly seen in Fig. 6(b).
Nevertheless, the KDEs provide a good estimate of the peaks
in the distributions.

The mean, skewness, and KDE peaks plotted as a function
of Hg, can be found in Fig. 3. The plots for the variance
and kurtosis have been excluded as they have complex, non-
monotonic shapes including plateaus and turning points. This
means that a single value of o2 or 4 could correspond to
multiple values of H or give H with low accuracy. Given
the nonlinear nature of the NN, it is perhaps unsurprising the
shape of the distributions produced do not vary smoothly with
Hgin. Looking at the plot of the mean of the distribution of Heg
in Fig. 3(a), there are small biases in the prediction stemming
from the asymmetry of the distributions. The model seems to
work best for Hgi, < 0.5 as it has been fine-tuned to perform
best in the subdiffusive regime, as this is where we expect the
majority of motion to be in our LGN. This is mirrored in the
skew plot [Fig. 3(b)] where the curve is at its smoothest for
Hgm < 0.5. The plot of the KDE peak in Fig. 3(c) again shows
the best performance for Hy;,, < 0.5 and, in general, produces
more accurate results than the mean. To use these plots as a
tool for estimating H for real tracks, a cubic spline has been
used to interpolate between data points. The results of this
can be seen in Table IV for tracks with unimodal distributions
of He.

2. Anisotropy

In the context of fBm, it makes intuitive sense that the
anisotropy of a particle’s track should be connected to the
value of H. If a particle’s motion is persistent, it will
look more like a straight line the larger H becomes. Con-
versely, antipersistence will tend to create more symmetrically
distributed tracks that change direction often. To test this
hypothesis, simulated tracks with a single value of Hgpy,
and 500 000 steps were split into sections 45 steps long.
Sections containing 45 steps were chosen so as to balance
the increasing statistical fluctuation inherent in stochastic
tracks with fewer steps and the ability to see local dynamics
and provide comparison with the NN estimations of H. A
track, sampled N times to give a set of position vectors, can
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FIG. 3. (a)—(c) show how the mean, skew, and peak position, respectively, of a KDE fit with bandwidth 0.075, of the distributions of
H. vary for simulated fBm random walks with 10 000 steps. A cubic spline has been used to interpolate between the data points, and the
values of H.y suggested for tracks 3 and 4 by their distributions have been plotted in each panel in green and red, respectively. These results
are summarized in Table IV. Black dashed lines following H.y = Hg, have been included in (a) and (c) to show where an ideal prediction

would be.

be thought of as analogous to a distribution of N identical
particles located at each sampled position. This allows the
anisotropy to be calculated with the principle moments of the
2D gyration tensor of the track section. The gyration tensor of
a distribution of N steps, g, is given by

N
L
mn — m'ns

N
i=1

where 7 is the mth spatial coordinate relative to the center of
mass of the ith step. The principle moments of g, are then
given by the eigenvalues of the tensor. Working in 2D, there
will be two eigenvalues, A; and X,. A circularly symmetric
distribution of particles will yield A; = A,, while a distribu-
tion along a line will result in A; = O (if the coordinate system
is chosen such that A; < A;). The anisotropy, A, can then be
normalized to a value between 0 and 1 through the operation
ol ™)

A+ Ao
Since 0 < A < 1, the same KDE method used for the
distributions of H.y was again employed here, and plots
analogous to those of Fig. 3 for A can be seen in Fig. 4.
Each moment varies smoothly with Hg,, indicating that the
anisotropy is indeed related to H. However, the variance and
kurtosis both include extended turning points or plateaus,
meaning estimations based on these moments may be
inaccurate, so they have again been neglected. The mean,

(6)

skewness, and peaks are all monotonic in the main region of
interest of Hgy < 0.5, and so should be useful in estimating
H . Cubic splines have been used in the same way as Fig. 3 to
interpolate the data, aid the eye, and allow for anisotropy to
be used to estimate H in real tracks.

B. Hurst exponent and anisotropy

Four tracks that highlight the diversity of behavior present
in our LGN samples were chosen, labeled tracks 1-4. Track
1 (T1) was obtained from a data set taken at 50 fps, tracks
2 (T2) and 3 (T3) were taken at 125 fps, and track 4 (T4)
at 5000 fps. The tracks with H.y overlaid can be seen in
Fig. 5. The central point of each 15-step sliding window has
been assigned the value of H.y output by our RNN. Each
track has then been split into 0.1 um squares and the mean
value of H.y has been calculated in each square and mapped
accordingly.

T1 and T2 [Figs. 5(a) and 5(b)] show clear evidence of
caging phenomena where the particle is trapped locally. In
both cases, the cages account for a relatively small amount
of the spatial extent of the track even though they are the
regions in which the particle spends the majority of its time.
The cages are on the order of the size of the particles (0.5 um
diameter) and they are interpreted by the neural network as
subdiffusive as the particle’s motion is tightly bounded, lead-
ing to antipersistent behavior. Outside these cages, the motion
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FIG. 4. (a)—(c) show how the mean, skew, and KDE peak of the distribution of anisotropy vary for simulated fBm random walks with
different Hurst exponents. Each track has 500 000 steps and a single value of H. The anisotropy is calculated in sliding windows of 45 steps
using Eq. (7). The moments can then be calculated from the resulting distribution. A cubic spline has been used to interpolate between the data
points, and the values of H suggested by their distributions for tracks 3 and 4 have been plotted on each figure.

of the particles is mostly diffusive or subdiffusive with very
local superdiffusive regions. We expect the superdiffusive re-
gions are an expression of the stochastic nature of the motion,
since on average there is no driving force for this type of
motion. Caging can arise due to particle crowding in concen-
trated suspensions. The presence of both caging and extended,
diffusive, colloidal motion in the same local regions suggests
that this isn’t the whole story here. There must be structures,
be they multilamellar vesicles or lamellar domains, which trap
the particles temporarily before they escape into the fluid,
which then allows freer movement. Figure 6 shows PDFs for
the distributions of Hy for T1-4 with Gaussian KDEs fit to
each distribution. The effect of the cages in T1 and T2 is
reflected in Figs. 6(a) and 6(b), which both show at least two
modes in their distribution. The primary peak of the KDE for
each are centered at Heyy = 0.285 and H.g = 0.225, respec-
tively. Both tracks have smaller but significant contributions
centered at H.y &~ 0.5, corresponding to freely diffusive mo-
tion. The distributions suggest that the particles are moving in
microenvironments with multiple values of H. Alternatively,
the presence of a physical environment that hinders the motion
of the particles with jumps between neighboring environments
suggests that a CTRW-based interpretation may be suitable.
Neither T3 or T4 shows obvious evidence of caging. The
motion of T3 is essentially diffusive while T4 is generally sub-
diffusive. This is backed up by the distributions in Figs. 6(c)
and 6(d), which are unimodal. The peaks of the KDE are at

Heys = 0.490 and H.y = 0.340, respectively, confirming the
clear geometrical changes observed in the tracks. T3 appears
to show motion in a Newtonian fluid environment, possibly
bulk water, while T4 shows motion in a viscoelastic setting.
T3 and T4 seem well modeled by fBm. As such, the moments
of their distribution warrant comparison with the performance
of the NN to fBm simulations summarized in Fig. 3. A cubic
spline with increments of H of 0.01 was used to interpolate
between the simulation data points. The point that produces
the minimum difference between the spline fit and the value
of each moment of the distributions for T3 and T4 was then
taken as the estimate for the Hurst exponent in each case.
The mean estimates for each track are He(;) = 0.523 £ 0.009
and He(?t) = 0.37 £ 0.02, where the uncertainties are the 95%
confidence interval. The individual results can be found in
Table IV in the Appendix.

To test using the anisotropy as an analytical tool for un-
derstanding particle diffusion, T1-4 were treated as in the
simulations to produce spatially averaged plots of anisotropy
(Fig. 7) and the corresponding distributions (Fig. 8). Gaussian
KDE:s are again fitted to the plots to aid the eye. Though from
the simulations it is clear that anisotropy and Hurst exponent
are correlated, the true correlation between the spatially aver-
aged values of Hc and the anisotropy is weak at best. This is
most likely owing to the large statistical fluctuations present
due to the use of short track sections in the estimation of H and
calculation of anisotropy. In the cages, we see an exception
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FIG. 5. (a)—(d) Tracks 1, 2, 3, and 4, respectively, with the Hurst exponent mapped. H has been estimated in 15-step sections of each track
and then spatially averaged into 0.1 um boxes. Tracks 1 and 2 show clear examples of caging (low H.y, subdiffusive regions) where the particle
spends the majority of its time. These are surrounded by areas where the particle moves more freely, even becoming superdiffusive. Tracks 3
and 4 show more uniform behavior, 3 moving mostly diffusively and 4 subdiffusively.

to this where the uniformly subdiffusive value of H is ac-
companied by regions of low anisotropy. On the distributional
level, the similarities are much more obvious. The multimodal
distributions of H.g for T1 and T2 are replicated in the distri-
butions of anisotropy in Figs. 8(a) and 8(b). The anisotropy
distributions of T3 and T4 again mimic their Hey counterparts
in their unimodal nature and have shapes typical of the distri-
butions obtained in the fBm simulations. The comparison of
the four moments of T3 and T4 to simulation can be seen in
Fig. 4. The same cubic spline method was used to estimate
values of H, giving mean values of He(;) = 0.467 £ 0.009
and Héft) = 0.403 £ 0.009. The full results are summarized in
Table V. These are relatively close to the estimates from the
RNN distributions and, to a first approximation, could be used
to determine whether a track moving with fBm is subdiffusive.
The differences to the RNN most likely stem from the compar-
atively broad anisotropy distributions and from the imperfect
uniformity of the Hurst exponent inherent in real experiments,
and in this fluid, in particular. In our fluid, there may also
be multiple causes of anisotropy, such as physical blocking,
adding further deviation from the results of simulations of
free motion.

C. Mean-squared displacement

Nonergodicity naturally leads to a large spread of r2(A)
about the ensemble mean [32,41]. However, individual TA
MSDs can differ significantly from the ensemble in various
ways whether the system is ergodic or not. Confinement in

the interval [—L, L] results in a plateau of the 1D MSD of
fBm tracks at r_2(A) = LTZ [32,39,64]. Even though (r*(¢)) for
subdiffusive CTRW ensembles are sublinear, (r_z(A)), as well
as ﬁ(A) for some tracks, could be linear and so could be

mistaken for Brownian motion [32,37,39,41]. In the case of
confinement, these linear MSDs will transition to a power law

with exponent 1 — o at L3—2 [32]. These plateaus can persist to
the ensemble average if the confinement is characteristic of
the fluid, such as in networks of actin [2,5,65]. MSDs may
also be transiently subdiffusive, tending to normal diffusion
at long times [3,66]. Mason et al. (1997) ascribed this to the
relaxation of elasticity within a fluid [3]. In an fBm system,
this suggests that there is a timescale beyond which steps are
not correlated. Saxton (2007) showed that this behavior can
also be produced by a particle in a CTRW in which there is
a limit on the maximum depth of the traps (rather than an
infinite hierarchy) [66].

Our ensemble of particle tracks includes data sets taken at
frame rates of 50, 125, 1000, 2000, 5000, and 10 000 fps.
Even though 414 particle tracks have been used in total, the
ensemble MSD proved to be noisy, so the ensemble of the
TA MSDs was calculated instead. Track MSDs were binned
into time intervals and then averaged, resulting in the plot
seen in Fig. 9(a). The ensembled data was found to follow
a single power law for the whole range of measured time
lags: (r2(A)) = (2.42 +0.03) x 107'*A*74+£002 The uncer-
tainties here correspond to the 95% confidence interval. The
ensemble MSD can be found in Fig. 9(a)(ii) for reference. A

014603-7



OWEN WATTS MOORE et al.

PHYSICAL REVIEW E 110, 014603 (2024)

0.00 0.25 0.50 0.75 1.00

Hest
(a)
2 -
o
S
1 .
0 .
0.00 0.25 0.50 0.75 1.00
Hest
(©

0.00 0.25 0.50 0.75 1.00

est

(b)

0.00 0.25 0.50 0.75 1.00
Hest

(d)

FIG. 6. (a)—(d) Probability density functions (PDFs) for the distribution of the estimated Hurst exponent, H.g, for tracks 1-4. The orange
curve superposed on each panel is a Gaussian kernel density estimation (KDE) for the PDF. The spatial averages of this can be seen in Fig. 5.
(a) and (b) are both multimodal distributions, while (c) and (d) are unimodal. The values of H for the primary peaks of the KDE for (a)—(d) are
0.285, 0.225, 0.490, and 0.340. The secondary peak in (a) comes at H ~ 0.48. The secondary peak in (b) is extended with a center at H ~ 0.5.

power-law MSD corresponds to a power law G(s) with the
same exponent.

Power laws are common in the rheology of complex flu-
ids and are indicative of a broad, continuous, distribution
of timescales responsible for stress relaxation or diffusion
[67-69]. They appear in soft glassy rheology [67,68] which
models the disorder present in a fluid as a distribution of
energy barriers corresponding to the energy required to re-
organize the microstructure. In response to a macroscopic
deformation, the barriers are overcome with a distribution
of waiting times corresponding to the distribution of energy
barriers, thus sharing conceptual similarities with the CTRW.
LGNs such as the one studied in this paper have been shown
to exhibit signs of soft glassy rheology [51,70]. Figure 9(a)(i)
shows the creep compliance, J(¢), for the same fluid sheared in
a mechanical rheometer at 3 Pa, below the yield point, recre-
ated from Ref. [51]. The fluid shows power-law dynamics but
the bulk and micro behavior don’t line up. The bulk power-law
exponent is 0.437 = 0.003 [51] and, if the MSD is converted
to J(¢) the two curves are still ~2 orders of magnitude apart.
Understanding this requires a short discussion of the stress-
dependent behavior of soft glassy materials (SGMs) and is
aided by a comparison with PTM in entangled solutions of
F-actin, in which MSDs do not match with the bulk rheology
if the particles are too small [71-73].

The behavior of SGMs in response to deformation is anal-
ogous to the behavior of glasses in response to changes in

temperature. In place of a critical glass temperature, SGMs
have a yield stress. Sheared above this, SGMs act like viscous
fluids and are said to be rejuvenated [74]. On the cessation
of shear, the structures within the fluid relax, becoming more
disordered, increasing the elastic modulus with time. The
length of time for which the fluid has been allowed to relax
then determines its physical properties in response to shear
[74]. This is a function of the processes that have relaxed in
the given waiting time. SGMs have two critical stresses: the
creep stress and yield stress. Below the creep stress, SGMs
act elastically. Above it, limited large-scale deformations oc-
cur, causing partial rejuvenation. Above the yield stress, full
rejuvenation occurs, eliminating the rheological dependence
on waiting time completely [74].

The analogy of SGMs with glasses has led to the
creation of time-stress superposition plots (analogous to
time-temperature superposition), that allow the study of the
rheology of SGMs over long observation times. Cloitre et al.
(2000) [74] showed that the bulk rheological behavior of
an SGM sheared after different waiting times can be super-
posed by scaling their time axes by a function of the waiting
time. Larsen and Furst (2008) [75] used a similar method
to investigate the time-dependent gellation of peptide and
polyacrylamide gels with PTM. They produced MSDs whose
scaling with time lag varied with the time at which data
was taken. By scaling the MSD and time lag by empirical
factors, they were able to create master curves that accurately

014603-8



EXTREME HETEROGENEITY IN THE MICRORHEOLOGY OF ..

PHYSICAL REVIEW E 110, 014603 (2024)

x10

4384 1.0

0.8
4361 §

= 0.6
g 4341 i 2
> %Z 04 .92
' 2

4.32 0.2

. . ; 0.0

1.90 1.92 1.94
-5
X (m) x10
(a)
-5

<10 1.0
1.05 08
5 &
) _ 06 2
& 1.00 1 § §
N 04 .2
> H 2
0.95 g 0n <

. . 0.0

45 4.6

x(m)  x10°

(©)

x10

—_
(=]

3.52 1

o
o0

= 3514
g

> 3.50

(
Anisotropy

A
3.49 - ;é
. . 1 oo
4.62 4.64 4.66
-5
X (m) x10
(b)
—5
x10 1.0
08 o
g
06 2
o
0.4.2
02 <
: . 0.0
728 7.29
-5
X (m) <10
(d)

FIG. 7. (a)—(d) Tracks 1-4, respectively, with the anisotropy mapped. The anisotropy was calculated via the ratio of the eigenvalues of the
radius of gyration tensor, obtained from Eq. (7). This was for a sliding 45-step window of the track with the value assigned to the point in the
center. The anisotropy was then spatially averaged in the same way as in Fig. 5 to produce the figures seen here. Anisotropy = 0 corresponds
to circular symmetry and anisotropy = 1 to motion along a straight line. Plots (a) and (b) show striking similarity to their corresponding plots
of H, where the subdiffusive, caged regions coincide with areas of low anisotropy, and superdiffusive sections coincide with areas of high

anisotropy.

determined the point of gellation. Schultz et al. (2012) [76]
used the same method to track the degradation of a hydrogel
in time and link the change in the elastic modulus with time
measured with bulk rheology and PTM. The large discrepancy
between the behavior of our MSD and bulk creep compli-
ance measurements could reflect improper scaling of the axes.
However, the analyses of Larsen and Furst [75] and Schultz
et al. [76] relied on the MSDs reflecting the bulk behavior
through the generalized Strokes-Einstein equation. It is most
likely that the MSDs from our LGN do not meet this criteria.

Entangled solutions of F-actin filaments are a model sys-
tem for PTM on which much literature has been published
[5,17,71-73,77]. It has been shown that the behavior of
the MSDs in F-actin vary strongly with the size of the
probe particles. For the MSDs from PTM data to match
with bulk rheometry, the probes must be larger than both
the mesh size and the mean persistence length of the fila-
ments [71-73]. Wong et al. (2004) [73] studied anomalous
diffusion of microparticles in F-actin and found behavior
qualitatively similar to that of our LGN, namely, some par-
ticles were constrained throughout the entire observation time
and some experienced jumps between different microenvi-
ronments. They found that if they only included motion
within confined regions in their ensemble MSD and neglected
the jumps, their PTM data could reproduce the bulk elastic
modulus. Inclusion of the jumps would instead produce a

subdiffusive MSD. This relied on the confined motion having
the same viscoelastic character everywhere. In contrast, the
neural network analysis of the tracks from our LGN show
that a single particle can sample microenvironments with very
different viscoelastic properties, suggesting that the bulk be-
havior is inaccessible with particles of this size. This, in turn,
suggests that reconciling the bulk creep compliance with our
MSD via a time-stress superposition will be impossible due to
the heterogeneity of our LGN.

The bulk creep experiment was conducted with a waiting
time of 300 s after shear rejuvenation. Our LGN is known
to exhibit thixotropic aging [51], so it is likely that changing
the waiting time would have an impact on the rheology. In
contrast, the samples in the PTM experiments were purpose-
fully left for a period of a few days to limit the effect of
aging on the results due to any rejuvenation that may have
occurred from sample preparation. The tracks contributing
to the ensemble MSD were taken from different samples,
with different waiting times, over a period of several days.
Despite this, the MSDs line up well without any need for
scaling. This implies the absence of aging, and it is unclear
how an empirical scaling for the time axis could be produced
under these circumstances. Additionally, if the MSDs were
reflecting the bulk behavior of a gel in thermal equilibrium,
we would expect the tiny stresses involved (~kgT /a*, where
kg is the Boltzmann constant, T is the absolute temperature,

014603-9



OWEN WATTS MOORE et dl. PHYSICAL REVIEW E 110, 014603 (2024)
2.0 1
1.5
3 9
iy Q
A~ ~
0.5 -
0.0 -
000 025 050 075  1.00 0.00 025 050 075 100
Anisotropy Anisotropy
(a) (b)
1.5 1
1.5
BTy B 1.0 -
a " o
A~ ~
0.5 1 0.5 1
0.0 - 0.0 -
000 025 050 075  1.00 0.00 025 050 075 100
Anisotropy Anisotropy
(c) (d)

FIG. 8. PDFs of the distribution of anisotropy [Eq. (7)] in tracks 1-4, corresponding to the plots in Fig. 7. The orange line shows a Gaussian
KDE for each distribution. From simulations, the anisotropy distribution of tracks with a single Hurst exponent are unimodal. The multimodal
distributions seen in (a) and (b) therefore highlight the heterogeneity of the working fluid and should be compared with Figs. 6(a) and 6(b). In
contrast, (c) and (d) both closely resemble the distributions of simulated fBm tracks. This further demonstrates that the majority of the motion
in these cases is governed by a single Hurst exponent (see their counterpart in Fig. 6).

and a is the particle radius) to produce an elastic plateau. The
subdiffusive power law we instead see again suggests we are
not accessing bulk behavior and a time-stress superposition

Finally, in the derivation of Egs. (2) and (3), several as-
sumptions are made, namely, that fluid forms a continuum,
without slip, around the tracer particles, that the tracer parti-

would not be possible. cles are larger than the largest elasticity causing structure, and
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FIG. 9. The ensemble average of the time-averaged MSDs as a function of time lag, A, is depicted in (a) with a power-law fit with an
exponent of 0.74 & 0.02 overlaid in red. The uncertainty refers to the 95% confidence interval. Inset (i) shows the results of a creep-recovery
experiment conducted with the same fluid, recreated from Watts Moore ef al. 2023 [51], also showing power-law behavior. Inset (ii) shows the
ensemble-averaged MSD with the same power law as the main figure overlaid. The individual time-averaged MSDs as a function of A across
all frame rates are plotted on the same axes in (b), with the power law for the ensemble overlaid as a black dashed line.

014603-10



EXTREME HETEROGENEITY IN THE MICRORHEOLOGY OF ...

PHYSICAL REVIEW E 110, 014603 (2024)

1073 . q
] Tl fit
NA | —-— Ensemble fit
£
~14
o107 o
N M il
..’
4
i
s | 7
10 a T T
10" 10°
A(s)
(a)
e T3
T3 fit
NA 107]3'5 —-— Ensemble fit
g
N ]
9} 10714-? o' e
2 E o "e/c‘/'/
10—15_E '//./
10° 10" 10° 10’
A(s)
(©)

e ™
T2 fit
—-— Ensemble fit
<
0,66
/,/‘ A
Z
7
10° 10" 10°
A (s)
(b)
¢« T4 o
10 5 T4 fit ’
NA —-— Ensemble fit
\E/ —15
10
A
N
2 —~16 /-"/';
0% _#*
potad
10° 10° 10" 10°
A(s)
(d)

FIG. 10. The TA MSDs of tracks 1-4 as a function of time lag, A, can be seen in (a)—(d). A power has been fitted to at least one section of
each curve and is displayed as a red dashed line. A blue dashed line represents the power law of the ensemble average of all the TA MSDs.
The inset of (c) shows the same MSD plotted on linear scales to highlight the presence of a plateau, often associated with caging phenomena.

that the motion is ergodic [2,3,11]. Images taken via polarized
light microscopy reveal that there are spherulites present in
the fluid with a size of ~10 wm and compound structures that
extend over larger length scales still. This is clearly larger than
the 0.5 um diameter of the beads. The MSDs in Fig. 9 are
therefore not representative of the bulk dynamics of the fluid
and are strongly dependent on local behavior and heterogene-
ity on length scales ~0.5 um.

Figure 9(b) shows the individual TA MSDs of all of the
particle tracks with the ensemble power law overlaid. It is
clear that the spread is large, stretching over several orders of
magnitude for a given A. Aside from nonergodic dynamics,
the spread of the individual TA MSDs can stem from us-
ing short tracks and spatially heterogeneous fluids [39]. The
length of the tracks in our ensemble are varied, but most
have thousands of steps, so a spread this large is unlikely to
originate in the track length. It is far more likely to stem from
the spatial heterogeneity revealed in our analysis of H and the
underlying stochastic dynamics.

Figure 10 shows the TA MSDs for T1-4. After the first
few points, T1 [Fig. 10(a)] follows a power law with exponent
o = 0.79 £ 0.01 before plateauing, suggesting the motion is
confined. In T2, the particle has three modes: two cages
and a free section, where the particle moves diffusively. It
spends approximately 2 s in each, which means the majority
of its time is spent within the cages. The short A behavior
is therefore dominated by subdiffusive, intracage motion, cor-
responding to an exponent of &« = 0.66 £ 0.02. At longer A,
the average includes jumps from the cages into the free region,

meaning the displacement is no longer correlated, producing
a linear section in the MSD. If the particle were to continue
moving between the same three modes for an extended period
of time, the MSD would plateau as the average starts to take
into account the distance between the cages.

The behavior of T3 again looks subdiffusive, with power-
law scaling of the form A%788+0901 for short A, before a
plateau is reached. Though this appears to be in conflict with
the NN estimates for H in Fig. 6(c), this apparent subdiffusion
is actually an expression of confined Brownian motion. T3 is
elongated, which means that we should be able to define its
principal axes fairly well using the eigenvectors of Eq. (6).
The MSDs in the x and y directions can then be rotated to give
the MSDs in the direction of those axes that we will denote a
and b through the transformation,

wi]=1;

where EV is a 2 x 2 matrix containing the eigenvectors of the
gyration tensor. The results of this can be seen in Fig. 11. The
MSD for the short axis (MSD}) of the track quickly plateaus to
approximately 10~'* m?. This corresponds to confinement in
the range 2L ~ 0.35 wm. The MSD for the long axis (MSD,)
starts off in a similar fashion, but when MSD,, plateaus, it
keeps increasing, tending to the total MSD. This combina-
tion of a plateauing and linear MSD combine to create an
overall subdiffusive power law. The plateau in the overall
MSD at approximately 2 x 1073 m? corresponds entirely to
motion in the a direction. The length scale of confinement to

®)
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FIG. 11. TA MSD as a function of time lag for T3 split into
orthogonal components corresponding to the principal axes of the
track, a and b. The track with the direction vectors of each axis
labeled is shown in the inset.

produce this plateau is 2L ~ 1.55 um. The values of L ob-
tained from the plateaus correspond well with the dimensions
of T3 and the shape of the curves in Fig. 11 can easily
be reproduced through simulations of Brownian motion with
asymmetric physical constraints. T4 closely follows a power
law with & = 0.733 % 0.003 for the majority of its MSD. The
lack of deviations suggests that the motion is unconstrained
and subdiffusive. As with the distribution of H, this suggests
that the motion of T3 is well described by fBm. Using the
relation o = 2H, the exponent suggests H ~ 0.37, closely
mirroring the estimates based on the distributions of H.g
in Fig. 6(d).

D. Discussion

Apgar et al. (2000) and Tseng and Wirtz (2001) used the
distribution of the dimensionless quantity [5,6],

r2(A)
f=——, ©)
(r3 (&)
to quantify the heterogeneity of probe particle displacements
in actin. For CTRWs, the PDF of & should follow a Lévy
distribution [41], while for fBm, the distribution should be
Gaussian [39]. These relationships hold, even for short tracks,
so the distribution can be a key tool in deciphering the dynam-
ics of a system [39]. The PDF of £ for our tracks at A = 0.02 s
can be seen in Fig. 12. The PDF has a peak at £ = 0 followed
by a long-tailed decrease. The shape of the PDF corresponds
to the asymmetry of the spread of individual MSDs around
the ensemble in Fig. 9, both of which are hallmarks of noner-
godic dynamics [39]. Since the ensemble-time-averaged MSD
and the ensemble-averaged MSD have the same power-law
exponent (see Fig. 9), we conclude that the origin of this
nonergodic behavior is in the heterogeneity of dynamics [78].
However, some nonergodicity could also stem from the super-
position of CTRW-like and fBm-like dynamics.

Other attempts to quantify the heterogeneity in PTM
tracks have been made by Valentine er al. (2001) [77]
and Savin and Doyle (2007) [79]. Valentine et al. were
motivated by the desire to separate the rheological behavior in
different microenvironments and quantify the degree to which
variation between time-averaged MSDs could be attributed
to true heterogeneity as opposed to finite experimental time.

2
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FIG. 12. The PDF of the dimensionless quantity, § = (%ii) , that

quantifies fluctuations in the MSD at a time lag of A = 0.02 s.

They constructed probability distribution of displacements
at a given time lag, both for the ensemble and individual
tracks. A Gaussian distribution for the ensemble is indicative
of Newtonian behavior, while the variance of the individual
track distributions is related to the diffusion coefficient. A
homogeneous, viscous fluid would therefore produce tracks
with close to identical distributions at a given time lag. A
fluid with structure in which particles are permanently trapped
would instead give a non-Gaussian ensemble distribution, and
individual tracks would have a range of variances according
to the dynamics of their microenvironment, influenced by the
local viscoelasticity and nature of the cage. By comparing the
variances, the tracks can be sorted into clusters with identical
dynamics, allowing the properties of the different microenvi-
ronments to be probed using the ensemble MSD of the tracks
in a given cluster. In fluids where the caging is transient, there
can be some ambiguity in the results. In their study of actin,
Valentine et al. [77] found that the ensemble distribution was
approximately Gaussian for short displacements, deviating
slightly on larger scales. They were also unable to differentiate
between microenvironments, attributing this to particles
sampling multiple microenvironments within a single track.

There is a sampling bias inherent in the application of video
PTM to heterogeneous fluids. The time for which a particle
remains in the volume of observation, defined by the height
and width of the microscope image and the depth over which
the particle remains in focus, is dependent on the conditions
of the microenvironment. Regions with larger viscosity, or
stricter confinement, will provide longer tracks, biasing the
resulting MSD, especially at long time lags. Savin and Doyle
[79] devised estimators of the ensemble MSD and spatial
variance of the ensemble MSD that are free from this bias so
long as the ratio of tracks with a measured position at a given
time lag to the total number of tracks is above a threshold. The
variance can then be used to quantify the spatial heterogeneity
in an ensemble of tracks.

The behavior of the particles in our LGN seems to be
similar to that described in actin by Valentine et al. [77], in
that multiple microenvironments can be sampled in a single
track. Whereas their clustering method failed to resolve this,
our RNN can produce maps showing the diversity of the local
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FIG. 13. A sketch of the compound dynamics of a particle in one
dimension, x, as a function of time, . The motion is represented by
a CTRW process with fBm overlaid. On the microscopic scale, only
fBm motion can be resolved, e.g., with the NN.

environments traversed by a single particle and differentiate
between particle dynamics and confinement (see Figs. 5 and
6). The analysis of a track with the RNN is self-contained.
So long as the tracks have at least several hundred steps,
tracks with large differences in length can be safely compared
(for reference, T1-4 have 1263, 734, 7234, and 18326 steps,
respectively). This removes the ambiguity about the origin of
the variance between time-averaged MSDs, while avoiding
some of the biases inherent in the application of MSD analysis
to heterogeneous fluids described by Savin and Doyle [79].

The current paper examines the case of extreme spatial
heterogeneity in the microrheology of LGNs with particle
tracking. We use a fast camera and the neural network fits
a small time window (tyj,) of 15 sample points (Tyi, =
0.0015 — 0.3 s). Since the fractional Brownian motion model
provides power-law scaling of the mean square displacement,
we know that the viscoelasticity at the timescale Ty, is also a
power law (a power-law fluid) due to the generalized Stokes-
Einstein relationship, e.g., the compliance scales as the same
power law. Thus, our fBm model is compatible with the vast
majority of common constitutive models for viscoelasticity
since they can be described with piecewise power-law scal-
ing of the compliance, e.g., the Maxwell model, the Kelvin
model, standard linear solids, etc. In the limit of low spatial
heterogeneity in the microrheology of a sample, a multifrac-
tal power law fluid model is possible by down-sampling the
tracking data and thus varying 7, at which the viscoelasticity
of the sample is probed [24]. This process can be effec-
tively performed with a neural network, since it does not
require retraining of the neural network (the same number
of points can be input into the neural network). We will
explore the ability of the neural network to extract consti-
tutive models for systems with low spatial heterogeneity in
future work.

There is clearly a range of dynamic behavior governing
diffusion in this LGN that defies categorization into a single
homogeneous stochastic framework. The fluctuations of the
time-averaged MSDs about their ensemble-averaged quantity
point towards heterogeneity [78]. Some tracks, including T1

on quasilocalized dynamics with transitions between them. At
the same time, locally the movement of less than a micron was
observed. So, it makes sense to consider a compound process
consisting of CTRW and fBm as illustrated in Fig. 13. The

confined Brownian motion of T3 and unconfined subdiffusion
of T4, well described by fBm, show two more examples of
different diffusion dynamics. Given the varied behaviors at
play, it is slightly surprising that the ensemble average follows
a single, well-defined subdiffusive power law. More surpris-
ingly still, the subdiffusion of T4 very closely resembles that
of the ensemble, as would be expected from a fluid showing
only fBm [39,43].

The combination of MSD data with RNN estimations for
H has given us greater insight into the stochastic dynamics
of individual particle tracks. The multimodal distributions
of Hey for T1 and T2 are indicative of an extremely het-
erogeneous local environment which is responsible for the
specific, complex shape of their MSDs. The MSDs of T3 and
T4 nominally show similar subdiffusive behaviors for small
A. However, their distributions of H.y reveal quite different
dynamics: asymmetrically confined Brownian motion for T3,
and unconfined fBm for T4. T3, in particular, could easily
be mistaken for standard fBm subdiffusion if only the MSD
were taken into account. The RNN has helped to differentiate
between the diverse diffusion processes in our LGN. This is
a particularly useful tool for understanding the dynamics in
complex, heterogeneous fluids in which dynamics strongly
depend on the local environment or in situations where there
are few particle tracks available.

IV. CONCLUSION

In combination with the analysis of ensemble- and time-
averaged MSDs, our use of an RNN for dynamic segmentation
in particle-tracking microrheology in a LGN has revealed
extreme heterogeneity in the stochastic processes govern-
ing its diffusion. Despite the ensemble MSD collapsing to
a well-defined subdiffusive power law, CTRW-like behavior,
Brownian motion, and subdiffusion well described by fBm are
all present, sometimes coexisiting within the same particle
track within ~1 micron of each other. The nonergodicity of
the ensemble of particles is pronounced, stemming from both
the spatial heterogeneity of the LGN microstructure, causing
confined motion, and the presence of intrinsically nonergodic
CTRW dynamics. The RNN provides complementary infor-
mation compared with the MSD, quickly and unambiguously
revealing dynamics that may be hard to decipher from single-
particle dynamics alone. It has proven to be a useful tool
and should become standard in the microrheologist’s toolkit
going forward. A possible extension would be to adapt the
NN to find the generalized diffusion coefficient which would
be expected to be a spatially varying quantity in complex,
heterogeneous fluids, such as the LGN in this study.

Particle tracks available from The University of
Manchester data repository [80]. Neural network models
and related files available from GitHub [81].
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APPENDIX: NEURAL NETWORK

1. NN model architecture

Tables I-III show a summary of the model architec-
tures of the 1-output neuron and 21-output neuron models
that gave the minimum MAE from a Bayesian optimization
routine. The two most common layer types for RNNs are
long short-term memory and gated recurrent unit (GRU),
which both allow long-term dependencies to be taken into
account without the gradient of the loss function diverging
during training [60,61,82]. These can be made bidirectional
(e.g., BiGRU), meaning that dependencies of the current data
point on both past, as in normal RNNs, and future data points
in the time series are taken into account [60,82]. The activa-
tion function of a layer is generally a nonlinear, monotonic
function in which the combined outputs of the neurons from
the previous layer are input to activate neurons in the current
layer [83]. The number of neurons is the number of trainable
units in a layer. The dropout rate is a mechanism to avoid over-
fitting and requires a randomly selected proportion of neurons
in the layer to ignore during a training batch to prevent the
reliance on specific neurons. There are also modelwide param-
eters that need to be optimized, namely, the model learning
rate and batch size. The former is related to the size of the
steps taken by the model when minimizing the loss function
and the latter is the number of data sets from the training set
used in a single iteration.

To ensure that each model can be accurately compared,
they must be trained with the same tracks and on the same
PC. The PC used was a Microsoft Azure virtual machine with
a Linux operating system (Ubuntu 20.1), 4 vcpus, and 32 GB
memory. When used in combination with the 1-neuron model,
small changes were manually made to the biases on the output
neurons of the 21-neuron model to make sure that no values
of H were over- or underpredicted.

2. Hurst exponent estimates

Tables IV and V summarize the estimations of the Hurst
exponent, H, for tracks 3 and 4 from the moments of the dis-
tributions of the anisotropy and H simulations. A cubic spline
interpolation was used to find the corresponding value of Hjn,
that would produce a distribution with the same moments. The
results of this can be seen in Figs. 3 and 4.

TABLE 1. Model architecture for RNN with 1-output neuron
obtained using Bayesian optimization.

Layer Structure Activation function Neurons Dropout rate
1 GRU selu 101 0.147
2 GRU relu 94 0.233
3 BiGRU softsign 178 0.389
4 BiLSTM selu 261 0.184
5 GRU selu 104 0

TABLE II. Model architecture for RNN with 21-output neurons
obtained using Bayesian optimization.

Layer Structure Activation function Neurons Dropout rate
1 BiLSTM selu 172 0.577
2 BiLSTM relu 476 0.229
3 BiLSTM tanh 225 0.359
4 GRU tanh 165 0.160
5 BiLSTM softplus 189 0

TABLE III. Number of output neurons, output activation func-
tion (AF), learning rate (LR), and batch size (BS) for each RNN
model.

Output neurons Output AF LR BS
1 linear 0.001 37
21 softmax 0.0008 44

TABLE 1V. Estimates for H based on the mean, skewness, and
KDE peak (H,,, H;, and Hkpg) of the distributions of H.y for T3
and T4.

Track H, H, Hype
3 0.53 0.52 0.52
4 0.35 0.38 0.37

TABLE V. Estimates for the Hurst exponent based on the mean,
skew, and KDE peak (Hj,,, Has, and Hy xpe) of the anisotropy
distributions of T3 and T4.

Track Hy HA,: HA,KDE
3 0.47 0.46 0.47
4 0.40 0.40 0.41
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