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Effects of finite counterion size and nonhomogeneous permittivity and viscosity of the solution
on the electrokinetics of a concentrated salt-free colloid
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In the present work, a general model of the electrokinetics and dielectric response of a concentrated salt-free
colloid is developed which includes consideration of the finite size of the counterions released by the particles
to the solution, a nonhomogeneous permittivity of the solution, the existence of Born and dielectrophoretic
forces acting on the counterions, and especially the fact that the solution viscosity and diffusion counterion
coefficient are allowed to be functions of the local counterion concentration. These effects have recently been
discussed by J. J. López-García et al. [Phys. Rev. Fluids 4, 103702 (2019)] in the case of dilute colloids
in general electrolyte solutions. The objective of this work is to explore the new effects and their influence
on the electrokinetic response of concentrated salt-free systems. Present results confirm previous findings
regarding the important increases of the dc electrophoretic mobility and dc electrical conductivity, as well as
huge increments of the dynamic electrophoretic mobilities at high frequencies when finite-ion-size effects were
taken into account. In addition, consideration of the viscosity of the solution and of the counterion diffusion
coefficient as functions of the local counterion concentration leads to a decrease of the magnitude of the previous
electrokinetic results. The theory incorporates a more convenient hard-sphere hydrodynamic model to account
for the nonhomogeneous viscosity of the solution than others proposed in previous works in the literature. A
comparison is elaborated on between electrokinetic and dielectric responses with different levels of complexity of
the theoretical model, starting from the case of pointlike counterions and following with the inclusion in sequence
of additional aspects such as finite counterion size, nonhomogeneous electrical permittivity with associated Born
and dielectrophoretic effects, and, finally, position-dependent viscosity and diffusion counterion coefficient, and
clearly shows the influence of individual effects on the general electrokinetic response and especially the relevant
role the nonhomogeneous viscosity on the dc and ac electrokientic behavior of salt-free colloids.

DOI: 10.1103/PhysRevE.110.014601

I. INTRODUCTION

A salt-free colloid is a system composed of charged par-
ticles dispersed in aqueous or nonaqueous solutions in the
absence of any added salt. Because of neutrality an exact
countercharge is developed, typically in the form of counte-
rions released by the particles to the solution as they become
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charged in such a solution. These systems have been less
studied than those in general electrolyte solutions, mainly
when the concentration of particles is such that the system
is far from being considered as dilute. In these situations,
salt-free colloids can form ordered phases giving rise to the
formation of colloidal crystals at even low particle concentra-
tions. In salt-free colloids the screening effect of ionic species
in solution on the particle charge is comparatively low and
the long-range repulsive forces between particles facilitate the
formation of such crystals [1]. Another important aspect that
is attracting experimental and theoretical attention is the study
of the condensation layer of counterions that develops close
to the surfaces of the particles in salt-free colloids beyond a
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critical particle surface charge density [2–4]. This counterion
condensation effect has a large influence in general soft matter
and only takes place in very low-salt systems, mainly in pure
salt-free ones [5].

In recent years the present and other authors have explored
the electrokinetic and dielectric response in dc and ac electric
fields of concentrated salt-free colloids by assuming in a first
instance that the released counterions can be treated as point-
like [6–9]. Many studies have shown that the consideration of
finite size for the ions in solution is crucial to gain a more
realistic picture of these systems leading to a better under-
standing of the mentioned responses [4,10–13]. Accounting
for the finite ion size, the counterion concentrations near the
particle surfaces can no longer reach the unrealistic values
attained when they are considered pointlike.

This issue was addressed by the authors in a recent paper
[14] by using hard-sphere model approaches by Carnahan and
Starling [15] and by a simpler one by Bikerman [16], but quite
recently it has been argued that many important properties
that are classically considered to maintain constant values in
these electrokinetic studies have to be revised [10,17,18]. The
finite size of the ions not only leads to steric effects but also
to a modification of properties as the electrical permittivity of
the solution, since ions occupy a certain volume that is not
available for the liquid solution. Likewise, the ions have also
been considered as charged dielectric spheres with a different
permittivity as that of the solution [17]. This provokes the
existence of new forces acting on the counterions (Born and
dielectrophoretic forces) in addition to the electrical, thermal,
and steric ones, as it has been recently pointed out by López-
García et al. [19]. In those works, it is emphasized that the
presence of ions of finite size in the solution should lead to
the enhancement of the solution viscosity with the increase
of ion concentration and, therefore, to a nonhomogeneous de-
pendence of permittivity and viscosity with the distance from
the surface of the particle. This aspect is quite relevant to us
considering the huge counterion concentration that occurs in
the neighbourhood of the particle surface especially when this
is highly charged. In summary, the permittivity and viscosity
of the solution, and consequently the counterion diffusion
coefficient, should be functions of the local counterion con-
centration recovering their bulk values in the solution far from
the charged particle surfaces. The mentioned authors have
shown that for dilute colloids in general electrolyte solutions
the consideration of finite ion size and Born and dielec-
trophoretic forces acting on the ions because of the solution
permittivity dependence with the local ion concentration, give
rise to enhancements of different electrokinetic properties,
such as the particle electrophoretic mobility or the electric per-
mittivity of the colloid. On the contrary, they have also shown
that an increase of the viscosity might have an opposite effect
on the electrophoretic mobility, partly neutralizing those en-
hancements. This has been demonstrated in their previus work
[19], which to our knowledge is the first study addressing all
the latter aspects. In the present work, their approach will be
for the first time applied to concentrated salt-free colloids.
López-García et al.’s work is focused on dilute suspensions in
salt-added solutions, and, in addition, they use the finite ion-
size model by Boublik-Mansoori-Carnahan-Starling-Leland
[20,21] which allows for multiple ionic species having

different ionic sizes, a feature not significant to our work,
as only one ionic species is considered. Furthermore, the
Batchelor-Green equation [22] chosen in Ref. [19] to account
for the viscosity of the nonhomogeneous electrolyte will not
be used because it seems to underestimate the local viscosity.
Instead, use will be made of a result which is a simplification
for hard spheres (a rough and simple but useful approximation
for the counterions in the systems considered in this work,
modeled as charged dielectric spheres) of a previously re-
ported cell model of the electroviscous effect of moderately
concentrated colloidal suspensions [23] (RR&C model here-
after, see also the excellent work by Zholkovskiy et al. where
the cell model is analyzed in the frame of a more general
hydrodynamic viscosity model [23]). The complete RR&C
electroviscous model is built on the basis of a hard-sphere
model to which electroviscous effects have been incorporated.
The RR&C hard-sphere model coincides with a particular
case of the hydrodynamic hard-sphere model by Simha [24]
with a special condition by Happel [25] on the size of the cell.
This aspect will be studied in more detail in Sec. V.

In the present work, attention will be paid not only to
the equilibrium double-layer properties and response to dc
electric fields but also the complex dynamic electrophoretic
mobility, the electrical conductivity, and electrical permit-
tivity of the the concentrated salt-free colloid in ac electric
fields (the response in dc electric fields is also attained when
the frequency of the ac electric field is made zero). To that
aim the paper is structured as follows. First, the equilibrium
case (electrical potential and counterion concentration versus
distance to the particle surface) will be studied with all the
relevant effects included. Second, the general case of the elec-
trokinetic and dielectric response of a concentrated salt-free
colloid will be addressed, separating it into two aspects: the
general one with all the effects included and a simpler one
with just steric and Born and dielectrophoretic forces taken
into account for comparison (nonhomogeneous viscosity and
nonhomogeneous diffusion counterion coefficient excluded)
in order to improve the discussion regarding the new effects.

II. EFFECTS OF THE FINITE COUNTERION SIZE AND
NONHOMOGENEOUS ELECTRICAL PERMITTIVITY

ON THE EQUILIBRIUM STRUCTURE OF THE EDL

In this section we will study the effect at equilibrium
of all the relevant aspects mentioned in the previoussection.
As in a recent paper [14] the excluded volume of ions in a
salt-free colloid will be addressed by considering a Carnahan-
Starling activity coefficient γ 0

CS of the counterions released
from the particles to the solution and also for comparison
by a Bikerman-like activity coefficient γ 0

Bk depending on the
packing fraction of counterions (hereafter the superindex “0′′
will refer to an equilibrium quantity). As in previous studies,
use will be made of a spherical cell model (the Kuwabara cell
model [26]) to manage, in an average way, the particle-particle
electrohydrodynamic interactions in the colloid, with especial
relevance when it is highly concentrated. A spherical cell
is composed of one particle of radius a at its center that is
surrounded by a concentric sphere of solution of radius b. This
outer radius will be determined by making the particle volume
fraction calculated with a single cell coincident with that
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of the entire colloid φ: φ = (a/b)3. The Carnahan-Starling
activity coefficient γ 0

CS of the released counterions is given
by [15]

γ 0
CS(r) = exp

(
ϕ0(r){8 − 9 ϕ0(r) + 3 [ϕ0(r)]2}

[1 − ϕ0(r)]3

)
, (1)

where ϕ0(r) is the counterion volume fraction at a radial
distance r from the center of the particle, and it can be related
to the counterion concentration n0(r) as:

ϕ0(r) = n0(r)Vc = n0(r) 4
3πR3, (2)

where Vc is the volume of a spherical counterion of radius R.
On the other hand, the Bikerman activity coefficient γ 0

Bk
of the counterions, allowing for different packing fractions, is
given by [17]:

γ 0
Bk (r) = 1

1 − [
ϕ0(r)

p

] = 1

1 − [ n0(r)
nmax

] = 1

1 − [ n0(r)Vc

p

] , (3)

where p is the packing fraction and nmax is the maxi-
mum counterion concentration for a given packing which are
related by:

p = nmaxVc. (4)

The counterion volume fraction ϕ0(r) may also be
expressed as:

ϕ0(r) = p

[
n0(r)

nmax

]
. (5)

Regarding the packing fraction, recall that for face-centered
cubic packing, pfcc = π

√
2/6 = 0.74; for simple cubic

packing, psc = π/6 = 0.524; for body-centered cubic pack-
ing, pbcc = π

√
3/8 = 0.68; and for random close packing,

prp = 0.64.
The Bikerman’s model is thus based on a correction to

the ionic concentration in order to consider that the volume
available for any ion cannot include that occupied by all other
ions and their hydration layers. From his original derivation,
p in Eq. (3) must simply be set equal to 1, and so the model
may in principle allow a perfect packing of ions. A refinement
aimed at making the model more realistic was proposed in
Ref. [27] and later in Ref. [17] by introducing the packing
fraction p related to the arrangement of the finite-size ions
in the medium. The less-heuristic CS approach is based on a
model of hard-sphere fluid, with only excluded-volume inter-
actions between the spheres. Performing a virial expansion of
the compressibility factor Z , Carnahan and Starling reached
a closed form for Z that agrees very well with molecular
dynamics calculations. Based on this expression for the com-
pressibility factor, Eq. (1) is easily obtained. A systematic
comparison between the different calculations of steric inter-
actions between ions can be found in Ref. [28].

As previously mentioned, a step forward of the model is
the consideration of counterions of finite size as dielectric
spheres. This gives rise to the inclusion of new forces act-
ing on the counterions (Born and dielectrophoretic forces)
in addition to the electrical, thermal, and steric ones. Thus,
an electrical permittivity dependence on the local counterion
concentration inside the cell is assumed [19]. In what follows

we will analyze the effect of including such new counterion
forces in a salt-free colloid at equilibrium.

In the liquid part of the spherical cell, from Gauss law in
its differential form we have:

�∇ · [
ε0

e (r) �∇�0(r)
] = �∇ε0

e (r) · �∇�0(r) + ε0
e (r)∇2�0(r)

= −zen0(r), (6)

where �0(r) denotes the equilibrium electrical potential at
a radial distance r, ε0

e (r) is the effective electrical permit-
tivity of the solution according to a Maxwell-like mixture
formula [29]:

ε0
e (r) − εs

ε0
e (r) + 2εs

=
(

εi − εs

εi + 2εs

)
ϕ0(r), (7)

from which the effective electrical permittivity is obtained as:

ε0
e (r) = εs

[
1 + 2 � ϕ0(r)

1 − � ϕ0(r)

]
, (8)

where

� =
(

εi − εs

εi + 2εs

)
, (9)

where again ϕ0(r) is the counterion volume fraction at a radial
distance r which can be related to the counterion concen-
tration n0(r) by Eq. (2), εi = εriε0 is the effective electrical
permittivity of a counterion and εs = εrsε0 that of the con-
tinuous solution (εri and εrs are the relative permittivities of
counterions and original solution, respectively, and ε0 is the
electric permittivity of a vacuum), z is the counterion valence,
and e is the elementary electric charge. From Eqs. (6)–(9), a
second-order differential equation for the equilibrium electric
potential �0(r) can be obtained as:

∇2�0(r) = d2�0(r)

dr2
+ 2

r

d�0(r)

dr

= −
{

zen0(r)

ε0
e (r)

+ 3�Vc[
1 + �n0(r)Vc − 2�2n0(r)2V 2

c

]
× dn0(r)

dr

d�0(r)

dr

}
. (10)

On the other hand, the sum of the forces acting on a counterion
at equilibrium, namely electric, thermal, steric, Born, and
dielectrophoretic forces, vanishes [30]:

−ze �∇�0(r) − kBT �∇ ln n0(r) − kBT �∇ ln γ 0(r)

− z2e2

8πR
�∇
[

1

ε0
e (r)

]
+ 2πR3ε0

e (r)
εi − ε0

e (r)

εi + 2ε0
e (r)

�∇{[−�∇�0(r)]

·[−�∇�0(r)]} = 0, (11)

where kB is the Boltzmann constant and T is the absolute
temperature. The last two addends of Eq. (11) stand for
the Born and dielectrophoretic forces, respectively. The Born
force appears when the permittivity of the solution is allowed
to change with position: ions tend to move to regions of higher
permittivity in order to decrease their electrostatic energy.
The dielectrophoretic force appears when ions are assumed
to behave as dielectric spheres, which become polarized by an
external electric field acquiring an induced dipole moment.
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Operating in Eq. (11), one obtains:

ze
d�0(r)

dr
+ kBT

d ln[γ 0(r)n0(r)]

dr
− z2e2

8πR ε0
e (r)2

dε0
e (r)

dr
− 4πR3ε0

e (r)
[
εi − ε0

e (r)
]

εi + 2ε0
e (r)

d�0(r)

dr

d2�0(r)

dr2
= 0. (12)

By using Eqs. (A2)–(A4) from the Appendix in Ref. [14], Eq. (12) becomes:

dn0(r)

dr
[1 + ϒ(r) + 
(r)] = − zen0(r)

kBT

d�0(r)

dr

[
1 + �(r)

d2�0(r)

dr2

]
, (13)

where ϒ(r) denotes either the Carnahan-Starling approach and is defined by:

ϒ(r)CS = n0(r)
d ln γ 0(r)CS

dn0(r)
= 8 ϕ0(r) − 2 ϕ0(r)2

[1 − ϕ0(r)]4 (14)

or by the Bikerman one defined by:

ϒ(r)Bk = n0(r)
d ln γ 0(r)Bk

dn0(r)
=

[ n0(r)
nmax

]
1 − [ n0(r)

nmax

] = ϕ0(r)

p
[
1 − ϕ0(r)

p

] .

(15)

The 
(r) and �(r) functions are given by:


(r) = − 3z2e2�n0(r)Vc

8πkBT R εs[1 + 2�n0(r)Vc]2 (16)

�(r) = −4πR3ε0
e (r)

[
εi − ε0

e (r)
]

ze[εi + 2ε0
e (r)]

= −4πR3

ze

{
εiεs[1 + 2�n0(r)Vc][1 − �n0(r)Vc] − ε2

s [1 + 2�n0(r)Vc]2

εi[1 − �n0(r)Vc]2 + 2εs[1 + 2�n0(r)Vc][1 − �n0(r)Vc]

}
. (17)

For numerical reasons it is convenient to differentiate Eq. (10) and Eq. (13) to build third- and second-order differential
equations in the equilibrium electrical potential and counterion concentration, respectively, and add some extra boundary
conditions. This procedure leads to the differential equations:

d3�0(r)

dr3
= 2

r2

d�0(r)

dr
− 2

r

d2�0(r)

dr2
−

{
ze

εs

dn0(r)

dr

[
1 − 2�n0(r)Vc − 2�2n0(r)2V 2

c

1 + 4�n0(r)Vc + 4�2n0(r)2V 2
c

]
+ 3�Vc�(r)

}
, (18)

where the �(r) function is defined by:

�(r) =
[ d2n0(r)

dr2
d�0(r)

dr + dn0(r)
dr

d2�0(r)
dr2

]
[
1 + �n0(r)Vc − 2�2n0(r)2V 2

c

] −
[ dn0(r)

dr

]2 d�0(r)
dr

[
� Vc − 4�2n0(r)V 2

c

]
[
1 + �n0(r)Vc − 2�2n0(r)2V 2

c

]2 (19)

and

d2n0(r)

dr2
= −

dn0(r)
dr

[ dϒ(r)
dr + d
(r)

dr

] + ze
kBT

{[ dn0(r)
dr

d�0(r)
dr + n0(r) d2�0(r)

dr2

][
1 + �(r) d2�0(r)

dr2

] + G(r)
}

1 + ϒ(r) + 
(r)
, (20)

where the G(r) function is defined by:

G(r) = n0(r)
d�0(r)

dr

[
d�(r)

dr

d2�0(r)

dr2
+ �(r)

d3�0(r)

dr3

]
.

(21)

The corresponding boundary conditions for Eq. (18) and Eq. (20) are

d�0

dr
(a) = − σ

ε0
e (a)

= − σ
[
1 − �n0(a)Vc

]
εs[1 + 2�n0(a)Vc]

, (22)

d�0

dr
(b) = 0, (23)

�0(b) = 0, (24)

n0(b) = 1

2� Vc
+ εs

ze

d2�0

dr2
(b) +

√(
1

2� Vc

)2

+ 4εs

ze

d2�0

dr2
(b)

(
1

2� Vc

)
+ ε2

s

z2e2

[
d2�0

dr2
(b)

]2

, (25)

dn0

dr
(b) = 0, (26)
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where σ is the particle surface charge density. Equation (25)
has been obtained by particularizing Eq. (10) at r = b and
making use of Eqs. (2) and (7). We use the mathematical ap-
plication MATLAB with its built-in routine bvp4c to solve the
differential equations with their boundary conditions. Mesh
selection and error control are based on the residuals of the
continuous solution. The relative tolerance, which applies to
all components of the residual vector, has been taken as equal
to 10−6.

III. SOME NUMERICAL RESULTS AT EQUILIBRIUM

In this section we will explore the effects on the di-
mensionless equilibrium electric potential e�0(r)/(kBT ),
and the molar equilibrium counterion concentration c0(r) =
n0(r)/(103NA) (NA is Avogadro’s number) of the spatial de-
pendence of the effective permittivity of the solution (Born
and dielectrophoretic forces are included in this study). The
first comparison that we will consider will be carried out
between point-like, Bikerman, and Carnahan and Starling
predictions, PL, Bk (the packing factor has been p = 0.74,
corresponding to closest packing (fcc or hcp)) and C-S,
respectively. Thus, in Figs. 1(a)–1(c) we show the radial de-
pendence of the relative effective permittivity of the solution,
the dimensionless equilibrium electrical potential and the mo-
lar equilibrium counterion concentration for different relative
permittivities of the counterions and a particle surface charge
density σ = −40.0 µC/cm2. Ionic radii and effective ionic
permittivity values have been taken from [31,32].

Figure 1(a) clearly shows the decrease in effective permit-
tivity as we approach the particle surface from the solution.
It is an expected feature as the counterion permittivity in
this study is, in one of the cases considered, much lower
(εri = 20) than that of the pure solution (εri = 78.54), and
the concentration of counterions is larger near the particle
surface (see Fig. 1(c) in comparison with that in the solution).
This result has an important influence on the equilibrium
electric potential profile in Fig. 1(b) the potential at any posi-
tion increases for the lower counterion permittivity (compare
with the case εri = εrs). Despite there is not much change in
the equilibrium counterion concentration upon decreasing the
counterion permittivity in Fig. 1(c), the equilibrium potential
is quite dependent on this quantity, and mostly for the CS
approach. It is well known that a smaller permittivity in a
given region in an electric field leads to an increase of the
corresponding electric potential in such region. In the next
section we will explore whether this effect, which involves
a decreased screening of the particle charge (on top of that
related to the finite size of the counterions [14]), is relevant or
not for the electrokinetic properties in the present study.

IV. NONEQUILIBRIUM EFFECTS

A. New electrokinetic equations and boundary conditions

Let us again consider a spherical particle of radius a,
surface charge density σ , mass density ρp, and relative per-
mittivity εrp surrounded by a shell of a solution of effective
electrical permittivity εe(�r, t ) with outer radius b = a φ−1/3

(the radius of the cell), where φ is the particle volume fraction
of the colloid. An alternating electric field �E exp(− jωt ) of

FIG. 1. (a) Relative effective permittivity of the solution, (b)
Dimensionless equilibrium electrical potential, and (c) Molar equi-
librium counterion concentration as a function of the dimensionless
radial distance r/a from the particle center. Data according to PL,
Bk (fcc packing factor) and C-S approaches for a salt-free colloid
with different relative permittivities of the counterions εri = 20 and
εri = εrs = 78.54, with φ = 0.3, σ = −40.0 µC/cm2, a = 25 nm
and counterion radius R = 0.358 nm (Na+).

angular frequency ω is applied to the system. In the stationary
state, the particle will move with a velocity �ve exp (− jωt )
where �ve = ue �E , where ue is the dynamic electrophoretic
mobility (the notation uedc will refer to the electrophoretic
mobility for the dc or ω → 0 limit). A spherical coordi-
nate system (r, θ, ϕ) is fixed at the center of the particle,
and the polar axis (θ = 0) is chosen to be parallel to the
applied electric field. For the present study and according
to the new features mentioned linked to the finite size, the
dielectric nature of the counterions and the local dependencies
with counterion concentration of the solution permittivity, the
viscosity, and the counterion drag coefficient, a more com-
plete set of electrokinetic equations, generalizing that of the
standard electrokinetic model [6,7], is mandatory. The funda-
mental equations connecting the electrical potential �(�r, t ),
the concentration of counterions n(�r, t ) and their drift ve-
locity �v(�r, t ), and the fluid velocity �u(�r, t ) and the pressure
P(�r, t ) at every point �r in the system and time t are now
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expressed as:

�∇ · [εe(�r, t ) �∇�(�r, t )] = −ρel(�r, t ) = −zen(�r, t ), (27)

−η(�r, t ) �∇ × �∇ × �u(�r, t ) + �∇η(�r, t ) · [ �∇�u(�r, t ) + �∇�u(�r, t )T ] − �∇P(�r, t ) − ρel(�r, t ) �∇�(�r, t ) = ρs
∂

∂t
[�u(�r, t ) + �Vp exp (−iωt )],

(28)

�∇ · �u(�r, t ) = 0, (29)

�v(�r, t ) = �u(�r, t ) − 1

λ(�r, t )

{
�∇μ(�r, t ) − 2πR3εe(�r, t )

εi − εe(�r, t )

εi + 2εe(�r, t )
�∇{[−�∇�(�r, t )] · [−�∇�(�r, t )]}

}
, (30)

μ(�r, t ) = μ∞ + ze�(�r, t ) + kBT ln[γ (�r, t ) n(�r, t )] + z2e2

8πRεe(�r, t )
, (31)

�∇ · [n(�r, t ) �v(�r, t )] = −∂n(�r, t )

∂t
. (32)

Equation (27) is Poisson’s equation, where ρel(�r, t ) is
the electric charge density. Equations (28) and (29) are the
Navier-Stokes equations for an incompressible fluid flow of
nonhomogeneous viscosity η(�r, t ) and mass density ρs at
low Reynolds number in the presence of an electrical body
force, expressed in the present case in a more general way
than those of the standard electrokinetic model (the addi-
tional term �∇η(�r, t ) · [ �∇�u(�r, t ) + �∇�u(�r, t )T ], where T means
a transposed tensor, has been included because of the spa-
tial dependence of the viscosity). Note that in general, in
the considered theoretical model, the density of the solution
should also be a function of the ionic volume fraction. How-
ever, for mathematical simplicity, as a first approximation, the
density has been assumed to be constant and equal to that
of the fluid phase ρs. We are concerned in this work with
the linear electrokinetic response of a concentrated salt-free
colloid in the presence of low-strength electric fields. For
that reason, the nonlinear term −ρ(�r, t )[�u(�r, t ) · �∇]�u(�r, t ) has
been eliminated from the left-hand side of the Navier-Stokes
equation (28). Equation (30) derives from the Nernst-Planck
equation for the flow of the counterion species, including
the gradient of its electrochemical potential μ(�r, t ) defined
in Eq. (31) where μ∞ is the electrochemical potential of the
counterions at a standard state, and λ(�r, t ) = kBT/Dc(�r, t ) its
nonhomogeneous counterion drag coefficient. The effective
electrical permittivity, the solution viscosity, and the counte-
rion drag coefficient [or the counterion diffusion coefficient
Dc(�r, t )] are functions of the local counterion concentra-
tion, recovering their bulk values, εs, ηs, and λ (or Dc),
respectively, very far from the particle surface. γ (�r, t ) in
Eq. (31) is the nonequilibrium activity coefficient of the
counterion and it will be assumed to explicitly maintain a
similar concentration dependence as either the Carnahan-
Starling activity coefficient [see Eq. (1)] or the Bikerman
activity coefficient [see Eq. (3)]. Finally, Eq. (32) is the

continuity equation for the conservation of the counterion
species.

Summarizing, some of the standard electrokinetic equa-
tions have been changed to account for the new features linked
to the dielectric nature of the counterions that lead to a per-
mittivity dependence with the local counterion concentration
in solution and new related forces acting on the counterions.
In addition, it has also been considered that the viscosity of
the solution, as well as the counterion diffusion coefficient,
may be nonhomogeneous, recovering their bulk values in the
solution far from the charged particle surface. We will follow
the original work of López-García et al. [19] where all these
aspects have been addressed for dilute colloids in general
electrolyte solutions under the Smoluchowski approximation,
but with the appropriate modifications pertaining to the case
of concentrated salt-free colloids. As referred to above, one
of the main aspects implemented in the present approach
refers to the substitution of the Batchelor-Green equation [22]
used by the latter authors by our RR&C model [23], which
has proved successful in explaining some viscosity exper-
iments with silica colloids [33] by using effective particle
volume fractions. In terms of the equilibrium counterion vol-
ume fraction ϕ0(r), or its related counterion concentration
n0(r) [see Eq. (2)], the local viscosity of the nonhomo-
geneous solution according to the RR&C model can be
expressed as:

η0(r) = ηs
[
1 + 5

2 ϕ0(r) S0(r)
] = ηs

[
1 + 5

2 n0(r)Vc S0(r)
]

(33)

in the absence of external electric fields, where ηs corresponds
to the viscosity of the pure solution and S0(r) is an adaptation
for the present case of a particularization of the original Simha
function [24] already used by the authors [23] including a
condition on the size of the cell due to Happel [25]. Such adap-
tation (denominated RR&C or modified Simha) is given by:

S0(r) = 4[1 − ϕ0(r)7/3]

4[1 + ϕ0(r)10/3] − 25 ϕ0(r)[1 + ϕ0(r)4/3] + 42 ϕ0(r)5/3
. (34)
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Admitting the proportionality between the drag coefficient
of counterions and the local viscosity, it can be proposed that
the ratio between λ0(r) (equilibrium drag coefficient at any
position) and λ (equilibrium drag coefficient in the bulk) co-
incides with the ratio between the corresponding viscosities,
as follows:

λ0(r) = λ

ηs
η0(r) = λ

[
1 + 5

2
n0(r)Vc S0(r)

]
. (35)

For very low counterion concentrations (ϕ0 → 0) the S0 func-
tion tends to unity and the Einstein equation for the viscosity
of a dilute suspension of hard spheres is recovered. If the
effect on the solution viscosity of the local counterion con-
centration is neglected, then the constant values ηs and λ for
the bulk solution viscosity and counterion drag coefficient can
be used whatever the point in the solution. In Fig. 2 it is
shown a comparison between the viscosity of a system of hard
spherical particles as a function of particle volume fraction
ϕ0 according to Batchelor-Green [22], Eilers [34], Mooney
[35], and the RR&C (modified Simha) hard-sphere models
[23]. All of them converge to the Einstein model [36] (also
displayed in Fig. 2) as the volume fraction tends to zero. The
most significant feature for the present work in Fig. 2 is the
notable increase in relative viscosity with counterion volume
fraction predicted by the RR&C model when compared to
the predictions of the rest of the models. Recall that a pre-
vious study [19], which used the Batchelor-Green viscosity
model, concluded that it certainly underestimated the solution
viscosity at high volume fractions (like those taking place
in our condensate counterion region). For this reason and
according to the above-mentioned successful explanation of
recent viscosity data of silica colloids with the RR&C model
[33], this will be used in the solution of the general problem.

FIG. 2. Comparison between the relative viscosity predictions
for a system of spherical particles as a function of hard-sphere
volume fraction according to Einstein, Batchelor-Green, Eilers, and
Mooney for random close packing and RR&C (modified Simha)
hard-sphere models.

As we are interested in the linear response to low-strength
electric fields, a first-order perturbation procedure can be ap-
plied. This has been commonly used in the literature [37,38]
but it has to be extended to include a similar scheme for the
Carnahan-Starling or Bikerman activity coefficients γ (�r, t ),
the effective electrical permittivity εe(�r, t ), the solution vis-
cosity η(�r, t ), and the drag counterion coefficient λ(�r, t )
[related to the counterion diffusion coefficient Dc(�r, t ) by
Dc(�r, t ) = kBT/λ(�r, t )] in the presence of an alternating elec-
tric field �E exp(− jωt ). To that aim, the quantities of interest,
X (�r, t ), say, are expressed as the sum of an equilibrium
term X 0(r) plus a perturbation linearly dependent of the field
δX (�r) exp (− jωt ). Note that the equilibrium term is zero in
the case of both the counterion and fluid velocities [�u(�r, t ) =
δ�u(�r) exp (− jωt ), �v(�r, t ) = δ�v(�r) exp (− jωt )].

The symmetry of the problem permits us to express the
linear perturbations [37]:

δ�u(�r) =
[
−2h

r
E cos θ,

1

r

d (rh)

dr
E sin θ, 0

]
, (36)

δμ(�r) = −zeφ(r)E cos θ, (37)

δ�(�r) = −Y (r)E cos θ, (38)

δ�p(�r) = −Yp(r)E cos θ, (39)

δP(�r) = χ (r)E cos θ, (40)

δn(�r) = n0(r) S(r)

kBT
[δμ(�r) − zeδ�(�r)]

= − zen0(r) S(r)

kBT
[φ(r) − Y (r)]E cos θ, (41)

δεe(�r) = 3εrsε0�Vc

[1 − � n0(r)Vc]2
δn(�r), (42)

δη(�r) = 5

2
ηs[n

0(r)Q(r) + S0(r)]Vc δn(�r), (43)

δλ(�r) = 5

2
λ[n0(r)Q(r) + S0(r)]Vc δn(�r), (44)

in terms of some radial functions h(r), Y (r), Yp(r), χ (r), and
φ(r), which contain information about the field-induced linear
perturbations (the subscript p denotes the solid particle). To
better understand the previous and subsequent equations, the
reader is referred to Appendix A, where expressions for the
functions S(r) and Q(r) can also be found.

As the nonhomogeneous drag counterion coefficient λ(�r, t )
is also assumed to be related to the nonhomogeneous solution
viscosity in an analogous form to that in homogeneous solu-
tions, one can write:

λ(�r, t ) = λ

ηs
η(�r, t ) = λ0(r) + δλ(�r) exp (− jωt )

= λ

ηs
[η0(r) + δη(�r) exp (− jωt )] (45)

and by simply using Eq. (43), Eq. (44) is finally obtained.
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The new linearized Navier-Stokes equation turns out to be

L2h(r) + jωρs

η0(r)
Lh(r) + 1

η0(r)

[
dη0(r)

dr

][
2

d3h(r)

dr3
+ 4

r

d2h(r)

dr2
− 6

r2

dh(r)

dr
+ 6

r3
h(r)

]
+ 1

η0(r)

d2η0(r)

dr2

d2h(r)

dr2

= − z2e2n0(r)

kBT η0(r) r

[
d�0(r)

dr

]
S(r)

[
φ(r) + Y (r)�(r)

d2�0(r)

dr2

]
, (46)

where the �(r) function was defined in Eq. (17) and the operators L and L2 are

L ≡ d2

dr2
+ 2

r

d

dr
− 2

r2
, (47)

L2 ≡ d4

dr4
+ 4

r

d3

dr3
− 4

r2

d2

dr2
. (48)

The linearized continuity equation for the general case is

J (r) + n0(r)

{
ze

λ0(r)
Lφ(r) + λ

λ0(r)

[
r2 df (r)

dr
+ 4r f (r) + dy(r)

dr
+ r2 dζ (r)

dr
+ 4rζ (r)

]

− λ

λ0(r)2

dλ0(r)

dr

[
r2 f (r) + y(r) + r2ζ (r) + ze

λ

dφ(r)

dr

]}

= − jω ze n0(r)S(r)

kBT
[φ(r) − Y (r)], (49)

where the auxiliary J (r), f (r), y(r), and ζ (r) functions are
detailed in Appendix A. Finally, the third-order version of the
linearized, modified Poisson equation reads

d3Y (r)

dr3
+ 2

r

d2Y (r)

dr2
− 4

r2

dY (r)

dr
+ 4

r3
Y (r)

= A(r) + B(r) + C(r) + D(r) (50)

and the functions A(r), B(r),C(r), D(r) can also be found in
Appendix A.

The appropriate boundary conditions for the latter system
of electrokinetic equations are [7,39]:

�p(�r, t ) = �(�r, t ) at r = a, (51)

εrs �∇�(�r, t ) · r̂ − εrp �∇�p(�r, t ) · r̂ = −σ/ε0 at r = a, (52)

�u(�r, t ) = 0 at r = a, (53)

�v(�r, t ) · r̂ = 0 at r = a, (54)

�ω(�r, t ) = �∇ × �u(�r, t ) = 0 at r = b, (55)

n(�r, t ) − n0(r) = 0 at r = b, (56)

�(�r, t ) − �0(r) = − �E · �r exp(− jωt ) at r = b. (57)

In addition, an integral condition is chosen for obtaining the
electrophoretic mobility:

〈ρm�u ′(�r, t )〉 = 1

Vcell

∫
Vcell

ρm�u ′(�r, t ) dV = 0, (58)

where �u ′(�r, t ) is the local velocity with respect to a laboratory
reference system, ρm is the local mass density, and Vcell the
volume of the unit cell.

In summary, the boundary conditions imposed at the par-
ticle surface are expressed by Eq. (51), which denotes the
continuity of the electric potential, and �p(�r, t ) is the potential
inside the particle; Eq. (52), which represents the discontinu-
ity of the normal component of the displacement vector (r̂
is the radial unit vector of the spherical coordinate system);
Eq. (53), which indicates that the fluid is at rest at the parti-
cle surface in the reference system fixed to the particle; and
Eq. (54), which denotes the impossibility of counterions to
penetrate the solid particle. In addition, at the outer surface of
the cell the chosen boundary conditions are given by Eq. (55),
which corresponds to the Kuwabara boundary condition of
null vorticity �ω for the fluid velocity; Eqs. (56) and (57),
which are the Shilov-Zharkikh-Borkovskaya boundary con-
ditions [40] for the perturbed concentration of counterions
and perturbed electric potential in such a surface; and the
integral condition in Eq. (58), which, according to O’Brien
[41], imposes that the macroscopic momentum per unit vol-
ume of the colloid is zero, allowing us to obtain the dynamic
electrophoretic mobility. Finally, the equation of motion of the
unit cell with the net force acting on it will permit us to close
the problem [37,42].
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The linearized version of the boundary conditions for the general case described in Eqs. (51) and (57) can finally be expressed
as:

h(a) = 0, (59)

dh

dr
(a) = 0, (60)

d2h

dr2
(b) + 2

b

dh

dr
(b) − 2

b2
h(b) = 0, (61)

d3h

dr3
(b) + 1

b

d2h

dr2
(b) − 6

b2

dh

dr
(b) + 6

b3
h(b) − jωρs

η0(b)

[
h(b)

b
− ue

(ρp − ρs)

ρs
φ − dh

dr
(b)

]
+ 1

η0(b)

dη0

dr
(b)

d2h

dr2
(b) = ρ0

el(b) Y (b)

bη0(b)
,

(62)

ze
dφ

dr
(a) − 3Vcε

0
e (a)

εi − ε0
e (a)

εi + 2ε0
e (a)

[
d2�0

dr2
(a)

dY

dr
(a) + d�0

dr
(a)

d2Y

dr2
(a)

]

−9V 2
c

d�0

dr
(a)

d2�0

dr2
(a)

ε2
i − 2εiε

0
e (a) − 2ε0

e (a)2[
εi + 2ε0

e (a)
]2

εrsε0 � ze n0(a)S(a)[φ(a) − Y (a)]

kBT [1 − � n0(a)Vc]2
= 0, (63)

φ(b) = b, (64)

dY

dr
(a) + 3

d�0

dr
(a)

εrsε0 � ze Vc n0(a)S(a)[φ(a) − Y (a)]

ε0
e (a)kBT [1 − � n0(a)Vc]2

− εrpε0

ε0
e (a)

Y (a)

a
= 0, (65)

Y (b) = b, (66)

where Eq. (62) stems from the new net force acting on the unit cell. Also, the integral condition expressed by Eq. (58) allows us
to obtain the electrophoretic mobility as:

ue = 2h(b)

b

1[
1 + ( ρp−ρs

ρs

)
φ
] . (67)

Regarding the derivation of the boundary condition expressed by Eq. (62), the reader is referred to Appendix A.

B. Calculation of the complex electrical conductivity and relative permittivity

As is well known in the literature concerning the electrokinetic cell model [40], the complex conductivity K∗ of the colloid
can be calculated from the linear relation between macroscopic electric current density 〈�i(�r, t )〉 and macroscopic electric field
〈− �∇�(�r, t )〉. Such macroscopic quantities are expressed by volume averages of the corresponding local properties in the volume
of a cell Vcell (Sb denotes the outer surface of the cell):

〈�i(�r, t )〉 = 1

Vcell

∫
Vcell

�i(�r, t ) dV = 1

Vcell

∮
Sb

�r �i(�r, t ) · r̂ dSb = K∗ 1

Vcell

∫
Vcell

[−�∇�(�r, t )] dV = K∗〈− �∇�(�r, t )〉, (68)

where the local electric current density �i(�r, t ) is defined by:

�i(�r, t ) = ρel(�r, t )�v(�r, t ) + ∂ �D
∂t

= ρel(�r, t )�v(�r, t ) − ∂

∂t
[εe(�r, t ) �∇�(�r, t )]. (69)

The macroscopic electric field must equal the volume average of the local electric field in the unit cell. In the presence of an
alternating electric field �E exp(− jωt ) and taking the perturbation procedure mentioned in Sec. V A into account, we have:

〈− �∇�(�r, t )〉 = 1

Vcell

∫
Vcell

[−�∇�0(r) − �∇δ�(�r)e− jωt ] dV = 1

Vcell

∫
Vcell

[−�∇δ�(�r)e− jωt ] dV = − 1

Vcell

∮
Sb

δ�(�r)e− jωt r̂ dSb

= − 1

Vcell

∮
Sb

[−Y (r)E cos θ ] e− jωt r̂ dSb = 1

Vcell
Y (b)e− jωt

∮
Sb

E cos θ r̂ dSb = Y (b)

b
�Ee− jωt . (70)

It has to be pointed out that in deriving the latter equation we have used the fact that

1

Vcell

∫
Vcell

[−�∇�0(r)] dV = 0, (71)
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due to the spherical symmetry of the equilibrium problem. Similarly and with the help of the aforementioned linear perturbation
procedure, the volume average of the local current density is calculated as (details in Appendix B):

〈�i(�r, t )〉 =
{

z2e2n0(b)

λ0(b)

dφ

dr
(b) − zen0(b)

2h(b)

b
− jωε0

e (b)
dY

dr
(b) − 2ze

2πR3

λ0(b)
n0(b)ε0

e (b)

[
εi − ε0

e (b)

εi + 2ε0
e (b)

]
d2�0

dr2
(b)

dY

dr
(b)

}

�Ee− jωt = K∗(ω)〈− �∇�(�r, t )〉. (72)

According to Eq. (70), the complex electrical conductivity K∗(ω) can finally be obtained as:

K∗(ω) =
{

z2e2n0(b)

λ0(b)

dφ

dr
(b) − zen0(b)

2h(b)

b
− jωε0

e (b)
dY

dr
(b) − 4zeπR3

λ0(b)
n0(b)ε0

e (b)

[
εi − ε0

e (b)

εi + 2ε0
e (b)

]
d2�0

dr2
(b)

dY

dr
(b)

}
b

Y (b)
.

(73)

In the limit when � tends to zero [see Eq. (9)], the latter ε0
e (b)

reaches the permittivity of the continuous solution εrsε0 and
also εi = εrsε0. Likewise, if the viscosity were homogeneous,
then the counterion drag coefficient would not be a function
of the local counterion concentration, reaching the constant
value λ, and thus Eq. (73) transforms into a simpler one al-
ready derived in a previous work where all these aspects were
neglected (Eq. (61) in Ref. [14]), as counterions in such limits
are not allowed to behave as polarizable dielectric spheres and
have also a constant drag coefficient value.

The complex relative permittivity ε∗
r (ω) of the colloid

is usually defined from the complex conductivity by the
equation:

K∗(ω) = Kdc − jωε0ε
∗
r (ω) = Kdc − jωε0[ε′

r (ω) + jε′′
r (ω)],

(74)

where Kdc = K∗(ω = 0). Separating real and imaginary parts
we finally obtain:

ε′
r (ω) = − Im[K∗(ω)]

ωε0
, (75)

ε′′
r (ω) = Re[K∗(ω)] − Kdc

ωε0
. (76)

V. SOME NUMERICAL RESULTS REGARDING THE DC
AND AC MOBILITY AND DIELECTRIC DISPERSION

A. DC results

In Fig. 3(a) we study the counterion size effect accord-
ing to pointlike (PL), Bikerman (Bk, fcc packing fraction),
and Carnahan and Starling (C-S) approaches including addi-
tional Born and dielectrophoretic effects (BKBD and CSBD
studies), and additional nonhomogeneous viscosity and coun-
terion diffusion coefficient (BKBDVD and CSBDVD studies)
on the dc electrophoretic mobility uedc of a spherical particle
in a concentrated salt-free colloid, expressed by its dimension-
less electrophoretic mobility as:

uedc dim = 3ηse

2εrsε0kBT
uedc (77)

and in Fig. 3(b) an analogous study on the electrical conduc-
tivity Kdc as a function of the particle surface charge density
for Na+ as counterion with radius R = 0.358 nm, a = 25 nm,
and φ = 0.3.

In Fig. 3(a) the electrophoretic mobility-charge density
plot clearly shows the previously mentioned counterion

condensation effect. As it is already known, in salt-free col-
loids and due to the formation of a layer of counterions onto
the particle surface (the ionic condensation effect), once the
surface charge density reaches a characteristic value for the
condensation [3,5,43], the mobility stops its increasing be-
havior and even decreases when the charge density is further
increased. This effect is present no matter the finite-size ap-
proach used and also when the ions are considered pointlike
(PL case). In a previous work addressing the effect of the finite
size of counterions on the electrophoretic mobility [14], it was
proposed that the lower screening of the particle charge when
the counterions are allowed to have finite size was in part
responsible of the larger mobility values over the PL results,
much more notorious for the C-S case, as the main region of

(a)

(b)

FIG. 3. (a) Dimensionless dc electrophoretic mobility and (b) dc
electrical conductivity as a function of particle surface charge density
for a salt-free colloid according to PL, Bk (p = 0.74, face-centered
cubic packing) (BKBD and BKBDVD), and C-S (CSBD and CSB-
DVD) approaches with R = 0.358 nm (Na+), a = 25 nm, φ = 0.3,
and εri = 20.
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the counterion excess for the latter is shifted to farther dis-
tances from the particle surface than in the other cases. It was
concluded that the global effect was a reduction of the brak-
ing effect on the particle motion, forcing the electrophoretic
mobility to increase at high particle surface charges [44,45].
Now when Born and dielectrophoretic effects are included
[BKBD and CSBD cases, dashed lines in Fig. 3(a)], the mobil-
ity shows an additional increase over the latter results, being
always larger for the Carnahan and Starling study. But what is
more remarkable is the effect when both the nonhomogeneous
viscosity and the nonhomogeneous counterion diffusion co-
efficient are taken into account (BKBDVD and CSBDVD
cases, dashed-dotted lines). The above-mentioned rise of the
mobility is clearly reduced in the general case in which all
these effects have been considered in the theory. This effect
on the mobility was also predicted for dilute colloids with thin
double layers in general electrolyte solutions [19] using the
Batchelor-Green viscosity model: the increase of the local vis-
cosity of the fluid with the local concentration of counterions
alters the magnitude of the counterion fluxes and fluid motion
with respect to the particle, with the expected consequence
of a diminution of the particle mobility. The CSBDVD case
shows that the reduction in mobility with respect to the CS
and CSBD predictions is not enough for the mobility to stop
being greater than the standard PL prediction.

Results corresponding to the dc conductivity are displayed
in Fig. 3(b). For low surface charge density, the conductivity
increases linearly with the charge, as expected considering
the effects of the released counterions and the particles them-
selves. As the surface charge is increased, the counterion
condensate becomes prominent [2–4], and the conductivity
does not increase further with σ , as additional ions go to
mainly feed the condensate and do not participate in the
charge transport, since the diffuse layer remains essentially
unchanged according to the PL model. When counterion size
is taken into consideration (Bk and C-S) some increase is still
observed, due to the fact that ions are spread over a larger
volume of the double layer, and they cannot efficiently accu-
mulate in the condensate. Born and dielectrophoretic forces
(BKBD and CSBD) have a minor effect, due to the almost
cancellation of Born and dielectrophoretic forces (tending to
send ions to regions far from the interface) and permittivity
decrease close to the particle (tending to accumulate ions at
the interface, see Ref. [30]), while adding viscosity effects
(BKBDVD and CSBDVD) tends to clearly diminish the con-
ductivity, a result associated to the decrease of the diffusion
coefficient of counterions.

In addition, in Figs. 4(a) and 4(b) we show similar stud-
ies as a function of the particle volume fraction with fixed
σ = −40.0 µC/cm2. In Fig. 4(a) it can be appreciated that
one of the most remarkable effects of accounting for ion size
on the electrophoretic mobility is its increase with particle
concentration in the high-concentration region according to
both Bk and C-S models. This unexpected result was already
studied in a previous work [14] and explained on the basis of
the fact that the region of the cell in which finite-size ions
are spread is wider in the Bk and C-S models. As a con-
sequence, electro-osmotic fluxes should be enhanced and so
will the electrophoretic mobility. Thus, it might be possible to
overcome the braking effect on particle motion for the highest

(a)

(b)

FIG. 4. (a) Dimensionless dc electrophoretic mobility and (b) dc
electrical conductivity as a function of particle volume fraction for
a salt-free colloid according to PL, Bk (p = 0.74, face-centered
cubic packing) (BKBD and BKBDVD), and C-S (CSBD and
CSBDVD) approaches with R = 0.358 nm (Na+), a = 25 nm,
σ = −40.0 µC/cm2, and εri = 20.

particle concentrations [44]. But according to the complete
CSBDVD and BKBDVD models, this rather unrealistic effect
is no longer maintained. The nonhomogeneous viscosity and
counterion diffusion coefficient, both dependent on the local
counterion concentration, are responsible for the neutraliza-
tion of the latter enhancement.

Regarding the effects of the finite counterion size on the
dependence of the dc electrical conductivity with particle
concentration shown in Fig. 4(b), an overall increasing trend
of the conductivity for all finite-size models is predicted, as
it is more important for the C-S conditions. In general, local
electric conduction is favored because of the enhancement
of the concentration of the finite-size mobile counterions in
liquid regions not so close to the particle surface. Also, the
smaller restriction for counterion movement far from the par-
ticles allows for the increase of the overall electric current.
As in the case of the electrophoretic mobility, the conductiv-
ity is essentially unaffected when Born and dielectrophoretic
effects are theoretically included (BKBD and CSBD). But it
is the CSBDVD case that predicts a clear diminution of the
conductivity in comparison with its less-sophisticated ver-
sions (C-S and CSBD). The BKBDVD displays no clear
changes with regards to its simpler finite-size versions. It is
reasonable to think that the increased population of counteri-
ons far from the particle surfaces for the Carnahan-Starling
approach in comparison with the other ones, as well as
the negative effect of the nonhomogeneous viscosity on the
counterion fluxes, are responsible for the observed smaller
conductivity values for the latter conditions.

014601-11



F. CARRIQUE et al. PHYSICAL REVIEW E 110, 014601 (2024)

(a)

(b)

FIG. 5. Real (a) and imaginary (b) parts of the dynamic elec-
trophoretic mobility as a function of frequency for a salt-free colloid
according to PL, Bikerman (Bk, BKBD, and BKBDVD, p = 0.74,
face-centered cubic packing), and Carnahan and Starling (C-S,
CSBD, and CSBDVD) approaches with R = 0.358 nm (Na+), a =
25 nm, σ = −40.0 µC/cm2, φ = 0.2, and εri = 20.

B. AC results

Figures. 5(a) and 5(b) show the real and imaginary parts
of the dimensionless dynamic electrophoretic mobility ueac dim

[same scaling factor as that in Eq. (77)], and Figs. 6(a) and
6(b) show the real and imaginary parts of the complex rel-
ative electric permittivity ε∗

r , respectively, as a function of
frequency for a salt-free colloid according to PL, Bikerman
(Bk, BKBD, and BKBDVD, p = 0.74, face-centered cubic
packing), and Carnahan and Starling (C-S, CSBD, and CS-
BDVD) approaches with R = 0.358 nm (Na+), a = 25 nm,
σ = −40.0 µC/cm2, and φ = 0.2.

As regards Fig. 5(a), the most striking feature observed
is the enormous increase of the real part of the mobility
at frequencies around 109 Hz, followed by the decrease
associated to inertia. The maximum of the mobility as fre-
quency increases is linked to the relaxation of two polarization
processes, very close in frequency in the case analyzed
in Fig. 5, the already known Maxwell-Wagner-O’Konski
(MWO) polarization of the electric double layer [7] and the
Maxwell-Wagner polarization of the counterion condensation
layer (MWC) that relaxes at higher frequency than the latter
because of the smaller length of the condensation layer in
comparison with that of the double layer. These phenomena
have been extensively studied in the recent past [14,44] and
motivated an important debate because of the huge increase of
the mobility maximum over its standard PL prediction. In the
present case, Born and dielectrophoretic effects even increase

(a)

(b)

FIG. 6. Same as Fig. 5 for the real (a) and imaginary (b) parts of
the complex relative permittivity.

a bit more the mobility displayed for the Bk and C-S cases
[2,3,44].

However, the important feature now is the diminution of
the mobility maximum when the dependence of the viscosity
and diffusion counterion coefficient with the local counterion
concentration are taken into account for both Bikerman and
Carnahan and Starling approaches. The CSBDVD prediction
is nearly coincident with the PL one past the maximum in
the inertia region, dramatically reducing previous finite-size
predictions for constant solution viscosity and counterion dif-
fusion coefficient [14]. In our opinion the enhancement of the
mobility maximum in frequency on relaxing the relaxation
polarization processes (from around −7 to −17 for the C-S
case) was a clear overestimation of the simpler models. It
is unquestionable that these models lack a rigorous consid-
eration of viscosity effects. Of course, the new predictions
depend on the used model of viscosity, but the general effect
seems to be that the maximum mobility decreases if a non-
homogeneous solution viscosity and its effect on counterion
diffusion coefficient are allowed. The effects described are
less notorious for the BKBDVD case but follow a similar
trend. Finally another important aspect is the frequency shift
of the mobility global Maxwell-Wagner relaxation frequency
for the CSBDVD case to lower frequencies in comparison
with those of simpler CS and CSBD models. This fact is
more clearly seen in Fig. 5(b) for the imaginary part of the
dynamic mobility, as it corresponds to the first maximum [first
frequency minimum in Fig. 5(b) as the y axis is inverted]. In
this useful representation, the highest frequency peak corre-
sponds to the inertial relaxation frequency of particle motion
(inflection point in the real part of the mobility-frequency
curve in such inertia region).
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(a)

(c)

(b)

(d)

FIG. 7. Real (a) and imaginary (b) parts of the dimensionless
dynamic electrophoretic mobility and real (c) and imaginary (d) parts
of the complex relative permittivity as a function of frequency for
a salt-free colloid according to the CSBDVD approach for three
different counterions with a = 25 nm, σ = −40.0 µC/cm2, φ = 0.2,
and εri = 20.

The real part of the complex relative electric permittivity
versus frequency is displayed in Fig. 6(a). It can be ob-
served that the permittivity increases when finite ion sizes
are considered (as described in Ref. [14]). As before, Born
and dielectrophoretic effects do not seem to have any influ-
ence on permittivity different from that for Bk or C-S. In
Fig. 6(a) we can clearly observe the presence of the two
Maxwell-Wagner relaxations, MWO and MWC. See also the
presence of a shoulder in Fig. 6(b) for ε′′

r , which evidences the
two relaxations mentioned. When finite-size effects have been
considered in less-general models (Bk and C-S) than the com-
plete ones (BKBDVD and CSBDVD), the relaxation MWC
frequency is shifted to larger frequencies in comparison with
PL predictions, as expected from the increase of both the elec-
trical conductivity and the width of the condensation layer,
the shift being larger for the C-S approach [14]. But when all
the effects are incorporated into the theory, we do observe a
relaxation frequency of the global MW process smaller than
those of simpler models and even below the PL prediction
in the CSBDVD case (nearly one order of magnitude lower
for CSBDVD as compared to C-S). This striking behavior
is surely linked to the decrease in the diffusion coefficient
of counterions associated to the increased viscosity close to
the particles: It was shown in Refs. [14,44] that the MWC
relaxation frequency of the condensate is proportional to the
diffusion coefficient of the counterions.

In Figs. 7(a) and 7(b) we display the real and imaginary
parts of the dynamic mobility and in Figs. 7(c) and 7(d)
the real and imaginary part of the complex relative elec-
tric permittivity, respectively, as a function of frequency for
three salt-free colloids with different counterion radii: R =
0.358 nm (Na+), R = 0.331 nm (K+), and H+ (R = 0.282
nm) according to the CSBDVD approach with a = 25 nm,

σ = −40.0 µC/cm2, and φ = 0.2. The closeness between
bulk diffusion coefficients of Na+ and K+ counterions jus-
tifies the proximity between their predictions in all the
properties analyzed in Fig. 7. It is the larger bulk diffusion
coefficient of the counterion H+ that is responsible for the
deviation observed with respect to the rest of results. The mo-
bility peak of the real part of the dynamic mobility takes place
at larger frequencies than those of the rest of ions, as it is well
known when a Maxwell-Wagner polarization process relaxes
(here again there are two MW relaxation processes, MWO
and MWC, very close in frequency giving rise to the global
response observed). This fact is more evident in Fig. 7(d),
where the MW relaxation frequency is given exactly by the
frequency of the maximum of ε′′

r . Note the separation of nearly
one decade in frequency between these relaxation frequen-
cies for the different ions evaluated. The overall behavior of
the CSBDVD model when the counterion radius is changed
is the one predicted even for the standard PL model. Only
quantitative differences are expected in a comparison between
such models according to the effects of the nonhomogeneous
viscosity not included in the PL model.

Finally, in Figs. 8(a) and 8(d) we show 3D plots of the real
part of the dynamic mobility and the imaginary part of the
complex relative electric permittivity, respectively, versus fre-
quency and surface charge density according to the PL model.
A similar study for the BKBDVD model is found in Figs. 8(b)
and 8(e) and another one for the CSBDVD model in Figs. 8(c)
and 8(f). Apart from some quantitative differences already
discussed in previous figures between the models, there is a
particular behavior of the BKBDVD model for ε′′

r in Fig. 8(e)
which makes the difference with the other two models. It has
to do with the shift trend of the MW relaxation frequency of
the overall process: In these figures, it is demonstrated that the
sensitivity of the BKBDVD model to surface charge variations
is more significant than in the rest of the models. In particular,
the MW relaxation frequency increases very notably when the
charge density is raised above approximately −30 µC/cm2.
The same arguments apply to the real part of the dynamic
mobility in Fig. 8(b). In contrast, plots of the PL and CS
predictions [Figs. 8(a) and 8(c) or Figs. 8(d) and 8(f)] show
similar qualitative behaviors.

In summary, the Bikerman-like approaches studied in this
work have the aim of giving a first comparison with the
Carnahan-Starling results due to the simpler mathematical
tasks necessary for the numerical resolution of the electroki-
netic equations in comparison with the huge difficulties found
when it comes to solve the more exact Carnahan-Starling
approach. In any case, both approaches coincide in predicting
a relaxation frequency shift with the increase of surface charge
density. The surprising feature is that the simpler standard PL
model also reflects similar behavior to the general CSBDVD
model, and this unexpected result brings some additional
support to the somewhat reviled standard PL model due to
its significant simplifications.

VI. CONCLUSIONS

A general electrokinetic cell model for concentrated salt-
free colloids has been developed that generalizes previous
works focused on finite-ion-size effects in order to get a more
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FIG. 8. Real part of the dimensionless dynamic mobility, and imaginary part of the complex relative permittivity as a function of frequency
and surface charge density for a salt-free colloid according to PL [(a) and (d)], BKBDVD [(b) and (e)], and CSBDVD [(c) and (f)] with
R = 0.358 nm (Na+), a = 25 nm, φ = 0.2, and εri = 20.
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realistic insight of the electrokinetic and dielectric response
of these systems. Recent studies have revealed that ion finite
size not only leads to excluded counterion volume, but equally
important are the nonhomogeneous effective permittivity of
the solution and the related Born and dielectrophoretic forces
acting on the counterions, as well as nonhomogeneous vis-
cosity and counterion diffusion coefficient, dependent on the
local counterion concentration. In this work for the first
time we have accounted for all these aspects in the case of
salt-free nanoparticle suspensions of arbitrary concentration
or surface charge. The new model includes a newly devel-
oped concentration-viscosity dependence, in an attempt to
overcome the limitations of previous viscosity models like
that of Batchelor and Green, which underestimate the solu-
tion viscosity for the very concentrated counterion conditions
that take place in the counterion condensation region very
close to highly charged particle surfaces. The calculations
are applied to dc electrophoretic mobility and electrical con-
ductivity and to ac mobility and dielectric dispersion. Very
significant changes are found in comparison to previous finite-
ion-size effects investigation. First, the increase of the dc
mobility at high particles charges and particle concentrations,
a classically unexpected effect that had been predicted for
concentrated salt-free colloids when finite-size effects were
considered, is no longer maintained according to the most
general approach. Second, the huge mobility maximum in
frequency of the real part of the dynamic (or ac) mobility
on the relaxation of the Maxwell-Wagner processes changes

dramatically when the most general theory is used. In fact,
it is found that the mobility maxima fall to values similar to
those of the simple classical pointlike ions models, although
the global Maxwell-Wagner relaxation peak shifts to smaller
frequencies when viscosity effects and corresponding retard-
ing effects on ionic transport are considered. Finally, it is
confirmed that the Born and dielectrophoretic effects linked to
the consideration of a nonhomogeneous effective solution per-
mittivity are of minor importance in comparison with the new
viscosity effects. In this respect, the predictions are depen-
dent on the choice of the hard-sphere hydrodynamic viscosity
model used, and our choice has been an approach that previ-
ously demonstrated its ability in explaining the experimental
observations on the rheology of moderately concentrated sil-
ica colloids. We expect that all these new results may help
in better understanding the electrokinetic response of these
systems, intresting not only from the fundamental point of
view but also when the focus is placed on some applications
related to the micro-nanofluidic industry.
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APPENDIX A: DERIVATION OF AUXILIARY FUNCTIONS FOR THE LINEAR PERTURBATION SCHEME

The function S(r) in Eq. (41) is defined by:

S(r) =
{

1

�(r)
− 3z2e2� n0(r)Vc

8πRε0εrskBT [1 + 2� n0(r)Vc]2

}−1

= 1

1 + ϒ(r) + 
(r)
, (A1)

where the �(r) function was defined in Ref. [14] by:

�(r)CS = 1 − 4 ϕ0(r) + 6 ϕ0(r)2 − 4 ϕ0(r)3 + ϕ0(r)4

1 + 4 ϕ0(r) + 4 ϕ0(r)2 − 4 ϕ0(r)3 + ϕ0(r)4
, (A2)

�(r)Bk = 1 −
[
ϕ0(r)

p

]
, (A3)

being the ϒ(r) function defined by Eqs. (14) and (15) for the C-S and Bk approaches, respectively, and the 
(r) function by
Eq. (16). Equation (42) is obtained by assuming for the nonequilibrium case a similar dependence with counterion concentration
as that shown in equilibrium for the effective electrical permittivity [see Eq. (8)]:

εe(�r, t ) = ε0
e (r) + δεe(�r) exp (− jωt ) = εs

{
1 + 2 � [n0(r) + δn(�r) exp (− jωt )] Vc

1 − � [n0(r) + δn(�r) exp (− jωt )] Vc

}
. (A4)

In obtaining Eqs. (43) and (44), use has been made of a similar first-order perturbation scheme for the nonequilibrium modified
Simha function S (�r, t ) in terms of the nonequilibrium counterion concentration n(�r, t ) = n0(r) + δn(�r) exp (− jωt ):

η(�r, t ) = η0(r) + δη(�r) exp (− jωt ) = ηs
[
1 + 5

2 n(�r, t )Vc S (�r, t )
]
, (A5)

S (�r, t ) = S0(r) + δS (�r) exp (− jωt ), (A6)

S (�r, t ) = 4{1 − [n(�r, t )Vc]7/3}
4{1 + [n(�r, t )Vc]10/3} − 25 n(�r, t )Vc{1 + [n(�r, t )Vc]4/3} + 42 [n(�r, t )Vc]5/3

, (A7)

δS (�r) = Q(r)δn(�r), (A8)
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where the S (�r, t ) function is admitted to maintain an analogous form as in equilibrium [see Eq. (34) for comparison] but in terms
of the above-mentioned counterion concentration n(�r, t ), and by its substitution in Eq. (A5), operating we have:

η(�r, t ) = η0(r) + δη(�r) exp (− jωt ) = η0(r) + 5
2ηsVc[n0(r)δS (�r) + S0(r)δn(�r)] exp (− jωt ), (A9)

from which Eq. (43) can be obtained, where the auxiliary Q(r) function has been defined by:

Q(r) = −7 S0(r)n0(r)4/3V 7/3
c

3{1 − [n0(r)Vc]7/3} − S0(r)
40
3 n0(r)7/3V 10/3

c − 25 Vc
{
1 + 7

3 [n0(r)Vc]4/3
} + 70 n0(r)2/3V 5/3

c

4{1 + [n0(r)Vc]10/3} − 25 n0(r)Vc{1 + [n0(r)Vc]4/3} + 42 [n0(r)Vc]5/3
. (A10)

The auxiliary functions of the linearized continuity equation (49) are

J (r) =
{

− 2

r
h(r) + ze

λ0(r)

dφ(r)

dr
− 4πR3

λ0(r)
ε0

e (r)

[
εi − ε0

e (r)

εi + 2ε0
e (r)

][
d2�0(r)

dr2

dY (r)

dr
+ d�0(r)

dr

d2Y (r)

dr2

]

+ 4πR3

λ0(r)

d�0(r)

dr

d2�0(r)

dr2
M(r)J (r)

}[
dn0(r)

dr

]
, (A11)

f (r) = −4πR3

λ
ε0

e (r)

[
εi − ε0

e (r)

εi + 2ε0
e (r)

]{[
− 1

r3

d�0(r)

dr
+ 1

r2

d2�0(r)

dr2

]
dY (r)

dr
+ 1

r2

d�0(r)

dr

d2Y (r)

dr2

}
, (A12)

y(r) = −4πR3

λ
ε0

e (r)

[
εi − ε0

e (r)

εi + 2ε0
e (r)

]
1

r

d�0(r)

dr

dY (r)

dr
, (A13)

ζ (r) = 4πR3

λ

d�0(r)

dr

d2�0(r)

dr2

M(r)J (r)

r2
, (A14)

and the auxiliary M(r) and J (r) functions are defined by:

M(r) = ε2
i − 2εiε

0
e (r) − 2ε0

e (r)2[
εi + 2ε0

e (r)
]2 , (A15)

J (r) = −3 εrsε0 � Vc ze n0(r)S(r)[φ(r) − Y (r)]

kBT [1 − � n0(r)Vc]2
. (A16)

The equation regarding the third-order derivative of the potential (50) also requires of auxiliary functions that can be found as
follows:

A(r) = − z2e2

kBT

([
1

ε0
e (r)

dn0(r)

dr
− n0(r)

ε0
e (r)2

dε0
e (r)

dr

]
[φ(r) − Y (r)]S(r) + n0(r)

ε0
e (r)

{[
dφ(r)

dr
− dY (r)

dr

]
S(r)+[φ(r)−Y (r)]

dS(r)

dr

})
,

(A17)

B(r) = 1

ε0
e (r)2

[
dε0

e (r)

dr

]2
dY (r)

dr
− 1

ε0
e (r)

[
d2ε0

e (r)

dr2

dY (r)

dr
+ dε0

e (r)

dr

d2Y (r)

dr2

]
, (A18)

C(r) = − 1

ε0
e (r)2

dε0
e (r)

dr

dJ (r)

dr

d�0(r)

dr
+ 1

ε0
e (r)

[
d2J (r)

dr2

d�0(r)

dr
+ dJ (r)

dr

d2�0(r)

dr2

]
, (A19)

D(r) = − 1

ε0
e (r)2

dε0
e (r)

dr
J (r)

[
d2�0(r)

dr2
+ 2

r

d�0(r)

dr

]
+ 1

ε0
e (r)

{
dJ (r)

dr

[
d2�0(r)

dr2
+ 2

r

d�0(r)

dr

]

+ J (r)

[
d3�0(r)

dr3
− 2

r2

d�0(r)

dr
+ 2

r

d2�0(r)

dr2

]}
. (A20)

Use has also been made of the general pressure function perturbation δP(�r) = χ (r)( �E · r̂), the expression for χ (r) being

χ (r) = −η0(r) r

[
d3h(r)

dr3
+ 3

r

d2h(r)

dr2
− 2

r2

dh(r)

dr
+ 2

r3
h(r)

]
+ ρ0

el(r)Y (r) + jωρs

[
ue r − h(r) − r

dh(r)

dr

]
− r

dη0

dr
(r)

d2h

dr2
(r),

(A21)

in order to calculate the hydrodynamic stress tensor and hydrodynamic force acting on the unit cell. The latter Eq. (A21) has
been obtaining by integrating the Navier-Stokes (N-S) Eq. (28) to derive a full solution of the pressure function perturbation
where the linear perturbation scheme, the symmetry conditions, and the incompressibility condition for the fluid described in
Eqs. (29), (36)–(44) have been used.
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Regarding the derivation of the boundary condition (62), we begin by considering that, since the net electric charge within
the unit cell is zero, there is no net electric force acting on it. We need to consider only the hydrodynamic force �Fh. As the net
force is in the direction of the field �E , the equation of motion for the unit cell in such direction is then given (without vector
notation) by:

ρs

∫ π

0

∫ b

a

d

dt
{[(δ�u)r cos θ − (δ�u)θ sin θ + ueE ]e− jωt }2πr2 sin θ dr dθ + ρp

4

3
πa3 d

dt
[ueEe− jωt ] = Fh (A22)

Fh =
∫ π

0
[σrr cos θ − σrθ sin θ ]r=b 2πb2 sin θ dθ, (A23)

where σrr and σrθ
are the normal and tangential components of the stress tensor:

σrr = −P0 − δPe− jωt + 2η0(r)
∂ (δ�u)r

∂r
e− jωt

= −P0 − χ Ee− jωt cos θ + 4η0(r)

[
h

r2
− 1

r

dh

dr

]
Ee− jωt cos θ, (A24)

σrθ = η0(r)

[
1

r

∂ (δ�u)r

∂θ
+ ∂ (δ�u)θ

∂r
− (δ�u)θ

r

]
e− jωt = η0(r)

d2h

dr2
Ee− jωt sin θ. (A25)

Substituting in Eq. (A24) the above χ (r) function [Eq. (A21)], the hydrodynamic force in Eq. (A23) can be obtained as:

Fh = 4

3
πb3η0(b)Ee− jωt

{
d3h

dr3
(b) + 1

b

d2h

dr2
(b) − 6

b2

dh

dr
(b) + 6

b3
h(b)

+ 1

η0(b)

dη0

dr
(b)

d2h

dr2
(b) − jωρs

η0(b)

[
ue − h(b)

b
− dh

dr
(b)

]
− ρ0

el(b) Y (b)

bη0(b)

}
. (A26)

Evaluating the left side of Eq. (A22) we also have:

ρs

∫ π

0

∫ b

a

d

dt
{[(δ�u)r cos θ − (δ�u)θ sin θ + ueE ]e− jωt }2πr2 sin θ dr dθ + ρp

4

3
πa3 d

dt
[ueEe− jωt ]

= 4

3
πb3η0(b)Ee− jωt

(
− jωρs

η0(b)

{
ue

[
(1 − φ) + ρp

ρs
φ

]
− 2

h(b)

b

})
. (A27)

Equating Eq. (A26) and Eq. (A27), finally leads to:

d3h

dr3
(b) + 1

b

d2h

dr2
(b) − 6

b2

dh

dr
(b) + 6

b3
h(b) − jωρs

η0(b)

[
h(b)

b
− ue

(ρp − ρs)

ρs
φ − dh

dr
(b)

]
+ 1

η0(b)

dη0

dr
(b)

d2h

dr2
(b) = ρ0

el(b) Y (b)

bη0(b)
,

which is the aforementioned Eq. (62), related to the force acting on the cell.

APPENDIX B: CALCULATION OF THE COMPLEX ELECTRICAL CONDUCTIVITY

The cell-averaged electric current density is expressed as:

〈�i(�r, t )〉 = 1

Vcell

∮
Sb

�r �i(�r, t ) · r̂ dSb

= 1

Vcell

∮
Sb

�r
{
zen0(r)δ�v(�r)e− jωt + jω

[
ε0

e (r) �∇δ�(�r) + �∇�0(r)δεe(�r)
]
e− jωt

} · r̂ dSb

= 1

Vcell

∮
Sb

�r
(

zen0(r)

{
δ�u(�r) − 1

λ0(r)
�∇δμ(�r) + 2πR3

λ0(r)
ε0

e (r)

[
εi − ε0

e (r)

εi + 2ε0
e (r)

]
�∇
[

2
d�0(r)

dr
r̂ · �∇δ�(�r)

]

+ 2πR3

λ0(r)
M(r) �∇

[
d�0(r)

dr

]2

δεe(�r)

}
e− jωt + jω

[
ε0

e (r) �∇δ�(�r) + �∇�0(r)δεe(�r)
]
e− jωt

)
· r̂ dSb (B1)
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and then

〈�i(�r, t )〉 =
(

1

Vcell

∮
Sb

�r[zen0(r)δ�u(�r)] · r̂ dSb − 1

Vcell

∮
Sb

�r
[

zen0(r)
�∇δμ(�r)

λ0(r)

]
· r̂ dSb

+ 1

Vcell

∮
Sb

�r
{

zen0(r)
2πR3

λ0(r)
ε0

e (r)

[
εi − ε0

e (r)

εi + 2ε0
e (r)

]
�∇
[

2
d�0(r)

dr
r̂ · �∇δ�(�r)

]}
· r̂ dSb

+ 1

Vcell

∮
Sb

�r
{

zen0(r)
2πR3

λ0(r)
M(r) �∇

[
d�0(r)

dr

]2

δεe(�r)

}
· r̂ dSb

+ jω

Vcell

∮
Sb

�r
[
ε0

e (r) �∇δ�(�r) + �∇�0(r)δεe(�r)
] · r̂ dSb

)
e− jωt . (B2)

By using Eqs. (36), (37), (38), (41), and (42), some of the latter surface integrals can be evaluated with the help of the following
results: ∮

Sb

�r[zen0(r)δ�u(�r)] · r̂ dSb = −2 ze n0(b)h(b)
∮

Sb

( �E · r̂)r̂ dSb, (B3)

∮
Sb

�r
[

zen0(r)
�∇δμ(�r)

λ0(r)

]
· r̂ dSb = − z2e2 n0(b)2

λ0(b)
b

dφ

dr
(b)

∮
Sb

( �E · r̂)r̂ dSb, (B4)∮
Sb

�r
[
ε0

e (r) �∇δ�(�r)
] · r̂ dSb = −ε0

e (b) b
dY

dr
(b)

∮
Sb

( �E · r̂)r̂ dSb, (B5)∮
Sb

( �E · r̂)r̂ dSb = 4

3
πb2 �E . (B6)

Also, it is easy to prove that∮
Sb

�r
{

zen0(r)
2πR3

λ0(r)
ε0

e (r)

[
εi − ε0

e (r)

εi + 2ε0
e (r)

]
�∇
[

2
d�0(r)

dr
r̂ · �∇δ�(�r)

]}
· r̂ dSb

= bzen0(b)
2πR3

λ0(b)
ε0

e (b)

[
εi − ε0

e (b)

εi + 2ε0
e (b)

]
(−2)

d2�0

dr2
(b)

dY

dr
(b)

∮
Sb

( �E · r̂)r̂ dSb, (B7)

as well as ∮
Sb

�r
{

zen0(r)
2πR3

λ0(r)
M(r) �∇

[
d�0(r)

dr

]2

δεe(�r)

}
· r̂ dSb

= −2b z2e2 n0(b)2

kBT

2πR3

λ0(b)
M(b)

d�0

dr
(b)

d2�0

dr2
(b)

3εrsε0�Vc

[1 − � n0(b)Vc]2
S(b)[φ(b) − Y (b)]

∮
Sb

( �E · r̂)r̂ dSb = 0 (B8)

and ∮
Sb

�r[ �∇�0(r)δεe(�r)] · r̂ dSb = − ze b n0(b)

kBT

d�0

dr
(b)

3εrsε0�Vc

[1 − � n0(b)Vc]2
S(b)[φ(b) − Y (b)]

∮
Sb

( �E · r̂)r̂ dSb = 0. (B9)

Substituting all the latter results into Eq. (B2) we obtain:

〈�i(�r, t )〉 =
{

z2e2n0(b)

λ0(b)

dφ

dr
(b) − zen0(b)

2h(b)

b
− jωε0

e (b)
dY

dr
(b)

− 2ze
2πR3

λ0(b)
n0(b)ε0

e (b)

[
εi − ε0

e (b)

εi + 2ε0
e (b)

]
d2�0

dr2
(b)

dY

dr
(b)

}
�Ee− jωt = K∗(ω)〈− �∇�(�r, t )〉, (B10)

and, finally,

K∗(ω) =
{

z2e2n0(b)

λ0(b)

dφ

dr
(b) − zen0(b)

2h(b)

b
− jωε0

e (b)
dY

dr
(b) − 4zeπR3

λ0(b)
n0(b)ε0

e (b)

[
εi − ε0

e (b)

εi + 2ε0
e (b)

]
d2�0

dr2
(b)

dY

dr
(b)

}
b

Y (b)
,

(B11)

where we have made use of Eqs. (B6) and (70).
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