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Efficiency of an autonomous, dynamic information engine operating on a single active particle
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The Szilard engine stands as a compelling illustration of the intricate interplay between information and ther-
modynamics. While at thermodynamic equilibrium, the apparent breach of the second law of thermodynamics
was reconciled by Landauer and Bennett’s insights into memory writing and erasure, recent extensions of these
concepts into regimes featuring active fluctuations have unveiled the prospect of exceeding Landauer’s bound,
capitalizing on information to divert free energy from dissipation towards useful work. To explore this question
further, we investigate an autonomous dynamic information engine, addressing the thermodynamic consistency
of work extraction and measurement costs by extending the phase space to incorporate an auxiliary system,
which plays the role of an explicit measurement device. The nonreciprocal coupling between active particle
and measurement device introduces a feedback control loop, and the cost of measurement is quantified through a
suitably defined auxiliary entropy production. The study considers different measurement scenarios, highlighting
the role of measurement precision in determining engine efficiency.
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I. INTRODUCTION

Starting with Maxwell’s seminal Gedankenexperiment, in
which the existence of an entity capable of sorting individual
molecules according to their velocity would seemingly lead
to a violation of the second law of thermodynamics [1], the
physical nature of information and its interplay with thermo-
dynamics has undergone much scrutiny. This interplay finds
its most vivid illustration in another thought experiment, this
time concocted by Szilard [2]. In Szilard’s engine, a partition
is inserted at the midplane of a box containing a single gas
particle upon a binary measurement of the position of the
particle relative to the midplane. The volume of the empty
half of the box is then reduced at no energetic cost, resulting,
once the partition is removed, in an increase in free energy of
the one-particle gas which is subsequently converted into up to
kgT In 2 Joules of useful work via isothermal expansion. Later
work by Landauer and Bennet [3,4] offered a resolution to the
seeming paradox by noting that, particularly when operated
cyclically, all such information engines rely on the writing
onto, storing in, and eventual erasure from physical memory,
thus demanding irreversible manipulations which are bound
to generate entropy as a by-product. In short, thermodynamic
consistency is recovered upon expanding the phase space to
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include the demon itself [5—10]. Theoretical efforts to clar-
ify where precisely dissipation occurs continue to this day
[11-14], in part stimulated by experimental work [15-18].

The traditional Szilard engine, in its various imple-
mentations, is assumed to operate on systems coupled
to an equilibrium thermal reservoir, and it is indeed the
measurement-mediated rectification of thermal fluctuations
induced by this coupling that renders work extraction pos-
sible. It is thus natural to wonder how such an engine
would perform when allowed to operate on out-of-equilibrium
processes, e.g., active particles, which are subject to non-
negligible active fluctuations with macroscopic persistence
times. Remarkably, as demonstrated in recent theoretical [19]
and experimental [16] works, such activity allows for the
violation of Landauer’s bound, potentially granting access to
efficiencies far exceeding the equilibrium limit. Qualitatively,
this can be understood as a consequence of information being
used in this case to redirect part of the free energy that would
otherwise be dissipated as heat (i.e., entropy production) into
useful work, rather than to extract the latter directly from the
heat bath.

In particular, the authors of Ref. [19] introduced a hypo-
thetical dynamic Szilard engine which, rather than operating
in a quasistatic regime, exploits the finite correlation time
of the velocity of an active Brownian particle (ABP). Their
protocol consists of repeatedly measuring the particle’s posi-
tion and direction of motion, subsequently placing a piston
that will exert a force opposite to the active self-propulsion,
eventually resulting in positive work against the former. The
cost of measurement is estimated as M ~ —kgT In(§/2) by
analogy with the thermal case, with § the precision error of the
position measurement normalized by the system size. A uni-
fied stochastic thermodynamic treatment encompassing the
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FIG. 1. Schematic representation of the dynamic information en-
gine considered in this work. A single active particle undergoing
run-and-tumble motion is subject to a time-dependent force Fiy
applied by an external controller. The force is modulated based on the
current state of auxiliary processes s or Q, which are coupled to the
internal self-propulsion state w and particle position x, respectively.
The nonequilibrium driving of the auxiliary system results in an
increase in the total mean entropy production rate by an amount Sy,
which captures the thermodynamic cost of operating this information
engine.

quantification of both work extraction and measurement costs
in such active information engines in the spirit of Refs. [5-10],
however, is yet to be established.

Here we develop such a treatment by studying a minimal
information engine operating autonomously on a single run-
and-tumble (RnT) particle in one dimension, as schematized
in Fig. 1. We ensure thermodynamic consistency by expand-
ing the phase space to explicitly include an auxiliary system
playing the role of the measurement device. The auxiliary
system’s dynamics are designed to induce a correlation be-
tween the state of the former and the particle’s self-propulsion
direction. Positive average work is then readily extracted by
applying a time-dependent force smaller than and opposite to
the particle’s estimated self-propulsion [20-23]. The nonre-
ciprocal coupling between active particle and measurement
device introduces the feedback loop which underlies this
information engine, and the cost of measurement can be com-
puted analytically by evaluating the entropy production of the
joint dynamics [24,25]. We consider in particular two scenar-
i0s: in the first, discussed in Sec. II, the measurement device
is a binary process that couples directly to the RnT motility
mode; in the second, discussed in Sec. III, the motility mode
is not accessible to direct observation and the measurement
device is a continuous state process that couples to the particle
position, from whose history the motility mode is inferred. In
both cases the accuracy of the measurement plays a key role
in determining the engine’s efficiency.

II. DIRECT MEASUREMENT

Consider the one-dimensional run-and-tumble (RnT) pro-
cess governed by the Langevin equation for the positional

coordinate

X(t) = vw(t) + y Fau () + & (1) (1

with v > 0 a self-propulsion speed, w € {—1, 1} a symmetric
dichotomous noise characterized by a Poisson switching rate
o, and &, a Gaussian white noise with Dirac-delta covariance,
(E:(E()) =2D,8(t —t'). Here Fu denotes an external
force and we work in units such that the viscosity y = 1.
In practice, Fex could be implemented using an optical trap
[16] or, for a charged active colloid [26], through an external
electric field of time-varying magnitude and direction. As a
preliminary step for the definition of a dynamic Szilard engine
operating on a single RnT particle, we expand the phase
space to incorporate an auxiliary system, playing the role
of a measurement device, which is coupled unidirectionally
to the internal state w. We thus introduce a binary Markov
process s € {—1, 41} with w-dependent transition rate matrix

Es(w(D)),

m<_€ I—e ) ifw(t) = +1
g0=1 25 NTX e
m( 1— e _6) ifw@)=—1
acting on the vector of probabilities Pg(z) =

(Pi—y1(t), P—_1(t)). The rate m >0 in Eq. (2) defines
the characteristic timescale of the auxiliary dynamics,
while the dimensionless parameter € € [0, 1/2] can be
understood as a measurement error probability. This is a
thermodynamically consistent description, in the sense that
Ap = ,3’1 In[(1 — €)/€], with ,3’1 = kpT a thermal energy
scale, can be interpreted as the free energy drawn from some
reservoir to bias the coupling, such that effective decoupling
is recovered in the limit € — 1/2. Indeed, for € = 1/2, the
auxiliary process s(¢) reduces to a symmetric dichotomous
noise.

The steady-state joint probability of w and s, here denoted
Tw.s» can be computed straightforwardly. In particular, we
have by symmetry that 7y, = 7_; _; and 7y _; = 7w_;; with
Tyt = 1/2, whence

oa+m(l —¢€)
T =11 = (7oA >
2Q2a + m)
o + me
= =—, 3
T,—1 =T_1,1 30a ) 3)

which reduces to m, ; = 1/4 for all w,s € {I, —1} in the
decoupled limit, € = 1/2, as expected.

We will assume the existence of an external controller
tasked with the application of the time-dependent external
force Fux (s(¢)), henceforth referred to as the protocol, which
can be a function of the current state of the measurement
device s(t), but not of the hidden self-propulsion state w(z).

A. Aucxiliary entropy production

In order to quantify the efficiency of this dynamic Szi-
lard engine, we define the operational cost of measurement
as the net increase in entropy production rate [27,28] in-
duced by coupling of the auxiliary degree of freedom s to
the RnT dynamics. We will henceforth refer to this as the
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auxiliary entropy production. In isolation, free RnT motion in
one dimension is characterized by an entropy production rate
Srat = v?/Dy [28]. Upon coupling of the auxiliary system,
we write the entropy production rate as the Kullback-Leibler
divergence per unit time of the ensemble of forward (x, w, s)
trajectories of duration 7" and their time-reversed counterparts
to obtain

1
S = lim —<ln

T—oo T

Prlx, w, s]
Prlx, w, 5]

= lim 1 |:<ln Prlw, s]> + <ln
T—oo T Prlw, 5]

with Pr and Pg denoting the corresponding path probability
densities. Here (-) indicates an expectation with respect to
the forward path ensemble. The first term in Eq. (4) corre-
sponds to the average entropy production rate of the four-state
Markov process for the joint dynamics of w and s. Using
Egs. (2) and (3), this is given by

. 1< PF[U)»S]>
lim —{ln ——
PR[w7S]

Prx|w, 5] >i| @

Prlx|w, s]

MmeT |

=2[mem; | —m(l —e)m ] In ————
m(l — €)my

T
+2a(my,; —7m_1,1)1n l
To11

_am(l —2e) 1—¢
T 2a4m ln< € > ®)

It vanishes at e = 1/2, where w and s are independent equilib-
rium processes, and diverges logarithmically as € — 0, where
state transitions of s become irreversible. The second term in
Eq. (4) can be computed within the Onsager-Machlup path
integral formalism [28,29]

T
! / dt (X —vw(t) — Fext(s(t)))z]a
D, Jo

X

Prlx|w, s] o exp|:—

T
! /dt (x+vw(r)+11";t(s(t)))2],
D, Jy

X

Prlx|w, s] exp|:—

(6)

where FCL denotes the reversed protocol. Assuming we are
working on a ring, such that the marginal probability density
P(x) is uniform at steady state, and using the dual-reversed
convention [27,30] for the time-reversed protocol, F, t(s)

—Fuxt(s), this term reduces, upon substitution of the path
probabilities into the second term of Eq. (4), to the entropy
production SRnT of a free RnT particle. In this instance, the
auxiliary entropy Sux = S — Sgor is thus simply given by
Eq. (5). The same result can be obtained by computing the
entropy production associated with x in the reference frame
cotransported by the protocol, X, = X — Fuy.

B. Naive protocol

First, let us consider a naive form of the protocol, where
the controller applies an external force as if the measurement
device were error-free, i.e., one that treats the value of the
auxiliary system s(¢) as an exact copy of the hidden state

w(#). Itis straightforward to check that, when w is directly ob-
servable, the average power output (W [Fexi]) = — (Fext (1)X(7))
is maximal for F (w(t)) = —wv/2, in which case Winax =

(WIE},1) = v?/4 [23]. The naive protocol is thus defined by
f%()(rl[)(?(f )) = —sv/2, resulting in the average power output
Ty - L] i [rE =) =a
W F(n) e - A 2 = Wm X 2 )
( [ ext]) 4 (ws) 2<S ) a Yo
(M
where we have used
m(1 — 2¢)
(ws) =m 1+ 0—m_g—731=—7—""-"7 ()
200 +m

and s%(¢) = 1. The average power output (7) is a monotoni-
cally decreasing function of €, and, for any finite switching
rate o, there is a critical error probability €, = (m — 2a)/2m
above which the power output (7) becomes negative. Further-
more, even in the ideal case € = 0, no positive power can
be extracted by the application of the naive protocol when
m < 2a. The requirement for positive power extraction is
more stringent than demanding that the rate of measurement
exceeds that of tumbling, reflecting the asymmetry between
positive and negative work extracted upon correct and incor-
rect guessing, respectively.

Combining the results of Sec. Il A with Eq. (7) for the
average power output, we find the following expression for
the “informational” efficiency of the conversion from entropy
to work of the naive protocol, henceforth defined as the ratio
of power extracted over auxiliary entropy production,

@ = WL ©
ﬂ SZIHX '
with the superscript e denoting a particular protocol and where
B is introduced to make the efficiency dimensionless. For the
naive protocol,

. m( —e) -
ﬁ(n) = ﬂWmax (2 ) —¢
am(l — 2¢)log ===
W, 1
:3 max |:_ _ :| (10)
log - 20 m(1 — 2¢)

Note that our definition of the efficiency ® differs from that
of Ref. [19], which we denote 7®, in that the dissipation
of the free active particle is not included in the operational
cost. However, the two definitions can be related straightfor-
wardly via A0+ @)+ 8~ 1SRHT/( )] = 1. Based on
Eq. (10), we observe that ™ is maximal at an intermediate
value of €, i.e., at finite power (see Fig. 2) and becomes
negative for € > €.. Since the self-propulsion speed v only
features via W ~ 12, the efficiency can be made arbitrarily
large at fixed temperature (constant 8) by increasing v, in a
clear breach of Landauer’s bound for equilibrium information
engines.

C. Bayesian protocol

Within the context of direct coupling of the auxiliary pro-
cess s to the self-propulsion state w, let us now consider a
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FIG. 2. Average power output as a fraction of maximum achiev-
able power (left) and efficiency (right) as a function of the error
probability € € [0, 1/2] for protocols relying on direct coupling to
the RnT motility state w. Dotted and solid lines refer to results for
the naive and Bayesian protocols, as introduced in Secs. IIB and
I C, respectively. The power output is a monotonically decreasing
function of € in both cases, with the Bayesian protocol generically
outperforming the naive one. The efficiency, on the other hand,
displays a maximum at finite power for the naive protocol and at
zero power for the Bayesian one. Here we set Wmax =landm=1.

more accurate protocol, which we dub the Bayesian protocol.
It was shown in Ref. [23] that maximal average power output
from an active particle with hidden states is achieved for a
protocol proportional to the posterior expectation of the self-
propulsion velocity given the observable degrees of freedom.
Denoting 7, = 7y, /7 the steady-state conditional proba-
bilities, which can be computed from Eq. (3), the Bayesian
protocol is accordingly defined by

svm(l — 2¢)

_ 11
2 20+m (b

ext

FO(s(t)) = —g(nm ) =—

Unlike the naive protocol, Eq. (11) depends explicitly on the
error probability €, vanishing at € = 1/2 and saturating to
+v/2 in the simultaneous limit € — 0, m — o0, at fixed «.
The associated average power output is

ypony = V[md =20 o md -2

<W[Fext ]>_ 2[ 2a+m s 2(2a+m)2 S)
W m2(1 — 2¢)? 12
= o Gt "

where we used Eq. (8) to substitute for (ws). Once again,
Wmax denotes the power that could have been extracted were
w directly accessible to the controller, such that the fraction in
the right-hand side of Eq. (12) corresponds to the reduction in
performance due to the presence of the measurement device
as an intermediary.

Using Eq. (5) for the auxiliary entropy production, the effi-
ciency of the conversion from entropy to work of the Bayesian
protocol is thus

b)) _ <W[F;3(x]?]) _ lngaxm(l — 2¢)
B lgilsaux a(m+4a)10g16;€’

which is a monotonically increasing function of €, meaning
that in this instance efficiency is maximal in the limite — 1/2
and thus at zero power; see Fig. 2. In particular, using

1—e\1' 1
liml(1—2e)|:log(T)i| - (14)

13)

we have the value of the max efficiency n®) /BWux =
m/[2a(m + 4a)]. Both work and efficiency vanish in the limit
o — oo: since the auxiliary system can’t “keep up” with the
w dynamics when the latter’s correlation time scale becomes
too small, the best protocol in this regime amounts to simply
doing nothing. Similarly to the naive protocol studied in the
previous section, the efficiency (13) can be made arbitrarily
large at fixed temperature by increasing v.

III. INDIRECT MEASUREMENT

In many realistic scenarios, establishing a direct coupling
between a measurement device and the internal degree of free-
dom controlling the self-propulsion direction is unfeasible.
For instance, while the position of a molecular motor might be
easily tracked, neither the chemical states of its motor heads
nor the polarization of the cytoscheletal filament to which the
motor is bound is typically accessible to direct observation
[31,32]. In light of this consideration, we now consider a
scenario where only the history of the position of the RnT
particle is observable. Remarkably, it was shown in Ref. [23]
that it is still possible to design an auxiliary system dynamic,
such that unidirectional coupling of the latter to the instanta-
neous particle velocity allows for positive power extraction,
the intermediate step being the inference of the hidden state.

Let us introduce the notation {x(¢)} ,, for the positional
trajectory of a RnT particle ending at time ¢ = 7, as well as an
auxiliary continuous process Q[{x(#)}" ..] playing the role of
a measurement device, which couples unidirectionally to the
cotransported particle position. We take, in particular,

Ot) = Di[m) — Fa(0)] — 200 + Eo(1)

X

v2

D,

w(t) —20Q(t) + &p(1), 15)

where SQ(t )~ and~ §o(t) are Gaussian white noises with
covariance (£o(t)6g(t')) = 2Dgd8(t —1t') and (£p(t)ép(t")) =
2(Dg + v2/D,)8(t —t'), while x(¢) was replaced in accor-
dance with Eq. (1). Thus, Q(¢) amounts to a weighted time
average of past velocities, with a memory kernel that decays
exponentially over a characteristic timescale 1/(2«), captur-
ing the intuition that RnT velocities tend to be persistent and
of the same sign as w over this timescale. The nonzero noise
correlation (£ (¢)&,(t')) = 2v8(¢r — t') means that this cannot
be thought of as a bipartite system [33]. In fact, the limit
Dg — 0 of Eq. (15) can be obtained as the exact low-Péclet
number asymptote [here Pe = 2 /(aDy)] of the dynamics of
the confidence parameter

P(w(r) = +11{x}" )
n b
P(w(t) = —1{x}")

where P(v|{x}* ) denotes the posterior probability that
the internal self-propulsion state is currently v € {1, —1}
given the observed positional trajectory [23]. Rearranging
Eq. (16) as

Qfx} 1=1 (16)

1 e —1
Plw(t)==£1{x}" ) =-+

27 2(1+e9) an
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clarifies that there exists a one-to-one correspondence be-
tween these complementary probabilities and the confidence
parameter . The confidence parameter in turn defines the
optimal protocol via the relation
_vtanh(Q/2) _ —£+O(Q2), (18)
2 4
which draws on the result, already mentioned in Sec. II, that
maximal average power output from an active particle with
hidden states is achieved for a protocol proportional to the
posterior expectation of the self-propulsion velocity given the
observable degrees of freedom, which is in this case x(¢) [23].
While remaining a sensible intermediary observable to in-
fer w, Eq. (15) for Q stops being an exact description of the
dynamics of the real confidence parameter Q for Pe Z 1 and
in general when Dy > 0. In the following, we will nonetheless
define the auxiliary dynamics via Eq. (15) at all Pe, on the
basis that no obvious alternative is available. Similarly, the
need for a finite measurement noise Dy in order to establish
a well-defined thermodynamic picture of the joint dynamics
will become apparent shortly.

FX Q@) =

A. Auxiliary entropy production

Following Sec. IT A and in order to precisely quantify the
efficiency of this dynamic Szilard engine, we define the opera-
tional cost of measurement as the auxiliary entropy production
rate induced by coupling the auxiliary degree of freedom Q to
the RnT dynamics,

S

Il
E
|

1 <] Prlx, w, Q]>
n —
Prlx, w, O]

1 < Prlx, Qlw]>

In——),
Pglx, Qlw]

where we have used the fact that a symmetric dichotomous

noise w is time-reversal symmetric. We write the Onsager-

Machlup path probability functional [29] for the forward
trajectories in the Stratonovich convention [27,34] as

= lim —
T—ooo T

19)

T
Pp[x,Qlw]aexp[—%/ dtUT(t)ClU(t)] (20)
0

with
X — Fox (Q) — vw (1)
u@)=1{ . 02 2n
Q0 — pw()+2a0(t)
and

1 (Dp+2 —
Cl=o o+ D, v (22)
ZDXDQ —V Dx

the inverse covariance matrix. Similarly, we have for the time-
reversed path probability

1 T
]P’R[x,Q|w]o<exp|:—§/ dzU,@C—‘UR} (23)
0
with

U= ( X4 FL(0) + vw(r) ) . o

0+ Lw(t) — 200(1)

Using the dual-reversed convention [27,30] for the time-
reversed protocol, Fe'il(Q) = —Fx(Q), and after some alge-
bra, we find

. 2
§ = (i — Fo)w) + —o

_F 200 .
D. D.Dg (O(x — Fext)) — D—Q(QQ> .

(25)

The first term can be identified as the entropy production rate
of the free run-and-tumble particle, Srot. The remaining two
contributions quantify instead the auxiliary entropy originat-
ing purely from the coupling to, and nonequilibrium dynamics
of, the auxiliary system. Substituting for x and Q, simplifying
terms where necessary and using the steady-state correlations
(wQ) = Pe/4 and (Q*) = Dy/(2a) + Pe/2 + Pe?/8, which
are derived in the Appendix based on Ref. [35], we finally
arrive at the simple expression for the auxiliary entropy pro-
duction

. o?Pe Pe
Sax = 24+ — 20 . 26
D ( + 2>+ o (26)

Note that the auxiliary entropy diverges as Dy — 0, similarly
to the limit € — O of the direct measurement setup, Eq. (5),
indicating a vanishing efficiency at finite temperature for the
optimal protocol studied in Ref. [23]. Unexpectedly, Eq. (26)
does not vanish in the limit Dy — oo of infinite measurement
noise. We rationalize this result by observing that the correla-
tor (wQ) remains finite in this limit, indicating the persistence
of a nonequilibrium information flow generated by the cou-
pling between x and Q. Finally, unlike Eq. (5), the auxiliary
entropy for the case of indirect measurement depends on v via
the Péclet number.

Combining Egs. (9) and (26) we make two important ob-
servations with regard to the monotonicity of the efficiency in
this case. First, even in the ideal scenario where the average
power output tends to a finite, positive fraction of the maxi-
mum extractable power at large Pe,

ideal : A
Pe—oo

with 0 < x < 1, the efficiency vanishes like n® ~ Pe™! in
this limit. By continuity, assuming that ®) is positive some-
where, this implies the existence of a maximum at finite Pe
(all other parameters being fixed). Second, even in the ideal
scenario where (W [F.%']) vanishes, rather than becoming neg-
ative, in the limit Dy — oo of large measurement noise, the
efficiency n‘® will also vanish. Again, by continuity, this
implies a nonmonotonic dependence of n® on Dy (all other
parameters being fixed) for cases where the former is positive
somewhere.

B. Naive protocol

As was done in Sec. IIB for the case of direct measure-
ment, we start with a naive protocol, meaning in this case
one that treats the auxiliary system Q as an exact copy of
the confidence parameter 9 of Eq. (16), ignoring the mea-
surement noise Dy. Accordingly, the naive protocol is defined

via Eq. (18) as F"(Q(t)) = F,(Q = Q(1)). The associated

ext
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FIG. 3. Average power output (left column) and efficiency (right
column) as a function of Péclet number Pe = v?/(aD,) and measure-
ment error Dy € R™ for the naive protocol relying on inference of
the RnT motility state w introduced in Sec. III B, settinga = g = 1.
Solid lines denote results for the full nonlinear protocol, Eq. (28) and
are obtained by numerical integration. Dashed lines are closed-form
analytical results for the linearized protocol, Egs. (29) and (30).
The linearized protocol performs similarly to the full protocol in
the regime Dy /o < Pe <« 1, as expected. In both cases, we observe
a nonmonotonic dependence of the efficiency on both Pe and D,.
The black dashed line in the top-left panel indicates the maximum
extractable power under the constraint of a hidden self-propulsion
state obtained in Ref. [23].

average power output is

(28)

WIES) = <fc(t>—“ LRl o)/ 2]> .

2

The expectation in the right-hand side of Eq. (28) can be
computed in closed form in the low Pe, low Dy asymp-
tote (specifically Dg/a <« Pe « 1). Indeed, we show in the
Appendix that (Q%) = (Dg/a + Pe)/2 4+ O(Pe?), thus in this
limit Q ~ Pe is typically small and the protocol can be lin-
earized to give

wir) = ()

. |:Pe< Pe) DQ}
= Wmax —|1-—=]-=]. (29)
8 o

This result, which is exact for all Pe and Dy but approximates
(28) only when Dy/a <« Pe <« 1, shows that the fraction of
the available power that is actually extracted upon application
of the linearized naive protocol is a monotonically decreasing
function of the measurement noise Dy, vanishing at a finite
critical value Dy . = aPe(1 — Pe/4) of the latter. This is also
the case for the average power output of the full nonlinear pro-
tocol (28), as shown in Fig. 3 (left column). Furthermore, the
power extracted upon application of the linearized protocol
eventually becomes negative as Pe is increased. This is not the
case for the power output of the full nonlinear protocol (28),
which instead approaches from above a finite positive value at
large Pe; see Fig. 3 (left column).

10!
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0.0438
0.0221
- 0.0003

10° 4 // r —0.0214

DQ/Ot

r —0.0431

r —0.0648

) —0.0866
n
7/]lin
10~

10~1 10° 10"
Pe

—0.1083

—0.1300

FIG. 4. Color map of the efficiency nl(i';) of Eq. (30) as a function

of the dimensionless parameters Pe and D/« for the linearized
naive protocol with indirect measurement discussed in Sec. III B.
The dashed line indicates the contour ’71(11;) = 0. The white cross
indicates the location of the global maximum, for Pe = 2.15(9) and
Dg/a = 2.79(7), where 5" ~ 0.0794.

Combining Egs. (26) and (28) we finally obtain the effi-
ciency n® of the conversion from entropy to work of the naive
protocol, plotted in Fig. 3 (right column). For the linearized
protocol, the dimensionless efficiency can be written in closed
form,

o PV B (1= %) - ¢

T (14 ) 1]

, (30)

and retains a nonmonotonic dependence on Pe and D. Unlike
the case of direct measurement studied in Sec. II, here the self-
propulsion speed v enters both via Wy ~ v? and Pe ~ 12,
and it is thus not immediately obvious whether nl(i';) is bounded
above. Assuming that the Stokes-Einstein relation applies,
D, = kgT /y, we can rewrite the efficiency (30) as a function
of the dimensionless parameters Pe and Dy /o only. The re-
sulting expression is plotted in Fig. 4 and shows a maximum at
Pe = 2.15(9) and Dg/a = 2.79(7), where n" ~ 8 x 1072,
indicating the existence of a nonequilibrium upper bound
analogous to that established by Landauer for equilibrium
information engines.

While no closed-form expression is available for the ef-
ficiency of the fully nonlinear protocol, it is nevertheless
possible to argue that n® can be made arbitrarily large at
fixed temperature. In particular, it is clear that Eq. (28) for
the average power output is bounded above by Wy, and we
further expect (W[Fe(x'? 1) to approach a finite fraction of Winax
which is independent of Dy /o as Pe — 00, consistently with

numerical results in Fig. 3. Thus, for Pe > 1,
Pe -
W o | 2 (14— ) +Ppe! 31
na[DQ<+4>+e:|. (31)

Taking the limits Pe — oo and «Pe/Dy — 0 simultaneously
produces a divergent efficiency, demonstrating that 7™ is
unbounded in (Pe, Dg/a) € R%.
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C. Bayesian protocol

Completing the parallel with Sec. II, we now consider a
more accurate “Bayesian” protocol designed to account and
partially compensate for the measurement noise parametrized
by Dg. Rather than treating the auxiliary variable Q as a
copy of the confidence parameter £ of Eq. (16), which is
related to the posterior probability P(w(7)|Q(7)) of the self-
propulsion mode via the simple relation (17), we compute the
true self-propulsion probabilities conditioned on Q explicitly.
In particular, we write

P(w(z) = £1|0(1))
_ / dP(w(7) = £1|Q)P(Q]0)

Q
:/dﬂ[l:i: e 1 }P(QIQ)P(Q)’ (32)

27 2(1+e9) P(Q)

where we have used Bayes’ theorem together with Eq. (17).
By inspection of the Langevin equation (15), it is clear that the
steady-state probability P(Q) is identical to that of the position
of a RnT particle confined in a harmonic potential of stiffness
2a, which is known in closed form from Refs. [35,36]; see
the Appendix. On the other hand, neither P(Q|£Q) nor P(Q)
is known analytically. Nevertheless, we can draw on the result
of Ref. [23] that the dynamics of £ are well approximated at
low Pe by Eq. (15) with Dy = 0 to write P(Q) =~ P(Q) and
P(QIQ) = P(Q|Q), where

T
Q) = 0(1) + / dt g(r)e "), (33)
—00

In words, Eq. (33) defines Q as the value of the auxiliary
variable Q were Dy, to be artificially set to zero. Conveniently,
the second term in the right-hand side of Eq. (33) is simply
an Ornstein-Uhlenbeck process [37] with zero mean and vari-
ance Dy/2a, implying the conditional probability P(Q|Q) =
N(O; Q, Dy /2a), where N (e;m, v) denotes a Gaussian dis-
tribution of mean m and variance v. Our Bayesian protocol is
then defined as

ER@))
= —%[P(w(z) = +1|0(1)) — P(w(t) = —1]|Q())]

01 3 P(Q
= —K/a’Q(e~ +1)N(Q;Q7DQ/20!)Q (34)

2 e? P(Q)

The average power output associated with this protocol can
be computed by numerical evaluation of the exact integral
expressions, giving the curves shown in Fig. 5 (left column).
These results can then be combined with Eq. (26) for the
auxiliary entropy production to compute the efficiency n®,
also shown in Fig. 5 (right column). The nonmonotonic de-
pendence of n(b) on Pe, which reflects the onset of a regime
where measurement expenditure exceeds power output, is
reminiscent of recent results in quantum Szilard engine with
finite-time measurement [38] and partially observable infor-
mation engines [39]. While no closed-form expression can
realistically be obtained for the average power output as-
sociated with the protocol (34), a similar logic to the one
presented in the previous section can be used to argue for the

1071

=107
1075 +4 . )
1072 10° 102
Pe
107!
]
"i _\ =10-3 1
£ 10791 —— Pe=0.1
e Pe=1.0
—— Pe=10
1075 = , . 1070+ . )
1072 10° 10? 1072 10° 10?
Dq Dq

FIG. 5. Average power output (left column) and efficiency (right
column) as a function of Péclet number Pe = v?/(aD,) and measure-
ment error Dy € R™ for the Bayesian protocol relying on inference
of the RnT motility state w introduced in Sec. III C, Eq. (34). The
results are obtained by numerical integration of exact expressions,
setting &« = B = 1, for which no closed form is available. Similarly
to the naive protocol, we observe a nonmonotonic dependence of the
efficiency on both Pe and Dy. The black dashed line in the top-left
panel indicates the maximum extractable power under the constraint
of a hidden self-propulsion state (data from Ref. [23]).

corresponding efficiency to be unbounded in (Pe, Dg/a) €
R2. Indeed, such an argument relies solely on the assumption,
consistent with our numerical results, that the average power
output should tend to a finite constant independent of Dy /a
as Pe — oo.

IV. CONCLUSION

We have addressed the thermodynamic consistency of an
autonomous, dynamic information engine [19] operating on
a RnT particle in one dimension, a canonical model in active
matter physics reminiscent of the motility strategy of E. coli
and Salmonella bacteria [36,40-43]. We have considered two
realistic, i.e., error-prone, measurement scenarios: in the first,
binary measurements are performed directly on the internal
self-propulsion state of the active particle, while in the sec-
ond only the particle trajectory in space is accessible and
the self-propulsion state is estimated by means of inference
from weighted time-averages of past velocities [23]. In each
scenario, we contrast a naive version of the protocol, where
measurement errors are neglected, with a Bayesian version,
where knowledge of the error statistics is drawn upon to
generically enhance efficiency. The thermodynamic cost of
operating the measurement device is quantified formally as
the auxiliary entropy production rate induced by the coupling
of an auxiliary process playing the role of a measurement
device, which we compute analytically and in closed form. We
showed that, in both cases, the precision of measurements has
a nontrivial impact on the efficiency of the engine. With the
exception of the linearized naive protocol studied in Sec. I C,
we observed that in all instances the efficiency of our dynamic
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information engine can be made arbitrarily large at constant
temperature by increasing the dissipation of the free RnT
particle, consistent with recent results [19] where operational
costs were estimated in a more heuristic way. We understand
this breach of Landauer’s equilibrium bound as a consequence
of information being used to redirect part of the intrinsic
internal dissipation originating from activity into useful work,
rather than to extract the latter directly from a heat bath with
an infinitesimal correlation timescale.

The analysis presented here could be refined by con-
sidering the efficiency of a similarly designed autonomous
information engine operating on a thermodynamically con-
sistent active particle model, such as those introduced in
Refs. [31,44-46], which typically involve a weak coupling
between configurational/chemical and mechanical degrees
of freedom, with multiple dissipative currents, rather than
describing self-propulsion via an effective external “active
force” [47,48].

Source code for this paper is available online [49].
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APPENDIX: STATISTICS OF RNT MOTION
IN A HARMONIC TRAP

The authors of Ref. [35] have obtained a simple integral
expression for the steady-state probability density of a generic
active particle in a harmonic potential, on which we draw in
various places of this work for the particular case of RnT
motion and thus report here for convenience. In particular,
they considered an Ornstein-Uhlenbeck process with time-
dependent potential described by the Langevin equation

k
X(l)=—;[X(t)—C(t)]+$(t) (AD)

where k is the stiffness of the harmonic potential V (x, ¢) =
k(x — ¢)?/2 centered at ¢(¢), y denotes the effective friction
coefficient and £ (¢) is a Gaussian white noise with zero mean
and covariance (£(t1)§(ty)) = 2Dé(t; — t,). By the Stokes-
Einstein relation, the effective diffusion coefficient satisfies
D = kgT /y.RnT motion is captured by Eq. (A1) when center
c(t) is a symmetric dichotomous process taking the values
+cy with switching rate r. With these definitions and setting
y = 1 without loss of generality, the stationary conditional
distributions of x, given o = ¢/cy = %1, reads

N [T D
P(x|o) = E/ dz N(x; oz, ;)(1 —o)" N1 40z)",
-1
(A2)

where N (e;m, v) once again denotes a Gaussian distribution
of mean m and variance v and

o 2v r r

N =Zor (=St o) @A)
r i v v

is a normalization factor. Here v = k/y, while ,F; denotes
the hypergeometric function.

For the Q dynamics of Eq. (15), we thus have, by direct
comparison with (A1) and incorporating results of Eqs. (A2)
and (A3), the steady-state conditional probability density

N, +1 2 1 2
S TR )

x (1 —wz)"2(1 + wz)? (Ad)

with Ny'= ,Fi(1,1/2,3/2,—1). Using Eq. (A4) is is
straightforward to derive the expectations

5 Dy Pe Pe Pe
<Q>=—+—(1+—>, wo) = °¢.

A
2a 2 4 4 (A9

The corresponding statistics of (, as introduced in Eq. (33),
are obtained from the above by simply setting Dy = 0. Equiv-
alent results have been obtained in Ref. [36], albeit in a
different representation.

[1] C. G. Knott, Quote from undated letter from Maxwell to Tait,
in Life and Scientific Work of Peter Guthrie Tait (Cambridge
University Press, Cambridge, 1911), p. 215.

[2] L. Szilard, On the decrease of entropy in a thermodynamic
system by the intervention of intelligent beings, Behav. Sci 9,
301 (1964).

[3] R. Landauer, Irreversibility and heat generation in the comput-
ing process, IBM J. Res. Dev. 5, 183 (1961).

[4] C. H. Bennett, Notes on Landauer’s principle, reversible com-
putation, and Maxwell’s Demon, Stud. Hist. Philos. Sci. B 34,
501 (2003).

[5] P. Strasberg, G. Schaller, T. Brandes, and M. Esposito, Thermo-
dynamics of a physical model implementing a Maxwell demon,
Phys. Rev. Lett. 110, 040601 (2013).

[6] N. Shiraishi, S. Ito, K. Kawaguchi, and T. Sagawa, Role of
measurement-feedback separation in autonomous Maxwell’s
demons, New J. Phys. 17, 045012 (2015).

[7] D. Mandal and C. Jarzynski, Work and information processing
in a solvable model of Maxwell’s demon, Proc. Natl. Acad. Sci.
USA 109, 11641 (2012).

[8] J. M. Horowitz, T. Sagawa, and J. M. R. Parrondo, Imitating
chemical motors with optimal information motors, Phys. Rev.
Lett. 111, 010602 (2013).

[9] K. Maruyama, F. Nori, and V. Vedral, Colloquium: The physics
of Maxwell’s demon and information, Rev. Mod. Phys. 81, 1
(2009).

[10] J. M. R. Parrondo, J. M. Horowitz, and T. Sagawa, Thermody-
namics of information, Nat. Phys. 11, 131 (2015).

[11] D. Daimer and S. Still, The physical observer in a Szilard engine
with uncertainty, arXiv:2309.10580.

[12] T. E. Ouldridge, R. A. Brittain, and P. R. ten Wolde, The power
of being explicit: Demystifying work, heat, and free energy in
the physics of computation, in The Energetics of Computing in
Life & Machines (SFI Press, New Mexico, 2018), pp. 307-351.

014602-8


https://doi.org/10.1002/bs.3830090402
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1016/S1355-2198(03)00039-X
https://doi.org/10.1103/PhysRevLett.110.040601
https://doi.org/10.1088/1367-2630/17/4/045012
https://doi.org/10.1073/pnas.1204263109
https://doi.org/10.1103/PhysRevLett.111.010602
https://doi.org/10.1103/RevModPhys.81.1
https://doi.org/10.1038/nphys3230
https://arxiv.org/abs/2309.10580

EFFICIENCY OF AN AUTONOMOUS, DYNAMIC ...

PHYSICAL REVIEW E 110, 014602 (2024)

[13] H. Leff and A. F. Rex, Maxwell’s Demon 2: Entropy, Classical
and Quantum Information, Computing (CRC Press, Boca Raton,
FL, 2002).

[14] D. Mandal, H. T. Quan, and C. Jarzynski, Maxwell’s refriger-
ator: An exactly solvable model, Phys. Rev. Lett. 111, 030602
(2013).

[15] Y. Jun, M. Gavrilov, and J. Bechhoefer, High-precision test of
Landauer’s principle in a feedback trap, Phys. Rev. Lett. 113,
190601 (2014).

[16] T. K. Saha, J. Ehrich, M. Gavrilov, S. Still, D. A. Sivak, and J.
Bechhoefer, Information engine in a nonequilibrium bath, Phys.
Rev. Lett. 131, 057101 (2023).

[17] T. K. Saha, J. N. E. Lucero, J. Ehrich, D. A. Sivak, and
J. Bechhoefer, Bayesian information engine that optimally
exploits noisy measurements, Phys. Rev. Lett. 129, 130601
(2022).

[18] T. K. Saha, J. N. Lucero, J. Ehrich, D. A. Sivak, and J.
Bechhoefer, Maximizing power and velocity of an informa-
tion engine, Proc. Natl. Acad. Sci. USA 118, ¢2023356118
(2021).

[19] P. Malgaretti and H. Stark, Szilard engines and information-
based work extraction for active systems, Phys. Rev. Lett. 129,
228005 (2022).

[20] P. Pietzonka, E. Fodor, C. Lohrmann, M. E. Cates, and
U. Seifert, Autonomous engines driven by active matter:
Energetics and design principles, Phys. Rev. X 9, 041032
(2019).

[21] R. Di Leonardo, L. Angelani, D. Dell’ Arciprete, G. Ruocco, V.
Iebba, S. Schippa, M. P. Conte, F. Mecarini, F. De Angelis, and
E. Di Fabrizio, Bacterial ratchet motors, Proc. Natl. Acad. Sci.
USA 107, 9541 (2010).

[22] C. Roberts and Z. Zhen, Run-and-tumble motion in a linear
ratchet potential: Analytic solution, power extraction, and first-
passage properties, Phys. Rev. E 108, 014139 (2023).

[23] L. Cocconi, J. Knight, and C. Roberts, Optimal power extrac-
tion from active particles with hidden states, Phys. Rev. Lett.
131, 188301 (2023).

[24] S. A. M. Loos, S. M. Hermann, and S. H. L. Klapp, Non-
reciprocal hidden degrees of freedom: A unifying perspective
on memory, feedback, and activity, arXiv:1910.08372.

[25] S. A. Loos and S. H. Klapp, Irreversibility, heat and information
flows induced by non-reciprocal interactions, New J. Phys. 22,
123051 (2020).

[26] M. Sandoval, R. Velasco, and J. Jiménez-Aquino, Magnetic
field effect on charged Brownian swimmers, Phys. A: Stat.
Mech. Appl. 442, 321 (2016).

[27] U. Seifert, Stochastic thermodynamics, fluctuation theorems
and molecular machines, Rep. Prog. 75, 126001 (2012).

[28] L. Cocconi, R. Garcia-Millan, Z. Zhen, B. Buturca, and G.
Pruessner, Entropy production in exactly solvable systems,
Entropy 22, 1252 (2020).

[29] L. Onsager and S. Machlup, Fluctuations and irreversible pro-
cesses, Phys. Rev. 91, 1505 (1953).

[30] V. Y. Chernyak, M. Chertkov, and C. Jarzynski, Path-integral
analysis of fluctuation theorems for general Langevin processes,
J. Stat. Mech. (2006) PO8001.

[31] S. Liepelt and R. Lipowsky, Kinesin’s network of chemome-
chanical motor cycles, Phys. Rev. Lett. 98, 258102 (2007).

[32] I. Neri, Estimating entropy production rates with first-passage
processes, J. Phys. A: Math. Theor. 55, 304005 (2022).

[33] T. Tanogami, T. Van Vu, and K. Saito, Universal bounds on the
performance of information-thermodynamic engine, Phys. Rev.
Res. 5, 043280 (2023).

[34] T. A. de Pirey, L. F. Cugliandolo, V. Lecomte, and F. van
Wijland, Path integrals and stochastic calculus, Adv. Phys. 71,
1 (2023).

[35] G. Tucci, E. Rolddn, A. Gambassi, R. Belousov, F. Berger, R. G.
Alonso, and A. J. Hudspeth, Modeling active non-Markovian
oscillations, Phys. Rev. Lett. 129, 030603 (2022).

[36] R. Garcia-Millan and G. Pruessner, Run-and-tumble motion
in a harmonic potential: Field theory and entropy production,
J. Stat. Mech. (2021) 063203.

[37] G. E. Uhlenbeck and L. S. Ornstein, On the theory of the
Brownian motion, Phys. Rev. 36, 823 (1930).

[38] T.-J. Zhou, Y.-H. Ma, and C. P. Sun, Finite-time optimization of
quantum Szilard heat engine, arXiv:2303.14619.

[39] S. Still, Thermodynamic cost and benefit of memory, Phys. Rev.
Lett. 124, 050601 (2020).

[40] J. Elgeti, R. G. Winkler, and G. Gompper, Physics of
microswimmers—Single particle motion and collective behav-
ior: A review, Rep. Prog. 78, 056601 (2015).

[41] A. Slowman, M. Evans, and R. Blythe, Exact solution of two
interacting run-and-tumble random walkers with finite tumble
duration, J. Phys. A: Math. Theor. 50, 375601 (2017).

[42] C. Renadheer, U. Roy, and M. Gopalakrishnan, A path-integral
characterization of run and tumble motion and chemotaxis of
bacteria, J. Phys. A: Math. Theor. 52, 505601 (2019).

[43] A. P. Solon, M. E. Cates, and J. Tailleur, Active Brownian
particles and run-and-tumble particles: A comparative study,
Eur. Phys. J.: Spec. Top. 224, 1231 (2015).

[44] M. Chatzittofi, J. Agudo-Canalejo, and R. Golestanian, En-
tropy production and thermodynamic inference for stochastic
microswimmers, Phys. Rev. Res. 6, L022044 (2024).

[45] J. H. Fritz and U. Seifert, Thermodynamically consistent model
of an active Ornstein—Uhlenbeck particle, J. Stat. Mech. (2023)
093204.

[46] R. Bebon, J. F. Robinson, and T. Speck, Thermodynam-
ics of active matter: Tracking dissipation across scales,
arXiv:2401.02252.

[47] S. Shankar and M. C. Marchetti, Hidden entropy production
and work fluctuations in an ideal active gas, Phys. Rev. E 98,
020604(R) (2018).

[48] T. Speck, Stochastic thermodynamics for active matter,
Europhys. Lett. 114, 30006 (2016).

[49] https://github.com/lucocconi2/Active_information_engine/
tree/main.

014602-9


https://doi.org/10.1103/PhysRevLett.111.030602
https://doi.org/10.1103/PhysRevLett.113.190601
https://doi.org/10.1103/PhysRevLett.131.057101
https://doi.org/10.1103/PhysRevLett.129.130601
https://doi.org/10.1073/pnas.2023356118
https://doi.org/10.1103/PhysRevLett.129.228005
https://doi.org/10.1103/PhysRevX.9.041032
https://doi.org/10.1073/pnas.0910426107
https://doi.org/10.1103/PhysRevE.108.014139
https://doi.org/10.1103/PhysRevLett.131.188301
https://arxiv.org/abs/1910.08372
https://doi.org/10.1088/1367-2630/abcc1e
https://doi.org/10.1016/j.physa.2015.08.051
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.3390/e22111252
https://doi.org/10.1103/PhysRev.91.1505
https://doi.org/10.1088/1742-5468/2006/08/P08001
https://doi.org/10.1103/PhysRevLett.98.258102
https://doi.org/10.1088/1751-8121/ac736b
https://doi.org/10.1103/PhysRevResearch.5.043280
https://doi.org/10.1080/00018732.2023.2199229
https://doi.org/10.1103/PhysRevLett.129.030603
https://doi.org/10.1088/1742-5468/ac014d
https://doi.org/10.1103/PhysRev.36.823
https://arxiv.org/abs/2303.14619
https://doi.org/10.1103/PhysRevLett.124.050601
https://doi.org/10.1088/0034-4885/78/5/056601
https://doi.org/10.1088/1751-8121/aa80af
https://doi.org/10.1088/1751-8121/ab5425
https://doi.org/10.1140/epjst/e2015-02457-0
https://doi.org/10.1103/PhysRevResearch.6.L022044
https://doi.org/10.1088/1742-5468/acf70c
https://arxiv.org/abs/2401.02252
https://doi.org/10.1103/PhysRevE.98.020604
https://doi.org/10.1209/0295-5075/114/30006
https://github.com/lucocconi2/Active_information_engine/tree/main

