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Nonlinear Poisson effect in affine semiflexible polymer networks
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Stretching an elastic material along one axis typically induces contraction along the transverse axes, a
phenomenon known as the Poisson effect. From these strains, one can compute the specific volume, which
generally either increases or, in the incompressible limit, remains constant as the material is stretched. However,
in networks of semiflexible or stiff polymers, which are typically highly compressible yet stiffen significantly
when stretched, one instead sees a significant reduction in specific volume under finite strains. This volume
reduction is accompanied by increasing alignment of filaments along the strain axis and a nonlinear elastic
response, with stiffening of the apparent Young’s modulus. For semiflexible networks, in which entropic bending
elasticity governs the linear elastic regime, the nonlinear Poisson effect is caused by the nonlinear force-extension
relationship of the constituent filaments, which produces a highly asymmetric response of the constituent
polymers to stretching and compression. The details of this relationship depend on the geometric and elastic
properties of the underlying filaments, which can vary greatly in experimental systems. Here, we provide a
comprehensive characterization of the nonlinear Poisson effect in an affine network model and explore the
influence of filament properties on essential features of both microscopic and macroscopic response, including
strain-driven alignment and volume reduction.
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I. INTRODUCTION

Networks of semiflexible biopolymers provide elasticity to
many biological materials, which they imbue with a variety
of distinctive properties that set them apart from conventional
elastic media [1–4]. One of the more remarkable features of
biopolymer networks is their highly asymmetric mechanical
response: they tend to respond to increasing deformation with
a strongly increasing stiffness, often by more than an order
of magnitude [5–7], while providing a comparatively weak
or even softening response to compression [8–12]. The stiff-
ness of typical elastic materials, in contrast, usually depends
weakly on the magnitude or nature of the applied load. A strik-
ing consequence of the asymmetric response of biopolymer
networks is seen in the manner in which they exhibit the Pois-
son effect, which refers to the tendency of a material stretched
along one axis to contract along the transverse axes. Unlike
ordinary materials, for which this effect depends only mildly
on strain, biopolymer networks exhibit a strongly nonlinear
Poisson effect under finite extensional strain [13–16].

In the small strain limit, this effect is quantified by Pois-
son’s ratio ν = limε‖→0[−ε⊥/ε‖], in which ε‖ is the applied
extensional strain and ε⊥ is the resulting transverse strain in
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the absence of transverse stress [17,18]. As with any stable,
isotropic, three-dimensional material, the true (small strain)
Poisson’s ratio of biopolymer networks is strictly constrained
within the range ν ∈ [−1, 1/2] [19]. However, under finite
applied (extensional) strains, biopolymer networks in vari-
ous contexts have been shown to exhibit an unusually large
and highly strain-dependent apparent Poisson’s ratio [13–16],
corresponding to significant contraction along the transverse
axes in response to small increases in extension. This be-
havior, sketched in Fig. 1, produces a contracted state with
pronounced filament alignment along the strain axis [14] and
a significant decrease in the local volume occupied by the net-
work [13,15] that is accompanied by an expulsion of solvent
and a significant reduction in the average pore size [14]. In
contrast, the apparent Poisson’s ratio changes very little under
compression. Although the nonlinear Poisson effect observed
in biopolymer networks is a fundamentally network-scale
behavior, it nonetheless reflects the mechanical asymmetry
of the underlying components: the individual filaments resist
finite tension significantly more strongly than they resist finite
compression.

The nonlinear Poisson effect produces significant con-
figurational changes in biopolymer networks, including a
dramatic reduction in network porosity and strong align-
ment of filaments along the axis of applied tension. These
changes can have meaningful biological consequences, e.g.,
in cell migration, mechanosensing, and intracellular transport.
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FIG. 1. Extensile strain drives alignment and densification of
networks of crosslinked semiflexible polymers. (a) A schematic of
the nonlinear Poisson effect in biopolymer networks. Applying (ver-
tical) extensile strain ε‖ to an initially isotropic semiflexible polymer
network (left) and allowing the (horizontal) transverse strain ε⊥ to
freely vary results in alignment of polymers along the vertical axis,
along with local densification due to the transverse contraction of
the network (right). The dashed box represents the same portion of
the network in the initial and strained states. In the strained state,
the stress along the (vertical) strain axis, σ‖ is positive, whereas
the transverse (horizontal) stress is relaxed, σ⊥ = 0. (b) Sketch of
a 3D cubic volume element of initial length L before and after the
application of extensile strain ε‖ > 0 along the z axis. If the Poisson’s
ratio ν is positive, requiring σ⊥ = 0 results in transverse contraction
quantified by strains ε⊥ < 0.

For example, changes in extracellular matrix porosity can
strongly influence the motility of migrating cells [20,21]. In
addition, the strain-driven formation of dense, highly oriented
network regions between contractile cells [14,16] can influ-
ence mechanosensing [22–24] and even induce directed cell
motion [25,26]. Within cells, changes in cytoskeletal network
orientation and density could likewise influence the transport
of intracellular cargo both by passive diffusion and by ac-
tive (e.g., molecular motor-driven or polymerization-driven)
transport processes [27]. Strain-driven changes in filament
orientation could also play an important role in other ac-
tive mechanical processes involving the cytoskeleton, such as
actomyosin-based cell motility [28,29] and the organization of
stress fibers in response to applied load [30–33]. Developing
a more comprehensive understanding of how the nonlinear
Poisson effect is controlled, e.g., by filament stiffness and net-
work structure, is therefore of interest both for understanding
existing biological systems and for designing reconstituted or
synthetic materials that mimic these behaviors.

To date, studies addressing the Poisson effect in biopoly-
mer gels have focused primarily on models relevant to
networks of stiff athermal biopolymers, such as thick fibrin
or collagen fibers, that exhibit enthalpic elasticity and tend
to deform in a highly non-affine (inhomogeneous) manner
[15,16,34–36]. While nonaffine athermal models are appro-
priate for the stiff constituents of the extracellular matrix,
many biopolymers, particularly on the subcellular scale, are
semiflexible and thus exhibit entropic elasticity under small
strains [37,38]. For networks of thermal semiflexible poly-
mers, affine mechanical models have been an effective starting
point to capture the mechanics of reconstituted gels, even
in highly nonlinear regimes [6,7]. However, our understand-
ing of the nonlinear Poisson effect in thermal semiflexible
polymer networks remains limited. In this paper, we aim to
elucidate the mechanism underlying the Poisson effect for
networks in the affine thermal limit. Specifically, we consider

an affine model of a network of semiflexible filaments in
which the coordinates of the crosslinks (or entanglements)
transform affinely with the macroscopic applied strain [7,39–
49]. We systematically characterize the strain-dependent me-
chanical and configurational behavior of initially isotropic,
three-dimensional networks under varying applied uniaxial
strain with a zero transverse stress condition. These condi-
tions mimic a typical experiment used to measure a material’s
Poisson’s ratio. Using this model, we explore the influence of
various filament properties, including bending rigidity, stretch
modulus, and contour length on the nonlinear Poisson effect
and the associated strain dependence of the incremental Pois-
son’s ratio, nematic alignment, relative volume, and stress.

The paper is organized as follows. In Sec. II A, we briefly
describe the force-extension relationship of individual fila-
ments, for which we adopt an existing model of stretchable
wormlike chains (WLCs). Section II B describes the affine
network model, into which the force-extension relationship is
fed as an input, and define the associated stress and nematic
tensors. In Sec. II C, we describe the modeled uniaxial strain
protocol and the calculation of the strain-dependent stress and
filament alignment. In Sec. III, we present and discuss our
results. Finally, Sec. IV contains our conclusions.

II. MODEL

A. Force-extension relations

We consider a simple mechanical model of extensible
WLCs [7,38] with which we can parametrically tune the
filament force-extension relationship between the purely en-
thalpic Hookean spring limit (i.e., a linear force-extension
relationship with spring constant μ/�c) and the highly nonlin-
ear limit of inextensible wormlike chains with entropic linear
elasticity governed by a bending rigidity κ [6,37]. Between
these regimes, the model captures the more generic behavior
of extensible wormlike chains, filaments that exhibit entropic
linear elasticity governed by a bending rigidity κ but, un-
der sufficient extension, cross over to an enthalpic stretching
regime governed by the stretch modulus μ.

To obtain the force-extension relationship for extensible
wormlike chains, we first need to derive the corresponding re-
lationship for the inextensible limit. Consider an inextensible
wormlike chain filament of contour length �c and persistence
length �p under applied tension τ at thermal equilibrium.
Thermal fluctuations excite the filament’s bending modes,
reducing the ensemble-averaged end-to-end length �WLC(τ )
with respect to the contour length [37,50]. Specifically,

�WLC(τ ) = �c − �2
c

π2�p

∞∑
n=1

1

n2 + τ�2
c/(π2κ )

= �c − κ

2τ�p

(
�c

√
τ/κ

tanh (�c
√

τ/κ )
− 1

)
, (1)

in which κ = kBT �p is the filament’s bending rigidity and
the sum is taken over all mode numbers. Under zero applied
tension (τ = 0), the ensemble-averaged end-to-end length
is �0 ≡ �WLC(τ = 0) = �c − �2

c/(6�p). We can thus write
the extension-force relation δ�WLC(τ ) = �WLC − �0 for an
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inextensible wormlike chain as

δ�WLC(τ ) = �2
c

6�p

(
1 − 3κ

�2
cτ

(
�c

√
τ/κ

tanh (�c
√

τ/κ )
− 1

))
. (2)

The above relation assumes the filaments are inextensible,
such that τ diverges as the thermally contracted filament
is stretched to its contour length, δ�WLC → �2

c/(6�p). Real
filaments are, of course, not entirely inextensible, and with
sufficient strain they instead transition from the entropic
regime to an enthalpic regime governed by a stretching modu-
lus μ [51]. To capture this behavior, we define a more general
extension-force relation δ�(τ ) for extensible wormlike chains
by renormalizing δ�WLC as follows [3,7,38]:

δ�(τ ) = �cτ/μ + δ�WLC(τ [1 + τ/μ]). (3)

Note that taking μ → ∞ with finite κ recovers the inexten-
sible wormlike chain limit, δ�WLC(τ ) = limμ→∞ δ�(τ ), while
taking κ → ∞ with finite μ produces a simple linear Hookean
relationship.

The force-extension relationship is essentially controlled
by two dimensionless numbers: the dimensionless bending
rigidity, κ̃ ≡ κ/(μ�2

c ), which compares the relative strengths
of the bending and stretching resistance of the filaments, and a
dimensionless persistence length �̃p ≡ �p/�c, which compares
the filament persistence length �p to the contour length �c,
the latter of which describes the backbone length of the fil-
ament between constraints (crosslinks or entanglements). The
dimensionless bending rigidity κ̃ controls the degree to which
the force-extension relation is nonlinear; the Hookean limit
corresponds to κ̃ → ∞, whereas the the inextensible limit
corresponds to κ̃ → 0. The dimensionless persistence length
�̃p controls the degree to which thermal fluctuations reduce the
rest length �0 of the filament relative to the full contour length
�c, as �0 = �c(1 − 1/(6�̃p)). Equivalently, �̃p governs the level
of extensional strain (applied along the filament end-to-end
vector) required to bring the initially contracted filament to its
contour length:

εc = �c − �0

�0
= 1

6�̃p − 1
. (4)

We will refer to εc as the critical extension, at which the
resulting tension τ diverges in the inextensible (κ̃ → 0) limit
or becomes stretching-dominated (∝ μ) for filaments with
finite κ̃ > 0.

Having defined the extension-force relationship δ�(τ ), we
can obtain the corresponding force-extension relationship
τ (δ�) by numerical inversion [7]. In Fig. 2(a), we plot the ab-
solute value of the tension |τ | as a function of the normalized
elongation |δ�/�c| for extensible (μ = 1) and inextensible
(μ → ∞) filaments under both extension and compression,
with �p = �c = 1 (�̃p = 1) and κ = 10−5. For small δ�/�c, the
force-extension relationship exhibits a simple linear depen-
dence τ = kδ�/�c, in which the effective stiffness k is given
by k = 1/(μ−1 + �3

c/(90 κ�p)). Note that for the Hookean
limit, this yields k = μ, and for the inextensible WLC limit,
k = 90 κ�p/�

3
c [37,50]. As κ = 10−5 for the plotted curves,

the values of k for the inextensible and extensible cases are
virtually identical. Under extension (δ� > 0), the tension τ

FIG. 2. A summary of the asymmetric force-extension rela-
tionship of semiflexible polymers: the wormlike chain model.
(a) Force-extension relationships for inextensible (μ → ∞) and ex-
tensible (μ = 1) wormlike chains with bending rigidity κ = 10−5

and contour and persistence lengths �c = �p, under compression
(dashed curves, δ� < 0) and extension (solid curves, δ� > 0), in
which δ� = � − �0 is the difference between the end-to-end distance
� and the rest length �0, defined as the thermally contracted average
length under zero tension, �0 = �c − �2

c/(6�p). As an inextensible
(μ → ∞) wormlike chain is pulled to its full contour length � → �c,
as indicated by the vertical dotted line, the tension τ diverges. The
thick solid grey line indicates the linear relationship τ = kδ�/�c with
k = 1/(μ−1 + �3

c/(90κ�p)). The horizontal dotted line indicates the
Euler buckling force, τe = −κπ 2/�2

c . (b) Chain stiffness ∂τ/∂� as a
function of applied tension τ . For small tensions, ∂τ/∂� → k/�c. In
the inextensible limit (μ → ∞), the stiffness scales as ∂τ/∂� ∝ τ 3/2

for large τ . For finite μ, one finds ∂τ/∂� → μ/�c for large τ .

stiffens dramatically as the filament length � approaches and,
in the extensible case, exceeds the contour length �c. For μ →
∞, τ diverges as � → �c, whereas for μ = 1, the filament
crosses over to a regime in which the tension is dominated
by the stretch modulus, with τ ∝ μ. In Fig. 2(b), we plot
the filament stiffness ∂τ/∂� as a function of the tension τ .
In the limit of small τ , the stiffness for both extensible and
inextensible filaments is given by ∂τ/∂� = k/�c, whereas
in the limit of large τ , the stiffness of extensible filaments
reaches an upper limit of ∂τ/∂� = μ/�c, while the stiffness
of inextensible filaments exhibits a power-law dependence on
the tension with ∂τ/∂� ∝ τ 3/2 [52,53]. Under compression
(δ� < 0), τ approaches a limiting value of τ = τe (in the small
κ̃ limit), in which τe = −κπ2/�2

c is the critical compressive
force for Euler buckling of a rod of length �c and bending
rigidity κ [3].
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B. Affine network model

We model the network as a collection of independent fila-
ment segments with random (isotropically distributed) initial
orientations. The positions of the filament endpoints are as-
sumed to transform affinely according to the macroscopically
applied strain, and the resulting tension is assumed to act
along the transformed end-to-end vector. The network-level
stress is then obtained by averaging over all filament orienta-
tions in the deformed configuration. This model dates back to
early work on rubber [39–44,54,55] and has been successfully
used to describe the mechanics of semiflexible networks in a
variety of contexts [6,7,37,46–48,56–62].

In this model, each filament segment is treated as a central-
force elastic element of initial end-to-end distance �0 with
initial orientation n̂0 that obeys a force-extension relation
τ (δ�), with δ� = � − �0 denoting the change in the deformed
filament end-to-end distance � with respect to the initial dis-
tance �0. In the unstrained initial configuration, δ� = 0 and
τ = 0. The deformation gradient tensor � transforms the ini-
tial filament end-to-end vector r0 = �0n̂0 into the deformed
end-to-end vector r = �r0 = �n̂ with an orientation n̂ =
�n̂0/|�n̂0| and end-to-end length � = �0|�n̂0|, such that the
change in length is δ� = �0(|�n̂0| − 1) with corresponding
tension τ(δ�) = τ (δ�)n̂. We assume that the initial orienta-
tions n̂0 are isotropically distributed and define the initial
length density ρ0 = �0/V0, in which V0 is the initial volume
per filament segment. The length density in the deformed
configuration becomes ρ ≡ 〈�〉/V = ρ0〈|�n̂0|〉/ det �. Av-
eraging over all filaments, we compute the Cauchy stress
tensor σ = V −1〈τ(δ�) ⊗ r〉 = ρ〈τ(δ�) ⊗ n̂〉 [63] or, equiva-
lently [3,7,64,65],

σ = ρ0

det�
〈τ(δ�) ⊗ (�n̂0)〉, (5)

and the first Piola-Kirchhoff stress tensor P as

P = det �σT(�T)−1, (6)

the latter of which can be interpreted as the force in the
deformed configuration per unit area in the undeformed con-
figuration [46]. Note that P = σ in the small strain limit.

To quantify the alignment of filaments as a function of
strain, we compute the symmetric and traceless nematic tensor
Q [66,67] as

Q ≡
〈
n̂ ⊗ n̂ − 1

d
I
〉
, (7)

in which d = 3 is the dimensionality and I is the identity
tensor. From the dominant eigenvalue λ of Q, we obtain the
nematic order parameter S = (d/(d − 1))λ, which quantifies
the filament alignment [66].

In the linear (small strain) regime, the nematic tensor Q
and Cauchy stress tensor σ are related by the stress-optical
law [68,69],

Q = C(σ − pI), (8)

in which C is a material-dependent proportionality coefficient
and p = σ : I.

C. Uniaxial strain protocol

Experimentally, Poisson’s ratio can be obtained by stretch-
ing a material along one axis and measuring the resulting
transverse strain [18]. To characterize the Poisson effect using
the affine model, we apply a uniaxial strain ε‖ along the z axis
and solve for the transverse strain ε⊥ that satisfies a condition
of zero stress along the transverse axes. The corresponding
deformation gradient tensor �(ε‖, ε⊥) is

� =
⎛
⎝1 + ε⊥ 0 0

0 1 + ε⊥ 0
0 0 1 + ε‖

⎞
⎠. (9)

As the cross-sectional area varies considerably as a function
of strain for these systems, the strain dependence of the first
Piola-Kirchhoff stress tensor P (also called the engineering
stress), given by Eq. (6), is more informative for our pur-
poses than the Cauchy stress tensor σ (also called the true
stress). This is because the Cauchy stress diverges as the
cross-sectional area vanishes, even if the total tension remains
finite. Note that Pi j = 0 if σi j = 0. According to Eqs. (6) and
(9), the relevant components of P are given by

P‖ = (1 + ε⊥)2σ‖ (10)

and

P⊥ = (1 + ε⊥)(1 + ε‖)σ⊥, (11)

in which the components of σ are calculated using Eq. (5).
Full details of the stress calculation are given in Appendix A.
For a given applied ε‖, we numerically solve Eq. (A4) for
ε⊥(ε‖) with P⊥(ε‖, ε⊥) = 0. For small strains, P‖ ≈ E0ε‖, in
which we have defined the linear Young’s modulus E0 =
1
6ρ0k�0/�c (see Appendix A).

We can then calculate the differential Poisson’s ratio ν̃,
defined as

ν̃ = −∂ε⊥
∂ε‖

, (12)

and the relative volume:
V

V0
= ρ0

ρ
= det �. (13)

In the limit of small strains, limε→0 ν̃ = ν = 1/4 for this
model and V ≈ V0(1 + ε‖/2).

We calculate the strain-dependent nematic alignment
S as [66]

S = 3
2

〈
cos2 θ − 1

3

〉
, (14)

in which θ is the angle between the unit orientation vector
of a given filament n̂ and the axis of applied strain (ẑ) and
the average is taken over all filaments. For small strains, S ≈
ε‖/2. See Appendix B for additional details.

Since P‖ ≈ E0ε‖ and S ≈ ε‖/2 for small strains, the stress
in this regime can be written as a function of the alignment,
P‖ ≈ 2E0S. Consequently, the proportionality coefficient C in
the stress-optical law [Eq. (8)] is given by C = 1/(2E0).

III. RESULTS AND DISCUSSION

Using the affine model, we now explore the effects of
varying filament properties on the response of a network to
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FIG. 3. Response of initially isotropic networks of extensible wormlike chains with varying dimensionless bending rigidity κ̃ = κ/(μ�2
c )

to applied uniaxial strain ε‖ under the condition of zero transverse stress (σ⊥ = 0). Curves are also plotted for filaments in the Hookean limit
(κ̃ → ∞ with finite μ) and the inextensible WLC limit (μ → ∞ with finite κ , such that κ̃ → 0). All curves correspond to �c = �p = 1.
(a) Transverse strain ε⊥ vs applied longitudinal strain ε‖. In the limit of large κ , extensible WLC networks behave as Hookean spring networks,
satisfying ε⊥ = −νε‖ up to relatively large strains. With decreasing κ , extensible wormlike chain networks exhibit increasingly rapid transverse
contraction in the vicinity of the critical extensile strain εc ≡ 1/(6�̃p − 1). In the inextensible WLC limit (κ → 0), the transverse collapse is
complete (ε⊥ → −1) at ε‖ = εc. (b) The differential Poisson’s ratio ν̃ = −∂ε⊥/∂ε‖ exhibits a peak that diverges in the limit of κ → 0 (or
μ → ∞) at the critical extension εc. For small strains, ν̃ = ν = 1/4 for all models considered, as expected for a Cauchy solid [18]. (c) The
relative volume V/V0 initially increases with applied extension before rapidly vanishing at the critical extension εc in the κ → 0 (μ → ∞)
limit. (d) The nematic alignment S increases with applied extension before rapidly approaching 1 (perfect alignment) at the critical extension
εc in the κ → 0 (μ → ∞) limit.

uniaxial strain. Specifically, we will consider the effects of
independently varying the dimensionless parameters defined
in Sec. II A: the dimensionless bending rigidity κ̃ ≡ κ/(μ�2

c )
and dimensionless persistence length �̃p = �p/�c. Note that
independently varying these quantities in experiments may
be challenging, as both may depend on one or more of the
same experimental variables, e.g., the polymer concentration
[37]. Our aim here is simply to provide an intuitive feel for
how each of these dimensionless quantities influences the
network-level response.

First, we consider the effects of varying the dimensionless
bending rigidity κ̃ with a fixed value of the dimensionless
persistence length �̃p = 1. In Fig. 3(a), we plot the transverse
strain ε⊥ as a function of applied longitudinal strain ε‖ for net-
works of extensible filaments over a wide range of κ̃ values, in
addition to the Hookean spring limit (κ → ∞ with finite μ)
and the inextensible WLC limit (μ → ∞ with finite κ). For
small strains, all exhibit a linear regime in which ε⊥ = −νε‖,
where the linear Poisson’s ratio ν = 1/4 is the expected value
for a Cauchy solid [18,70]. We find that as κ̃ increases, the
behavior of the finite-κ̃ networks approaches that of simple
Hookean spring networks, exhibiting an approximately linear

dependence of transverse strain ε⊥ on applied strain ε‖(ε⊥ ≈
−νε‖) over a large range of ε‖. In contrast, as κ̃ is reduced,
the behavior of the finite-κ̃ networks approaches that of in-
extensible WLC networks, exhibiting increasingly dramatic
transverse contraction under finite values of applied strain ε‖.
Furthermore, we find that the value of applied strain ε‖ corre-
sponding to the inflection point in the ε⊥ vs ε‖ curve decreases
with decreasing κ̃ . In the low-κ̃ limit, this inflection point
approaches the critical extension εc [Eq. (4)] corresponding to
the applied extensional strain at which the end-to-end length
of the most highly stretched filaments in the network (those
oriented along the applied strain axis) approaches the fila-
ment contour length, δ� → �2

c/(6�p). For inextensible WLC
networks, complete transverse collapse occurs at εc.

This behavior is also reflected in the differential Poisson’s
ratio ν̃ = −∂ε⊥/∂ε‖ [Eq. (12)], as we show in Fig. 3(b). The
location of the inflection point in the ε⊥ vs ε‖ curve corre-
sponds to a peak in the differential Poisson’s ratio ν̃. This peak
increases in magnitude and shifts to lower values of ε‖ with
decreasing κ̃ , approaching εc from above in the κ̃ → 0 limit.
The rapid transverse collapse that occurs at εc in the low-κ
limit corresponds to a diverging differential Poisson’s ratio
ν̃. We can understand this behavior with a simple qualitative
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argument. Under finite applied strain, maintaining the zero
transverse stress condition σ⊥ = 0 requires a balance, in the
transverse plane, between outward forces generated by com-
pressed filaments and inward forces generated by stretched
filaments. For networks of extensible wormlike chains (fi-
nite κ̃), increasing the applied extensional strain beyond the
critical strain (ε‖ > εc) causes an increasing fraction of the
stretched filaments to enter the enthalpic stretching regime
(τ ∼ μ), such that the inward transverse component of the
resulting tension becomes proportional to μ. However, the
outward forces generated by compressed filaments remain
proportional to κ even in the large compression limit. For
κ � μ, achieving force balance thus requires significant
transverse contraction as the elongated filaments enter the
stretching-dominated regime. In the inextensible WLC limit
(μ → ∞), such a balance is impossible, as τ → ∞ as
each filament approaches its contour length, so the network
collapses completely (ε⊥ → −1) precisely at the critical ex-
tensional strain εc.

An important consequence of the nonlinear Poisson effect
is a reduction in the volume occupied by the network as
it stiffens. Having determined ε⊥ as a function of ε‖, we
compute the relative volume V/V0 given by Eq. (13), i.e., the
ratio of the volume V occupied by a portion of the strained
network to its initial volume V0. In Fig. 3(c), we plot V/V0 as
a function of applied extension ε‖ for the same systems as in
the upper two panels. In the linear regime, V/V0 ≈ 1 + ε‖/2.
For a network of Hookean springs (κ̃ → ∞ with finite μ), the
relative volume V/V0 decreases monotonically with compres-
sion and increases monotonically with extension over a large
range of ε‖. For networks with finite or zero κ̃ under applied
compression, V/V0 likewise decreases and exhibits only a
weak dependence on κ̃ . Under applied extension, however, the
relative volume initially increases in the linear regime before
decreasing dramatically in the vicinity of the critical exten-
sion εc as ε⊥ → −1. Note that, because our model does not
account for steric interaction between filaments, the relative
volume vanishes completely in the case of highly nonlinear
filaments under large extension. In reality, if we assume the
filaments are negligibly compressible, then V/V0 should not
decrease below φ0, the initial volume fraction of filaments.
We note that, in ignoring the solvent in our model, we have not
considered osmotic effects caused by the increasing polymer
concentration as the relative volume decreases. We would
expect such effects to contribute an osmotic pressure term that
would resist the complete transverse collapse of the gel.

The nonlinear Poisson effect is also characterized by the
onset of filament alignment along the strain axis [14], quan-
tified by the nematic alignment S given by Eq. (14). In the
linear regime, S increases with applied extensional strain ε‖ as
S ≈ ε‖/2. In the Hookean spring network limit (κ̃ → ∞ with
finite μ), the linear regime extends over a large range of exten-
sile and compressive strain. For wormlike chain filaments with
small or zero κ̃ , identical behavior is seen in the linear regime,
whereas we see rapidly increasing alignment in the vicinity
of the critical extensional strain εc. In the κ̃ → 0 limit (in-
extensible WLCs), the network aligns completely (S → 1) as
ε‖ → εc. This enhanced alignment is a direct consequence of
the enhanced transverse contraction that occurs near ε‖ ∼ εc

due to the asymmetric, nonlinear force-extension relationship

of the individual filaments. Notably, significant alignment that
coincides with stiffening and the nonlinear Poisson effect has
been observed experimentally in uniaxially stretched fibrin
[14] and collagen gels [16]. Interestingly, under compression,
we find that S depends very little on κ̃ or, as we will soon
see, �̃p.

We now consider the effects of varying the dimensionless
persistence length �̃p = �p/�c while the dimensionless bend-
ing rigidity κ̃ remains fixed. Recall, the critical extensional
strain εc [Eq. (4)] decreases as the dimensionless persistence
length �̃p increases. Thus, increasing �̃p should cause the
rapid transverse contraction, peak in the Poisson’s ratio, and
alignment to occur at lower values of applied extensional
strain ε‖. This is precisely what is shown in Fig. 4, in which
we plot the same quantities as in Fig. 3 for networks with
fixed dimensionless bending rigidity (κ̃ = 10−5) and varying
�̃p ∈ [0.5, 2]. Aside from the shift in εc with varying �̃p, the
qualitative features (e.g., dramatic alignment and a large peak
in the differential Poisson’s ratio) remain unchanged.

We also examine the utility of the nematic alignment S as
an indicator of the stress P‖. In the linear regime, the two
quantities are directly proportional, with P‖ ≈ 2E0S, as we
outline in Appendix B. Thus, if the linear Young’s modulus
E0 [Eq. (A6)] is known and the applied strain is sufficiently
small, one can, in principle, use optical measurements of the
nematic alignment S—for example, via confocal microscopy
as in Ref. [14]—as an indirect measure of the stress P‖.
This is simply another way of stating the stress optical law
[68,69] [Eq. (8)], which relates the nematic and stress tensors
for simple polymeric systems under small strains. For our
systems, the proportionality coefficient in Eq. (8) is given by
C = 1/(2E0). As shown in Fig. 5, beyond the linear regime,
this relationship no longer remains valid, and the deviation
becomes more significant as κ̃ decreases. Nevertheless, if E0,
κ̃ , and �̃p are known, one could, in principle, use a plot like
Fig. 5 to estimate local values of the P‖ from S even beyond
the linear regime.

IV. CONCLUSIONS

Here, we have provided a detailed characterization of the
nonlinear Poisson effect in a simple affine model of semi-
flexible polymer networks over a broad range of parameters.
The mechanical behavior of the model network is highly
sensitive to the asymmetric force-extension relationship of
the constituent filaments, which is governed by two key di-
mensionless parameters: the dimensionless bending rigidity κ̃

and the dimensionless persistence length �̃p, which together
control the force-extension relationship of individual chains.
Microscopically, the dimensionless bending rigidity κ̃ essen-
tially controls the asymmetry of the filament force-extension
relationship, whereas the dimensionless persistence length �̃p

controls the amount of initial contraction and thus the elonga-
tion required to straighten the filament. We find that, on the
level of the full network, decreasing κ̃ intensifies the nonlin-
ear Poisson effect and, in turn, intensifies the simultaneous
alignment, densification, and stiffening of the network. The
dimensionless persistence length �̃p, in contrast, controls the
amount of applied strain ε‖ required to induce this effect:
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FIG. 4. Response of initially isotropic networks with varying dimensionless persistence length �̃p ≡ �p/�c to applied uniaxial strain ε‖
under the condition of zero transverse stress (σ⊥ = 0). For the plotted curves, the dimensionless bending rigidity is κ̃ = 10−5 except in the
Hookean case(κ̃ → ∞ with μ = 1). Increasing the dimensionless persistence length �̃p leads to a decrease in the critical extensile strain εc,
i.e., alignment and transverse contraction at lower values of applied uniaxial extensile strain. (a) Transverse strain ε⊥ vs applied uniaxial strain
ε‖. (b) Differential Poisson’s ratio ν̃. (c) Relative volume V/V0. (d) Nematic alignment S.

increasing �̃p reduces the critical extension εc, shifting the
peak in the differential Poisson’s ratio ν̃ to lower values of ε‖.

In future work, several extensions can be made to the
model, both at the filament and network level, to improve

FIG. 5. Filament alignment S acts as a sensitive measure of the
stress P‖, and the stress-alignment relationship becomes increasingly
nonlinear with decreasing bending rigidity κ̃ . Here, we plot the longi-
tudinal component of the first Piola-Kirchhoff stress, P‖ normalized
by the linear Young’s modulus E0, as a function of the nematic
alignment S. The dashed line corresponds to the linear relationship
valid for small strains, P‖ = 2E0S.

its quantitative accuracy. For example, alternative models for
the force-extension relationship of semiflexible filaments that
properly incorporate buckling [3,71–75] and more accurately
account for filament extensibility [62,76,77] could be adopted
in place of the relationship used here. We also note a recent
model introducing a simplified force-extension relation based
on prebent filaments, which permits simpler analytic results
for some network properties [78]. On the network level, con-
tributions to the total stress from the steric repulsion acting
between filaments could also be included; this would prevent
the complete transverse collapse of the network, with the
initial filament volume fraction φ0 acting as a lower bound for
the relative volume V/V0, assuming incompressibility of the
filaments. For hydrogels of collagen, fibrin, or other biopoly-
mers, the network volume reduction seen under extensional
strain requires the expulsion of water, which will tend to be
suppressed on short timescales [50,79,80]. Thus, our results
here are limited to the long-time elastic regime of network
response. In future work, it would be interesting to consider
effects of both network and solvent [81,82] and poroelasticity
[50,80,83], which would both improve accuracy of the model
and allow for consideration of the dynamics associated with
the nonlinear Poisson effect.

We note that, for the affine network model, the critical
extensional strain εc corresponding to the nonlinear Poisson
effect can be related to the critical shear strain γc corre-
sponding to strain stiffening under applied simple shear. The
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maximum extension λmax for a given deformation � can be
determined from the maximum eigenvalue λ2

max of the right
Cauchy-Green tensor C = �T �. For �(γ ) corresponding to
simple shear γ , λ2

max = 1 + (γ 2 + γ
√

γ 2 + 4)/2, and, equiv-
alently, γ = λmax − 1/λmax. As strain stiffening occurs when
λmax = 1 + εc, we can therefore relate the critical shear strain
to the critical extension corresponding to the nonlinear Pois-
son’s ratio as γc = 1 + εc − 1/(1 + εc).

While the assumption of affine deformation can be a valid
approximation for thermal semiflexible polymer networks at
sufficient molecular weight, nonaffine deformations can be-
come dominant in regimes of low polymer concentration or
crosslinking density, and for networks of stiffer, athermal
filaments [3,56,84–86]. When considering nonaffine effects,
it is important to include the effects of mechanical integrity
and bending rigidity of semiflexible filaments across network
nodes, which leads to possible long-range mechanical effects
[87]. This makes the modeling of such networks substantially
more challenging. Nevertheless, it may be possible to extend a
recent method for modeling such effects on linear elasticity to
the nonlinear regime [88]. We speculate that nonaffine effects
can result in a possible delayed onset of network nonlinearity
[6] and a possible reduction of the the peak in the Poisson ratio
we see above.
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APPENDIX A: CALCULATION OF THE STRESS
COMPONENTS

According to the affine network model [Eq. (5)], the i j
component of the Cauchy stress tensor σ for an initially
isotropic network can be written as

σi j = ρ0

4πdet�

∫∫
dθ0dϕ0 sin θ0

[
τ (δ�)

(�n̂0)i(�n̂0) j

|�n̂0|
]
,

(A1)

in which ρ0 is the initial length density, � is the deforma-
tion gradient tensor, τ (δ�) is the force-extension relationship,
n̂0(θ0, φ0) is the initial filament orientation defined as

n̂0(θ0, ϕ0) =
⎛
⎝sin θ0 cos ϕ0

sin θ0 sin ϕ0

cos θ0

⎞
⎠, (A2)

and the integrals are taken over the ranges 0 � θ0 � π and
0 � ϕ0 � 2π .

For the uniaxial strain scenario considered in this paper, the
appropriate deformation gradient tensor �(ε‖, ε⊥) is given by
Eq. (9), for which det� = (1 + ε⊥)2(1 + ε‖). Taking advan-
tage of the axial symmetry of the system, we can write the
normal components of the first Piola-Kirchhoff stress tensor
as

P‖ = ρ0(1 + ε‖)

2

∫
dθ0 sin θ0

[
τ (δ�)

cos2 θ0

|�n̂0|
]
, (A3)

P⊥ = ρ0(1 + ε⊥)

4

∫
dθ0 sin θ0

[
τ (δ�)

sin2 θ0

|�n̂0|

]
, (A4)

in which |�n̂0| =
√

(1 + ε⊥)2 sin2 θ0 + (1 + ε‖)2 cos2 θ0. As
described in the main text, the change in length is δ� =
�0(|�n̂0| − 1) and the tension τ (δ�) is determined by inver-
sion of Eq. (3).

In the small strain regime, we can solve Eqs. (A3) and
(A4) using the linear force-extension relationship τ = kδ�/�c,
with k = 1/(μ−1 + �3

c/(90κ�p)), the linear strain dependence
ε⊥ = −νε‖ with ν = 1/4. To linear order in ε‖, the parallel
stress component P‖ behaves as

P‖ ≈ σ‖ ≈ 1

6
ρ0k

�0

�c
ε‖, (A5)

from which we see that the linear Young’s modulus E0 =
limε→0 σ‖/ε‖ is

E0 = 1

6
ρ0k

�0

�c
. (A6)

APPENDIX B: CALCULATION OF THE
NEMATIC ALIGNMENT

As described in the main text, we consider an initially
isotropic network with orientations n̂0 given by Eq. (A2)
under deformation gradient tensor �, such that the fila-
ment orientations in the deformed configuration are n̂ =
�n̂0/|�n̂0|. In the deformed configuration, the traceless and
symmetric nematic tensor Q is given by Eq. (7) and can be
written in terms of its eigenvalues λi and orthonormal eigen-
vectors v̂i as

Q = λ1v̂1 ⊗ v̂1 + λ2v̂2 ⊗ v̂2 + λ3v̂3 ⊗ v̂3. (B1)

with λ1 + λ2 + λ3 = 0. For uniaxial deformation applied
along the z axis, symmetry requires that two of the eigen-
values of Q are equal, so we can write λ1 = λ2 = −S/3 and
λ3 = 2S/3 [89]. Noting that v̂3 = ẑ in this case, we can write
the tensor Q as

Q = S
(
ẑ ⊗ ẑ − 1

3 I
)
, (B2)
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where the nematic alignment S is given by Eq. (14). Integrat-
ing over the initial orientations n̂0, we find

S = 1

4π

∫∫
dϕ0dθ0 sin θ0

[
3

2

(
(1 + ε‖)2 cos2 θ0

|�n̂0|2 − 1

3

)]

= 1

2

∫
dθ0 sin θ0

[
3

2

(
(1 + ε‖)2 cos2 θ0

|�n̂0|2 − 1

3

)]

= 3

2

(1 + ε‖)2

a2

(
1 −

(
1 + ε⊥

a

)
tan−1

(
a

1 + ε⊥

))
− 1

2
,

(B3)

in which a = √
(1 + ε‖)2 − (1 + ε⊥)2. For small ε‖, this

yields S ≈ ε‖/2. Note that the alignment S can vary in the
range S ∈ [−1/2, 1], in which S = −1/2 corresponds to a

configuration in which all filaments are oriented perpendicular
to ẑ and S = 1 corresponds to a configuration in which all
filaments are parallel to ẑ.

In the small strain regime, in which ε⊥ = −νε‖ with ν =
1/4, we have

S ≈ 1
2ε‖. (B4)

Since P‖ ≈ E0ε‖ in this regime, we find that the relationship
between stress and alignment in the linear regime is

P‖ ≈ 2E0S, (B5)

with E0 given by Eq. (A6). This relationship is plotted in
Fig. 5. As we noted in the main text, Eq. (B5) implies that
the proportionality coefficient C in Eq. (8) is given by C =
1/(2E0).
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