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Stretching multistate flexible chains and loops
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Polymer loop structure commonly appears in biological phenomena, such as DNA looping and DNA denat-
uration. When a chain forms a loop, its elastic behavior differs from that of an open chain due to the loss of
entropy. In the case of reversible loop formation, interesting behavior emerges related to the multistate nature
of the conformations. In this study, we model a multistate reversible loop as a looping Gaussian chain, which
can bind (close) reversibly at one or several points to form a loop, or a zipping Gaussian loop, which can zip
reversibly to form a double-stranded chain. For each model, we calculate the force-extension relations in the
fixed-extension (Helmholtz) and the fixed-force (Gibbs) statistical ensembles. Unlike the single Gaussian chain
or loop, the multilevel systems demonstrate qualitatively distinct tensile elasticity and ensemble inequivalence.
In addition, we investigate a Gaussian necklace consisting of reversible alternating blocks of the zipped chain
and loop and obtain the force-temperature phase diagram. The phase diagram implies a force-induced phase
transition from a completely looped (denatured) state to a mixed (bound) state.
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I. INTRODUCTION

The elasticity of two-state or multistate soft systems has
attracted a lot of interest in recent years because it exhibits
unusual features that do not appear in the single-state coun-
terparts of those systems. By multistate systems we mean soft
systems whose microstates can be grouped into two or more
groups and the macroscopically observed macrostate includes
fluctuations between those groups. Many biomolecular sys-
tems exhibit such behavior. For example, we can mention
polypeptides undergoing helix-coil transitions, DNA chains
interacting with DNA-binding proteins that attach and detach
reversibly, the reversible unzipping of macromolecular hair-
pins, the cross-linking of semiflexible bundles, the reversible
loop formation in DNA, the formation of denaturation bubbles
in double stranded DNA, and the reversible hybridization of
oligonucleotides.

A salient feature of two-state or multistate polymers is the
statistical ensemble inequivalence for finite-size systems. This
is not surprising, as the fluctuations between these states are
prominent. Flexible polymers modeled as Gaussian chains
are known to exhibit ensemble equivalence as long as the
force-extension relation is expressed in terms of conjugate
variables (tension and projection of the end-to-end distance on
the tension axis) [1–6]. Gaussian chains can exhibit ensem-
ble inequivalence if they are geometrically confined [7–13].
Semiflexibility is another cause of ensemble inequivalence,
due to the long-range correlations introduced by the persis-
tence length [14–16].

In this article, we focus on the response of multistate flex-
ible (Gaussian) loops under tension. At first, we consider the
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single-state case of a loop under tension and we show that
effectively it behaves like a single chain. Then we consider
three multistate cases: a Gaussian chain that can be open
or closed (looped); a Gaussian loop that can be zipped and
unzipped in an all-or-none fashion; an infinitely long necklace
consisting of concatenated zipped and looped blocks of all
sizes.

Loop structures can emerge from a linear polymeric system
via conformational changes, a phenomenon commonly ob-
served in biological context such as DNA looping [17–22] and
DNA melting [23–32]. These loop formations are reversible
processes. For DNA looping, the polymer structure can be
either looped state or unlooped state and, for DNA melting,
it can be either closed (zipped, double-stranded) state or open
(unzipped, bubbled) state. These reversible systems suggest
simple scenarios where an open polymer chain can form a
closed loop through reversible binding at its end points or
a closed polymer loop can zip to form a transient double-
stranded chain. As a next step, it is natural to extend the
scenarios to include intermediate states where the chain can
be partially looped or partially zipped. This motivates a mul-
tistate model for the system under consideration.

In the zipping case, the polymer is assumed to undergo
all-or-none-like transitions between the unzipped and zipped
states. The all-or-none model has long been used to describe
aspects of the melting transition of DNA, particularly of
oligonucleotides [33–36]. An all-or-none type of zipping is
observed in single-molecule kinetic data of oligonucleotide
hybridization experiments [37–40], indicative of the validity
of the model.

DNA melting can be viewed as a proliferation of denatu-
ration bubbles. In a widely used semimicroscopic approach,
double stranded DNA is modeled as a necklace con-
sisting of concatenated blocks of loops (representing the
denaturation bubbles) and linear polymers (representing the
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double-stranded segments). This is the famous Poland-
Scheraga model [26] that is usually analyzed using the
generating function method [41–46]. An appealing aspect of
this model is that it highlights the universal aspects of the
phase behavior in the thermodynamic limit. In the original
version of the model, the double-stranded segments are mod-
eled as perfectly rigid rods. In order to investigate the effect
of reversible bubbles on the elasticity and phase behavior of
DNA, variants of the Poland-Scheraga model with the neck-
lace subject to a tensile force have been analyzed [47–50]. In
some of these studies [47,48], the zipped part is modeled as a
rigid rod, and in Ref. [49] as a freely jointed chain, whereas
in Ref. [50] as a semiflexible chain with bending rigidity. In
this article, we analyze the Gaussian necklace model, consist-
ing of concatenated reversibly zipping Gaussian loops. It is
intended to describe a reversible polymer necklace subject to
a small tensile force. The simplicity of this model makes it
analytically tractable.

This article is organized as follows. In Sec. II, we review in
detail the partition functions of a Gaussian chain and a Gaus-
sian loop and clarify their differences from the corresponding
conformational probabilities. In Secs. III and IV, we analyze
the tensile elasticity, in both ensembles, of reversible two-
or multistate looping Gaussian chains and zipping Gaussian
loops. In Sec. V, we consider a flexible necklace under tension
whose elements are zipped Gaussian chains and Gaussian
loops. We obtain the phase diagram in the force-temperature
plane. We summarize and discuss our results in Sec. VI.

II. PARTITION FUNCTION OF THE GAUSSIAN CHAIN
AND THE GAUSSIAN LOOP

A. Gaussian chains

Flexible polymers can be described using the Gaus-
sian chain model [51], characterized by the probabil-
ity density for the end-to-end vector R as ρ(R; N, b) =
(3/2π )3/2N−3/2 exp(−3R2/2Nb2)b−3. Here, N and b denote
the degree of polymerization and the effective bond length
of the chain (Kuhn length), respectively. If we fix R =
Xx̂ + Y ŷ + Zẑ along a certain direction, say the x axis, and
allow fluctuations in the other directions (y-z plane), the
y and z components are integrated out, leading to a one-
dimensional probability density: ρ(R; N, b) → ρ(X ; N, b) =
(3/2π )1/2N−1/2 exp(−3X 2/2Nb2)b−1. The probability for the
end-to-end x projection of the chain being in the small range
[X, X + �X ] is then P(X ; N, b) = �Xρ(X ; N, b). We refer
to the statistical ensemble of the system, described by the
distribution ρ(X ; N, b) with the extension X , as the control
parameter of the measurement, as the fixed-extension ensem-
ble (Helmholtz ensemble), or the X ensemble for brevity.

The partition function for the Gaussian chain in the X
ensemble, denoted by Z H, is proportional to the number of
conformational microstates �(X ; N, b), since the energy of
the Gaussian chain remains constant irrespective of its confor-
mation. In the absence of any external field, we can identify
Z H with �(X ; N, b), which can be obtained by multiplying
P(X ; N, b) by the number of all possible microstates of the
chain with the given N . In order to determine the normal-
ization constant, we employ a random walk on a periodic

lattice of ζ neighbors, yielding �(X ; N, b) = ζ N P(X ; N, b)
[52]. Consequently, the partition function in the X ensemble
is expressed as

Z H =
(

3

2π

)1/2

σζ N N−1/2 exp

(
− 3X 2

2Nb2

)
, (1)

where σ = �X/b is defined as the relative (dimensionless)
length scale related to the observation. The average force
(tension) in the x̂ direction needed to maintain the extension
X against the retracting entropic force is given by

〈 f 〉 = ∂F

∂X
= 3kBT

Nb2
X, (2)

where F = −kBT ln Z H is the Helmholtz free energy and kB

is the Boltzmann constant.
In the previous ensemble, the extension X is fixed as the

controllable variable, while the force f , conjugate to X , is
fluctuating as the responding variable. Let us consider the
conjugate ensemble, where the Gaussian chain is subject to
a constant tensile force ± f = ± f x̂ applied to its end points,
as the control parameter. We refer to the statistical ensemble
corresponding to this physical situation as the fixed-force
ensemble (Gibbs ensemble), or the f ensemble for brevity.
The partition function for the Gaussian chain in the f en-
semble can be expressed as a discrete version of the Laplace
transform, Z G = ∑

{X } Z H exp( f X/kBT ), where
∑

{X } de-
notes the sum over all intervals [X, X + �X ] corresponding
to macrostates of X and Z H plays the role of the multi-
plicity of the Boltzmann weight. In the continuum limit of∑

{X } → ∫ ∞
−∞ dX/�X , we calculate the partition function in

the f ensemble:

Z G = ζ N exp

(
Nb2 f 2

6kB
2T 2

)
. (3)

The average extension (end-to-end x projection) of the chain
under the tensile force f along the ±x direction is given by

〈X 〉 = −∂G

∂ f
= Nb2

3kBT
f , (4)

where G = −kBT ln Z G is the Gibbs free energy. This re-
lation can also be obtained from the freely jointed chain
for small forces as the linear approximation of 〈X 〉 =
NbL(b f /kBT ) ≈ Nb2 f /3kBT , where L is the Langevin func-
tion [53]. Note that if we just interchange the roles of two
conjugate variables, i.e., inverse the control (fixed) and the
fluctuating (averaged) variables, Eq. (4) turns to Eq. (2) and
vice versa. This demonstrates the ensemble equivalence be-
tween the X ensemble and the f ensemble for the Gaussian
chain.

What we presented in this subsection is all well known,
except for a subtle point. Quite often, the X -partition func-
tion and the corresponding conformational probability density
are used interchangeably, because they differ by a constant
prefactor. This difference is considered irrelevant, because
we usually take derivatives of the logarithm of the partition
function. However, this is not always the case. As we shall
show in the following sections, in two- or multistate systems,
such a partition function appears as a term in a sum with other
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partition functions having different prefactors. Then, the pref-
actors affect the thermodynamic observables of the system.
The same is true for the kinetic energy part of the partition
function that we ignore, assuming massless polymers.

B. Gaussian loops

A Gaussian chain with degree of polymerization N is
usually represented by a concatenated chain of N harmonic
oscillators, each having an entropic spring constant equal to
3kBT/b2 [51]. The mechanical analogy to N springs in series
provides an intuitive way to understand the force-extension
relation in Eq. (2) with the spring constant 3kBT/Nb2. The
loop structure serves as the most straightforward parallel ver-
sion of the Gaussian chain and a similar analogy is expected
to hold in this context. Let us consider two Gaussian chains
of degree of polymerization N1 and N2, represented by end-
to-end vectors R1 and R2, respectively, each with one of its
ends located at the origin. The loop formation can be realized
by introducing a step function as a confining potential in a
small volume v � b3 within which R1 and R2 converge [54].
Using this method of constructing a loop, we can well define
the end-to-end vector of the loop as R = R1 = R2.

The probability density for the end-to-end x-projection X
(= X1 = X2) of the Gaussian loop can be written by using the
delta function as

ρO(X ; N1, N2, b) =
∫

dY1

∫
dZ1

∫
d3R2ρ(R1; N1, b)

× ρ(R2; N2, b)vδ(R1 − R2).

The probability for the extension X of the loop being
in the small interval [X, X + �X ] is PO(X ; N1, N2, b) =
�XρO(X ; N1, N2, b) and the corresponding number
of conformational microstates is �O(X ; N1, N2, b) =
ζ N1+N2 PO(X ; N1, N2, b). As this multiplicity is identical
with the partition function of the Gaussian loop in the X
ensemble, we obtain the partition function:

Z H
O =

(
3

2π

)2

στζ N1+N2 (N1N2)−1/2(N1 + N2)−1

× exp

(
−3(N1 + N2)X 2

2N1N2b2

)
, (5)

where τ = v/b3 is defined as the relative (dimensionless)
range of the looping interaction. The Helmholtz free energy of
the Gaussian loop is then FO = −kBT ln Z H

O and the force-
extension relation in the X ensemble is given by

〈 f 〉 = ∂FO
∂X

= 3(N1 + N2)kBT

N1N2b2
X. (6)

In the conjugate scenario, the Gaussian loop is subject to a
constant tensile force ± f = ± f x̂, applied to the end at the
origin and to the other end confined within the volume v.
Similarly to the previous Sec. II A, the partition function in
this f ensemble is written as Z G

O = ∑
{X } Z H

O exp( f X/kBT ).
We transform the sum into an integral in the continuum limit

FIG. 1. Model diagram of the reversibly looping Gaussian chain,
depicting the four-state case in particular. The left side illustrates the
unlooped state and the right side illustrates one of the three possible
looped states. The yellow pizzalike shapes represent the binding
sites, where the loop is formed. X and ± f are the control parameters
in the extension ensemble and the force ensemble, respectively. This
is meant to be a 3D diagram with the y-axis perpendicularly into the
page.

and calculate the partition function:

Z G
O =

(
3

2π

)3/2

τζ N1+N2 (N1 + N2)−3/2

× exp

(
N1N2b2 f 2

6(N1 + N2)kB
2T 2

)
. (7)

The Gibbs free energy of the Gaussian loop is then GO =
−kBT ln Z G

O and the force-extension relation in the f ensem-
ble is given by

〈X 〉 = −∂GO
∂ f

= N1N2b2

3(N1 + N2)kBT
f . (8)

From Eq. (6) and Eq. (8), we confirm, not surprisingly, that
the Gaussian loop also exhibits the ensemble equivalence.
We also note that the force-extension relation of the loop is
exactly that of two springs connected in parallel, with spring
constants corresponding to the entropic spring constants of the
two Gaussian chains which form the loop.

III. LOOPING GAUSSIAN CHAINS

A. Model

The looping Gaussian chain (�GC) consists of a central
GC and two dangling GCs connected to its end points, as
illustrated in Fig. 1. Although this structure may seem rather
peculiar at first glance, constructing the model in this way
allows the looping interaction to be made independent of
stretching, enabling a straightforward analysis of the tensile
elasticity in both the X and f ensembles as affected by the
structural changes. The dangling ends fold and connect re-
versibly to form the loop. Each component consists of degree
of polymerization N , D0, and D1, represented by position
vector R, r0, and r1, respectively, with the same Kuhn length b.
At the free end of each dangling chain, there is a specific site
capable of binding with each other, forming a reversible loop.
The looping interaction is governed by a confining potential
V (|r0 − r1|) defined as

V (|r0 − r1|) =
{
εv < 0, r0 and r1 within v,

0, otherwise. (9)

When it remains an open (unlooped) chain, it is referred to as
being in the u state. Conversely, when the �GC forms a closed
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loop, it is referred to as being in the � state. Building upon this
simplest two-state framework, it would be natural to expand
the model by incorporating additional binding sites. In fact,
looping of DNA often involves a sliding cross-linker [21]. A
first step towards modeling this situation would be to consider
a sequence of closely spaced binding sites. In order to capture
the primary changes in patterns with an increasing number
of binding sites, we assume several binding sites exclusively
on the dangling chain of D1 and explore the �GC up to the
four-state case.

B. Extension ensemble

In the X ensemble for the �GC, determining its extension
is a necessary first step. We define the end-to-end vector of the
�GC as R of the central chain. The end-to-end x projection X
of the �GC is then the x component of R. Let us first consider
the simplest two-state system. We write the partition function
for the two-state �GC as

Z H
�GC =

∑
{r0,r1∈v}

exp

(
− εv

kBT

)
+

∑
{r0,r1 	∈v}

exp(0)

= Z H
O exp

(
− εv

kBT

)
+ (

Z H
�GC,u − Z H

O
)

= Z H
�GC,u + Z H

O

[
exp

(
− εv

kBT

)
− 1

]
, (10)

where Z H
�GC,u denotes the partition function for the u state

in the X ensemble. From the previous results in Sec. II, we
directly obtain it as

Z H
�GC,u = ζ D0Z Hζ D1

=
(

3

2π

)1/2

σζ N+D0+D1 N−1/2 exp

(
− 3X 2

2Nb2

)
. (11)

From Eq. (10), the partition function for the � state is given by

Z H
�GC,� = Z H

O exp

(
ε

kBT

)
, (12)

where ε is a phenomenological energy parameter defined as

exp

(
ε

kBT

)
= exp

(
− εv

kBT

)
− 1. (13)

Note that the value of ε can be positive or negative depending
on the depth of the confining potential well |εv|.

We can directly obtain Z H
�GC,� from the result for the Gaus-

sian loop [Eq. (5)] by making the replacement N1 = N and
N2 = D0 + D1. Nevertheless, we present a derivation starting
from finding the probability density to maintain the consis-
tency in the process. The probability density for r0 and r1

follow Gaussian distributions as r0 represents the end-to-end
vector of the Gaussian chain of D0 and the distribution for r1

mirrors that of the end-to-end vector r1 − R of the Gaussian
chain of D1. With knowledge of all the relevant distributions
for R, r0, and r1, the probability density for X of the �GC
in the � state is obtained by integrating out all the fluctuating
components, considering r0 and r1 confined within the volume
element v � b3. By using the delta function, we write down

this scheme as

ρ�(X ; N, D0, D1, b) =
∫

dY
∫

dZ
∫

d3r0

∫
d3r1

× ρ(R; N, b)ρ(r0; D0, b)

× ρ(r1 − R; D1, b)vδ(r0 − r1).

Just as shown in Sec. II, we determine the corresponding
probability by introducing �X and the resulting number of
conformational microstates by employing the random walk
of ζ neighbors. Taking into account the looping energy
parametrized by ε for the � state, we calculate the partition
function in Eq. (12) as

Z H
�GC,� = ζ N+D0+D1�Xρ�(X ; N, D0, D1, b) exp

(
ε

kBT

)

=
(

3

2π

)2

στζ N+D0+D1 [N (D0 + D1)]−1/2

× (N + D0 + D1)−1

× exp

(
−3(N + D0 + D1)X 2

2N (D0 + D1)b2
+ ε

kBT

)
, (14)

where, as a reminder, σ = �X/b and τ = v/b3. As expected,
the obtained result is essentially the same as the one for the
Gaussian loop [Eq. (5)], apart from the new factor ε.

The total partition function Z H
�GC in Eq. (10) is the sum

of individual partition functions in Eq. (11) and Eq. (14). The
Helmholtz free energy of the system is F�GC = −kBT ln Z H

�GC
and the force-extension relation is given by 〈 f 〉 = ∂F�GC/∂X .
In a dimensionless form, it is expressed as〈

f

kBT/b

〉
= 3

(
PH

�GC,u + N + D0 + D1

D0 + D1
PH

�GC,�

)
X

L
, (15)

where L = Nb is the total contour length of the central
chain and PH

�GC,i = Z H
�GC,i/Z

H
�GC is the probability of being

in the i state (i = u, �) in the X ensemble. Note that, if ei-
ther probability becomes zero, the force-extension relation
reverts to the previous results: the one for the single Gaussian
chain [Eq. (2)] when PH

�GC,� = 0 or the single Gaussian loop
[Eq. (6)] when PH

�GC,u = 0.
Next, let us consider the multistate �GC where the attach-

ment of the end point r0 of the one dangling chain is not
restricted to a single binding site on the other end point r1.
Instead, it has freedom to bind to several binding sites, pro-
viding multiple options for its looping states. We refer to these
various looped states as �i state (i = 1, 2, 3, . . .), where the �1

state corresponds to the � state in the two-state system. In an
intermediate �i state (i 	= 1), Di monomers engage in forming
the loop structure, while the remaining D1 − Di monomers
form a dangling chain. Accordingly, the partition function for
the �i state in the X ensemble is collectively expressed as

Z H
�GC,�i

=
(

3

2π

)2

στζ N+D0+D1 [N (D0 + Di )]
−1/2

× (N + D0 + Di )
−1

× exp

(
−3(N + D0 + Di )X 2

2N (D0 + Di )b2
+ ε

kBT

)
. (16)
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(a) (b)

FIG. 2. (a) Probabilities (occurrence frequencies) for each state of the four-state �GC in the X ensemble. The red curves correspond to the
three looped states: the solid one to the loop consisting of N + D0 + D1 monomers, the dashed one to N + D0 + D2, and the dash-dotted one
to N + D0 + D3. The blue curve corresponds to the unlooped state. (b) The force-extension relation of the four-state �GC in the X ensemble.
The dotted lines serve as visual reference, with the red one representing the relation for a single Gaussian loop consisting of N + D0 + D1

monomers and the blue one for the single Gaussian chain of N monomers.

In general, the partition function for the m-state �GC
(m = 2, 3, 4, . . .) in the X ensemble is Z H

�GC = Z H
�GC,u +∑m−1

i=1 Z H
�GC,�i

and the Helmholtz free energy is F�GC =
−kBT ln Z H

�GC. The force extension relation of the m-state
�GC in the X ensemble is given by

〈
f

kBT/b

〉
= 3

(
PH

�GC,u +
m−1∑
i=1

N + D0 + Di

D0 + Di
PH

�GC,�i

)
X

L
, (17)

where PH
�GC,�i

= Z H
�GC,�i

/Z H
�GC is the probability of being in

the �i state in the X ensemble. Figure 2 illustrates the equi-
librium statistics and tensile elasticity of the multistate �GC
with the four-state case (unlooped plus three looped states).
Figure 2(a) shows the probability for each state and Fig. 2(b)
shows the resulting force-extension relation. In our model,
we set T = 300 K (corresponding to kBT ≈ 4 pN nm) and
τ = (0.1)3. We assume a set of sufficiently large numbers
of monomers for macromolecules: (N, D0, D1, D2, D3) =
(1000, 500, 500, 490, 480) and a modest value of the Kuhn
length for typical synthetic polymers: b = 10 Å. Considering
a noncovalent type (∼10 kcal/mol) of looping interaction, we
use ε = 100kBT (corresponding to εv ≈ −60 kcal/mol). The
values of σ and ζ turn out to be irrelevant to the results, as they
cancel out in the form of probability. The probability pattern
exhibits a clear distinction between a small extension regime
where the looped states dominate and a large extension regime
where the unlooped state dominates. This is reflected in the
force-extension relation, resulting in a noticeable crossover
between the looped states with the higher stiffness and the
unlooped state with the lower stiffness. The crossover regime
can be approximately determined by setting the probability of
being in the unlooped state to 1/2, as it transitions from near
0 to near 1. In this way, we can characterize the transition
in terms of the applied extension Xt in the X ensemble. In

general, the probability is written as

PH
�GC,u =

{
1 +

m−1∑
i=1

(
3

2π

)3/2

τ (D0 + Di )
−1/2(N + D0 + Di )

−1

× exp

[
− 3N2

2(D0 + Di )

(
X

L

)2

+ ε

kBT

]}−1

. (18)

For our illustration of the m = 4 case with the parameter
values mentioned above, the equation PH

�GC,u(Xt ) = 1/2 yields
a numerical value (Xt/L) ≈ 0.233. For the simplest case of
m = 2, Xt is generally expressed as

(
Xt

L

)
2-�GC

=
{

2(D0 + D1)

3N2

[
3

2
ln

(
3

2π

)
+ ln τ

+ ln

( √
D0 + D1

(D0 + D1)(N + D0 + D1)

)
+ ε

kBT

]}1/2

.

(19)

Here, the existence of Xt depends on the choice of parameter
values, in accordance with 0 < Xt/L < 1.

In the crossover regime, it is interesting to observe that
the system exhibits negative extensibility (the negative slope).
This implies an instability, where the strength of elongational
force needed to maintain the size of the chain decreases as
the extension increases. Something similar happens when we
plot the pressure-volume van der Waals equation of state for
T < Tc. In that case, the instability (negative compressibility)
is unphysical and is lifted by means of the Maxwell construc-
tion (equal area rule) [55]. However, the case of multistate
(multistable) systems is different. As explained by Skvortsov
et al. in Ref. [10], the van der Waals gas is described by a
local order parameter and phase separation occurs, whereas
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multistate systems such as ours are described by a global order
parameter.

Let us now investigate how the tensile elastic behavior
changes with some variations in the parameters of the system.
The force-extension relation converges towards the relation
for the single Gaussian chain in the case of decreasing ε →
−∞ (corresponding to εv → 0, i.e., no energy difference be-
tween the outside and inside of the confining volume v) or
the single Gaussian loop in the case of increasing ε → ∞
(corresponding to εv → −∞, i.e., the confining volume v

becomes infinite potential well). As the value of τ (range
of binding interaction) decreases or increases, the transition
regime shifts to the left or right, with its slope becoming
smoother or steeper. Since τ determines the effective range of
looping interaction, its value affects the frequency of looping
events. With a shorter interaction range, it is relatively less
likely to be in the looped state, given X/L. Also, as the looping
interaction range τ decreases, the width of the negative exten-
sibility regime increases, resulting in the crossover occurring
in a less jumplike manner. As the separation between the
intermediate binding sites (D1 − D2 and D2 − D3) increases,
the force-extension curve in the looped state regime deviates
from the simple linear response, characteristic of the single
loop. This deviation can be attributed to the system undergo-
ing more abrupt changes in the stiffness, as it moves through
more distinct looped states. Similar behavior to the four-state
�GC is observed in the two- or three-state case, revealing no
qualitative difference.

C. Force ensemble

In a similar way to Eq. (11), we obtain the partition func-
tion for the u state in the f ensemble

Z G
�GC,u = ζ D0Z Gζ D1

= ζ N+D0+D1 exp

(
Nb2 f 2

6kB
2T 2

)
. (20)

From Eq. (16), we also directly obtain the partition function
for the �i state in the f ensemble

Z G
�GC,�i

=
∑
{X }

Z H
�GC,�i

exp

(
f X

kBT

)

=
(

3

2π

)3/2

τζ N+D0+D1 (N + D0 + Di )
−3/2

× exp

(
N (D0 + Di )b2 f 2

6(N + D0 + Di )kB
2T 2

+ ε

kBT

)
. (21)

Following a similar process as in deriving Eq. (17), the
force-extension relation of the m-state �GC in the f ensemble
is calculated by differentiating the Gibbs free energy G�GC =
−kBT ln Z G

�GC with respect to f . In a dimensionless form, it
is expressed as

〈
X

L

〉
= 1

3

(
PG

�GC,u +
m−1∑
i=1

D0 + Di

N + D0 + Di
PG

�GC,�i

)
f

kBT/b
,

(22)

where PG
�GC,u and PG

�GC,�i
are the probabilities for each

state in the f ensemble. Figure 3 illustrates the probabil-
ities [Fig. 3(a)] and the resulting force-extension relation
[Fig. 3(b)] for the four-state �GC. Here, the same parameter
values are used for consistency between the X ensemble. As
seen in the X ensemble, there is a crossover between the
looped state regime and the unlooped state regime. The ap-
plied force ft at which the crossover (transition) occurs can be
approximately obtained from the equation PG

�GC,u( ft ) = 1/2,
for given values of the other parameters. The general expres-
sion of the probability is

PG
�GC,u =

{
1 +

m−1∑
m=1

(
3

2π

)3/2

τ (N + D0 + Di )
−3/2

× exp

[
− N2

6(N + D0 + Di )

(
f

kBT/b

)2

+ ε

kBT

]}−1

.

(23)

For our m = 4 case, we obtain ft ≈ 3.952 pN. In the simpler
case of m = 2, we obtain a closed analytic expression,

(
ft

kBT/b

)
2-�GC

=
{

6(N + D0 + D1)

N2

[
3

2
ln

(
3

2π

)
+ ln τ

− 3

2
ln(N + D0 + D1) + ε

kBT

]}1/2

.

(24)

Here, the existence of ft depends on the choice of the param-
eter values, in accordance with 0 < 〈X/L〉( ft ) < 1.

In both cases of X and f ensembles, the �GC undergoes
a crossover from the looped state to the unlooped state with
increasing the corresponding control parameter of stretching
(extension or force). In the f ensemble, however, the slope
of the force-extension curve, now representing the compli-
ance (the inverse of the stiffness), is always positive. In other
words, the negative stiffness in the crossover regime (mea-
sured in the X ensemble) does not invert itself to become
the negative compliance (measured in the f ensemble). We
see that, among the conjugate pair of variables comprising
the Hamiltonian of a given system, the choice of which
variable to consider as a controllable input and which as a
fluctuating output can affect the description of the system,
even though the two cases may appear basically the same.
This is the hallmark of statistical ensemble inequivalence in
the description of a system.

We point out that the positive definiteness of the differential
compliance in the Gibbs ensemble ( f ensemble) is dictated by
thermodynamics. No such constraint exists for the differential
stiffness in the Helmholtz ensemble (X ensemble). This is
discussed in Ref. [56].

In the two- or three-state �GC, similar tensile elastic behav-
ior to the four-state case is observed. In all cases, they exhibit
similar trends with parameter variations as discussed in the
previous Sec. III B.
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(a) (b)

FIG. 3. (a) Probabilities (occurrence frequencies) for each state of the four-state �GC in the f ensemble. The red curves correspond to
the three looped states: the solid one to the loop consisting of N + D0 + D1 monomers, the dashed to N + D0 + D2, and the dash-dotted to
N + D0 + D3. The blue curve corresponds to the unlooped state. (b) The force-extension relation of the four-state �GC in the f ensemble (the
black curve). For a direct comparison, the inverted force-extension relation of the four-state �GC in the X ensemble is displayed together (the
gray curve). The dotted lines serve as visual reference, with the red one representing the relation for the single Gaussian loop of N + D0 + D1

monomers and the blue one for the single Gaussian chain of N monomers.

IV. ZIPPING GAUSSIAN LOOPS

A. Model

The zipping Gaussian loop (zGL) consists of two Gaus-
sian chains forming a closed loop, as illustrated in the left
side of Fig. 4. Each of these chains, both upper and lower
parts, has the same degree of polymerization N and the same
Kuhn length b. The contour length of each part is assumed to
remain constant with L = Nb. Between the upper and lower
parts, a zipping interaction can occur in a one-to-one fashion,
where each monomer on one strand binds to a correspond-
ing monomer on the other strand. As we did in the looping
Gaussian chain (�GC) model, we develop the zipping model
by first considering the simplest two-state scenario. In the
two-state zGL, we assume that all pairs of monomers are
simultaneously zipped or unzipped, akin to breathing. This

FIG. 4. Model diagram of the zipping Gaussian loop, depicting
the unzipped state on the left and a partially zipped state on the right.
The partially zipped state consists of a loop (bubble) block at the
center, appearing between two zipped blocks. All states of the system
maintain the same contour length L = Nb, with N = φiN + 2N ′γ . X
and ± f are the control parameters in the extension ensemble and the
force ensemble, respectively. The Kuhn length of the zipped blocks
is γ b > b.

structure allows the two strands to exist in two distinct states:
either the unzipped state (u state), where the strands are sep-
arate (unzipped) to form an intact loop, or the zipped state (z
state), where the strands are bound (zipped) to form a double-
stranded chain. Similar to the looping model [Eq. (12)], we
define phenomenological energy parameter ε to account for
the zipping interaction as

Z G
zGC,z = Z G

ds exp

(
Nε

kBT

)
, (25)

where Z G
zGC,z is the partition function for the zipped state of

the zGC in the f ensemble, Z G
ds is the partition function of the

double-stranded chain in the f ensemble, and N is the number
of bound pairs of monomers. They are to be explained shortly.

When two separate chains bind to become a double-
stranded entity, there is a significant increase in its bending
stiffness. In order to capture this change, we consider the
double-stranded chain in the z state as an equivalent single-
stranded chain, characterized by a larger Kuhn length. This is
simply realized by introducing an index of stiffening γ > 1,
reflecting the factor by which the Kuhn length increases com-
pared to the one in the u state: b → γ b. By the requirement
that the total contour length remains constant, the increase in
the effective bond length is compensated by the decrease in
the number of monomers in the z state: N → N/γ .

From this basic two-state construction, we also develop the
multistate zGL by allowing partial zipping. This means that it
can exist in intermediate states between fully unzipped and
fully zipped. In order to rule out the positional degeneracy,
we make an assumption that the partial loop (the partially
unzipped section) is located in the middle of the zGL, as
illustrated in the right side of Fig. 4. The fraction of the
number of upper (or lower) monomers that comprise the upper

014501-7



GEUNHO NOH AND PANAYOTIS BENETATOS PHYSICAL REVIEW E 110, 014501 (2024)

(or lower) part of the partial loop in intermediate states is de-
noted by φ (= n/N, n = 1, 2, 3, . . .). For parallel discussion
with the multistate �GC, we extend our exploration of the
zGL up to the four-state case. However, unlike the previous
narrative, we start our investigation of the zGL with the f
ensemble. This choice is motivated by the difficulty involved
in constructing the partition function for the intermediate state
(partially zipped) within the X ensemble. Here, the control
parameter we fix is the total extension of the system, not
the sectional extensions. However, the parameters of interest
for the construction of the corresponding partition function
are precisely these sectional parameters. Furthermore, these
sectional extensions fluctuate even within the constraint of
fixed total extension. We address this problem by first finding
the partition function in the f ensemble and then employing
the integral transform relation between the partition functions
in the f ensemble and in the X ensemble.

B. Force ensemble

Let us first consider the two-state zGL in the f ensem-
ble. The partition function for the u state is obtained by

substituting N = N1 = N2 into Eq. (7):

Z G
zGL,u =

(
3

4π

)3/2

τζ 2N N−3/2 exp

(
Nb2 f 2

12kB
2T 2

)
. (26)

One might think that the partition function for the z state of the
equivalent chain [Eq. (25)] could be obtained by substituting
N = N/γ and b = γ b into Eq. (3) with the zipping interaction
factor:

Z G
zGL,z = Z G

ds exp

(
Nε

kBT

)

= ζ N/γ exp

(
(N/γ )(γ b)2 f 2

6kB
2T 2

+ Nε

kBT

)
.

However, this expression, originating from the single Gaus-
sian chain, loses the intrinsic nature of the loop structure of
the zGL, which involves the parameter τ . In order to retain
that information, we consider an alternative system for that
equivalent chain where just a single pair of monomers forms
a loop structure (in a mathematical manner) at one end. Then
the partition function for this revised version of the equivalent
chain for the z state becomes

Z G
zGL,z = ζ (N−1)/γ exp

(
[(N − 1)/γ ](γ b)2 f 2

6kB
2T 2

+ (N − 1)ε

kBT

)(
3

4π

)3/2

τζ 2 exp

(
b2 f 2

12kB
2T 2

)

=
(

3

4π

)3/2

τζ 2+(N−1)/γ exp

(
[1 + 2(N − 1)γ ]b2 f 2

12kB
2T 2

+ (N − 1)ε

kBT

)
. (27)

In the multistate zGL, we refer to the intermediate states as zi state (i = 2, 3, 4, . . .) with the z1 state being the fully zipped
state (the z state in the two-state case). For the intermediate states, we obtain the partition function in the f ensemble

Z G
zGL,zi

= ζ (1−φi )N/γ exp

(
[(1 − φi )N/γ ](γ b)2 f 2

6kB
2T 2

+ (1 − φi )Nε

kBT

)(
3

4π

)3/2

τζ 2φiN (φiN )−3/2 exp

(
φiNb2 f 2

12kB
2T 2

)

=
(

3

4π

)3/2

τζ [2φi+(1−φi )/γ ]N (φiN )−3/2 exp

(
[φi + 2(1 − φi )γ ]Nb2 f 2

12kB
2T 2

+ (1 − φi )Nε

kBT

)
, (28)

where 1/N < φi < 1 is the fraction of the number of
monomers comprising the upper (or lower) part of the par-
tial loop in the zi state. Note that, in the limiting cases of
φi = 1 or φi = 1/N , Eq. (28) becomes the expression for
the fully unzipped case [Eq. (26)] or for the fully zipped
case [Eq. (27)], respectively. Accordingly, we incorporate the
limiting values into the above expression and redesignate the
fully unzipped state as the z0 state with φ0 = 1, instead of
calling it the u state. In this way, we can collectively ex-
press the partition functions for all states using the single
representation.

In general, the partition function for the m-state zGL (m =
2, 3, 4, . . .) in the f ensemble is Z G

zGL = ∑m−1
i=0 Z G

zGL,zi
and

the Gibbs free energy is GzGL = −kT ln Z G
zGL. The force

extension relation of the m-state zGL in the f ensemble is
given by

〈
X

L

〉
= 1

6

(
m−1∑
i=0

[φi + 2(1 − φi )γ ]PG
zGL,zi

)
f

kBT/b
, (29)

where PG
zGL,zi

= Z G
zGL,zi

/Z G
zGL is the probability of being in

the zi state in the f ensemble. Figure 5 illustrates the equi-
librium statistics and tensile elasticity of the multistate zGL
with the four-state case. Figure 5(a) shows the probability for
each state and Fig. 5(b) shows the resulting force-extension
relation. In this model, we set T = 300 K and b = 10 Å,
following the parameters in the �GC model. For practical
reasons in numerical calculations, we set N = 100. Unlike
in the �GC model, the value of τ is irrelevant to the result.
However, the outcome in this model depends on the value
of ζ due to the varying total number of monomers in each
state. Consequently, we specify its value as ζ = 6. The new
parameters introduced in the zGL model are set as γ = 2
and (φ0, φ1, φ2, φ3) = (1, 1/100, 33/100, 66/100) (fully un-
zipped, fully zipped, and two partially zipped states). In these
prescriptions, the four-state zGL exhibits a crossover between
the unzipped state and the zipped state approximately within
the range 1.6–2.6kBT of ε [the shown plots correspond to
ε = 2.4kBT (≈1.4 kcal/mol)]. The probability pattern reveals
that the system is predominantly in either the fully unzipped
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(a) (b)

FIG. 5. (a) Probabilities (occurrence frequencies) for each state of the four-state zGL in the f ensemble. The red solid curve corresponds
to the fully unzipped state (z0 state with φ0 = 1) and the blue solid curve corresponds to the fully zipped (z1 state with φ1 = 1/N). The
intermediate (partially zipped) states are represented by the dashed curve (z2 state with φ2 ≈ 1/3) and the dash-dotted curve (z3 state with
φ3 ≈ 2/3). (b) The force-extension relation of the four-state zGL in the f ensemble (the black curve). The dotted lines serve as visual
reference, representing the force-extension relations of the single-state zGL: the red one corresponds to the z0 state and the blue to the
z1 state.

state (z0 state) at small forces or the fully zipped sate (z1

state) at large forces. Although the occurrence of the inter-
mediate states (z2 state and z3 state) is rare, they have peaks at
the transition regime. This all-or-none tendency, either fully
zipped or fully unzipped, is reflected in the force-extension
relation, resulting in two distinct regimes representing the two
dominant states (z0 state and z1 state), with the transition
regime in between. As in the �GC in the f ensemble, the
slopes in the force-extension relation of the zGL are always
positive.

C. Extension ensemble

In the X ensemble of the zGL, the partition function for the
unzipped state (φ0 = 1) is obtained by substituting N = N1 =
N2 into Eq. (5):

Z H
zGL,z0

= 2

(
3

4π

)2

στζ 2N N−2 exp

(
−3X 2

Nb2

)
. (30)

For the zipped states—both the fully zipped (φ1 = 1/N) and
the partially zipped (1/N < φi < 1, i = 2, 3, 4, . . .) states—
finding the partition functions is not straightforward due to the
problems outlined earlier in Sec. IV A. Nevertheless, we can
determine them inversely from the partition functions in the f
ensemble. Let us denote the partition function for the zipped
states in the X ensemble as Z H

zGL,zi
. This unknown partition

function in the X ensemble and the partition function in the f
ensemble, which we have already known, satisfy the relation
Z G

zGL,zi
= ∑

{X } Z H
zGL,zi

exp( f X/kBT ), where
∑

{X } denotes
the sum over all microstates represented by X . We now seek

the solution by using an ansatz

Z H
zGL,zi

= Aiστζ [2φi+(1−φi )/γ ]N

× exp

(
−Bi

X 2

b2
+ (1 − φi)Nε

kBT

)
,

where Ai and Bi are constants to be determined. In the contin-
uum limit of

∑
{X } → ∫ ∞

−∞ dX/�X , we obtain

Ai = 2

(
3

4π

)2

(φiN )−3/2{[φi + 2(1 − φi )γ ]N}−1/2,

Bi = 3

[φi + 2(1 − φi )γ ]N
.

Thus the partition function for the zipped states in the X
ensemble is given by

Z H
zGL,zi

= 2

(
3

4π

)2

στζ [2φi+(1−φi )/γ ]N

× {
φi

3[φi + 2(1 − φi )γ ]
}−1/2

N−2

× exp

(
− 3X 2

[φi + 2(1 − φi )γ ]Nb2
+ (1 − φi )Nε

kBT

)
.

(31)

Note that, if φi = 1, the above expression yields the result
for the unzipped state in Eq. (30). Consequently, by incor-
porating i = 0 into Eq. (31), we can collectively express the
partition functions for all states in the X ensemble, as in the f
ensemble.
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(a) (b)

FIG. 6. (a) Probabilities (occurrence frequencies) for each state of the four-state zGL in the X ensemble. The red solid curve corresponds
to the fully unzipped state (z0 state with φ0 = 1) and the blue solid curve corresponds to the fully zipped (z1 state with φ1 = 1/N). The
intermediate (partially zipped) states are represented by the dashed curve (z2 state with φ2 ≈ 1/3) and the dash-dotted curve (z3 state with
φ3 ≈ 2/3). (b) The force-extension relation of the four-state zGL in the X ensemble (the black curve). For a direct comparison, the inverted
force-extension relation of the four-state zGL in the f ensemble is displayed together (the gray curve). The dotted lines serve as visual
reference, representing the force-extension relations of the single-state zGL: the red corresponds to the z0 state, the blue to the z1 state, and the
turquoise to the z3 state. The relation for the z2 state is not shown.

In general, the partition function for the m-state zGL (m =
2, 3, 4, . . .) in the X ensemble is Z H

zGL = ∑m−1
i=0 Z H

zGL,zi
and

the Helmholtz free energy is FzGL = −kBT ln Z H
zGL. The force

extension relation of the m-state zGL in the X ensemble is
given by

〈
f

kBT/b

〉
= 6

(
m−1∑
i=0

1

φi + 2(1 − φi )γ
PH

zGL,zi

)
X

L
, (32)

where PH
zGL,zi

= Z H
zGL,zi

/Z H
zGL is the probability of being in

the zi state in the X ensemble. Figure 6 illustrates the behavior
of four-state zGL in the X ensemble with the same parameter
values as described previously. As in the f ensemble, there is
a crossover between the unzipped state and the zipped state.
However, the transition regime becomes broader compared to
the previous case, as the probabilities of being in the inter-
mediate states (z2 state and z3 state) significantly increase. In
the case of the z3 state, where the partial loop accounts for
an approximately 2/3 portion (φ3 ≈ 2/3) of the system, its
probability peak approaches almost 1, rendering an additional
dominance of the z3 state. This change is reflected in the
force-extension relation, resulting in three distinct regimes
representing the three dominant states in the order of z0

state, z3 state, and z1 state. Similar to the �GC in the X
ensemble, the slopes in the two transition regimes between
those three regimes are negative, corresponding to a negative
extensibility.

In the X ensemble of the four-state zGL, it is possible to
develop the suppressed z2 state with φ2 ≈ 1/3 by adjusting the
energy parameter ε. Figure 7 illustrates a variation of Fig. 6
with a change in the value of ε from 2.4kBT to 2kBT . In

this modified version, the transition regime becomes much
broader as the probabilities of occupying the intermediate
states are enhanced. The probability peak of the z3 state
transforms into a plateau of P = 1 and the peak of the z2

state, which was previously low, now reaches a value close
to 1. As a result, there are four dominant regimes and three
transition regimes between them. Similar phenomena are also
observed in the two- and three-state cases, leading to the
conclusion that the m-state zGL in the X ensemble can exhibit
up to m dominant regimes corresponding to each state or,
alternatively, m − 1 peaks at maximum in the force-extension
relation. This feature, combined with the negative extensibil-
ity, constitutes a distinctive characteristic of the X ensemble in
the zGL.

V. PHASE TRANSITION IN A GAUSSIAN NECKLACE

We have hitherto focused on the equilibrium statistics
and the consequent tensile elastic behavior of the finite-
sized systems, where they can reversibly change their overall
conformational states. We now expand our exploration by
considering the infinitely long Gaussian necklace (GN) with
annealed disorder in its local conformational state. This
necklace consists of alternating zipped (ordered) and looped
(disordered) blocks, concatenated infinitely (Fig. 8). In this
thermodynamic limit, we investigate the conformational state
of the GN in the presence of a stretching force and its phase
diagram in the force-temperature plane.

Our initial step involves constructing the grand partition
function, or the generating function, for the GN. The partial
grand partition functions for the zipped (labeled as Z) and the
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(a) (b)

FIG. 7. Modified version of Fig. 6 with a smaller value of ε, while keeping the same values for the other parameters. The transition regime
gets broader and three peaks appear in the force-extension relation. The four states are distinguished by the different colors coherently in both
plots.

looped (labeled as L) segments are constructed using Eq. (26)
and Eq. (27) as

GZ(q) =
∞∑

N=1

Z G
zGL,zqN = α�q

1 − �q
, (33)

GL(q) =
∞∑

N=1

Z G
zGL,uqN = αLi3/2(�q), (34)

where q is the fugacity for a pair of monomers (one from
the upper strand and another from the lower strand), Li is the
polylogarithm function, and

α =
(

3

4π

)3/2

τ,

� = ζ 2 exp

(
b2 f 2

12kB
2T 2

)
,

� = ζ 1/γ exp

(
γ b2 f 2

6kB
2T 2

+ ε

kBT

)
.

The total grand partition function of the GN is given by

GGN(q) =
∞∑

N=1

ZGNqN = GZ

1 − GZGL
, (35)

FIG. 8. Model diagram of the Gaussian necklace in the presence
of a stretching force (± f ). The zipped and the looped blocks are
labeled as Z and L, respectively. In the thermodynamic limit, the two
alternate types of blocks are concatenated infinitely as ZLZ · · · ZLZ.

where ZGN is the canonical partition function for the GN of
N monomer pairs. The free energy density g in the thermody-
namic limit is determined by the smallest positive singularity
q∗ of GGN:

g = lim
N→∞

−kBT ln ZGN

N
= kBT ln q∗. (36)

There are three possible candidates for q∗: the smallest
positive singularity of GZ, or of GL, or the smallest positive
root of the equation

GL = G −1
Z . (37)

We note that, in our case, GL(q) is a monotonically increas-
ing function, starting at (0,0) and ending at [�−1, αLi3/2(1)],
and G −1

Z (q) is a monotonically decreasing function, starting
at (0,+∞) and passing (�−1, 0). Based on this graphical
analysis, we can ascertain the origin of q∗: when G −1

Z (q) at
q = �−1 is below the critical value

GLc = αLi3/2(1), (38)

q∗ is given by the root of Eq (37); on the other hand, when
G −1

Z (�−1) > GLc, q∗ = �−1.
All the thermodynamic properties of the GN are encoded

in q∗. Although obtaining an analytic expression of q∗ for
arbitrary values of the temperature and the stretching force
seems unfeasible, its relative position and how it changes with
variations in parameters, such as T and f , can still be deter-
mined graphically. As T increases from a small value while
the other parameters are fixed, q∗(T ) increases as the root of
Eq. (37), approaching the critical value q∗(Tc) = �−1(Tc), and
remains of the form q∗(T ) = �−1(T ) for T > Tc [Fig. 9(a)].
In the case of the f dependence, q∗( f ) remains of the form
q∗( f ) = �−1( f ) for f < fc and starts to decrease as the root
of Eq. (37) for increasing f > fc [Fig. 9(b)]. The general
features of these plots are universal for the necklace model
and a pedagogic discussion can be found in Ref. [57].

The observed pattern of q∗(T, f ) mirrors the behavior of
the free energy density g(T, f ) in the thermodynamic limit,
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(a) (b)

FIG. 9. Plots of GL(q) [left-hand side (LHS)] and G −1
Z (q) [right-hand side (RHS)] of Eq. (37). We point out that G −1

Z (q) looks like a straight
vertical line, whereas in fact it is a curve with a very steep negative slope. (a) GL(q) and G −1

Z (q) as functions of q(T ) with fixed f = 4 pN.
The solid pair corresponds to T = 250 K, the dashed to T = 300 K, and the dash-dotted to T = 350 K. (b) GL G −1

Z as functions of q( f ) with
fixed T = 300 K. The solid pair corresponds to f = 3 pN, the dashed to f = 4 pN, and the dash-dotted to f = 5 pN. In the both cases, the
filled regions represent the area where a solution of GL(q) = G −1

Z (q) can be found depending on the value of T or f . The red tick marks are
the critical value αLi3/2(1) of GL(q) at q = �−1. The other setting parameters are b = 10 Å, ζ = 6, τ = (0.1)3, γ = 2, and ε = 2.6kBT .

according to Eq. (36). Above the critical temperature Tc or
below the critical force fc, the free energy density always
remains of the form g(T, f ) = kBT ln �−1(T, f ), which is
the one for the infinitely long single loop. On the other
hand, below Tc or above fc, g(T, f ) varies differently from
kBT ln �−1(T, f ) as q∗ switches to the crossing point, which
is not given by �−1(T, f ), obviously. Since it has lower values
than that of the free energy density of the infinite loop, some
parts of the necklace must be zipped (bound) for T < Tc or
f > fc. Thus, in terms of the mean fraction of the zipped parts,

〈nZ〉 = lim
N→∞

〈
NZ

N

〉
= kBT ∂ ln q∗

∂ε
, (39)

the GN exhibits a phase transition between the mixed state
consisting of Z and L blocks (〈nZ〉 	= 0) and the completely
looped state consisting of a single giant L block (〈nZ〉 = 0). In
principle, if we solve Eq. (37) with respect to q and determine
q∗, we can find the mean fraction of the bubbles (looped parts,
1 − 〈nZ〉) as a function of the control parameters of the system
in the mixed phase. We can also determine the mean size of a
given bubble as

〈NL〉 = q
∂ ln GL

∂q
= Li1/2(�q)

Li3/2(�q)
(40)

at q = q∗. But such an investigation is beyond the scope of
this paper.

The order of the transition is a universal property and only
depends on the exponent of the power-law dependence of the
entropic statistical weight of the looped blocks on their size
[45]. It is known that, for an exponent ψ with 1 < ψ < 2, the
transition is continuous. In our case of flexible loops without
self-avoidance, the exponent is 3/2 and thus the phase tran-
sition is continuous. The mean fraction of zipped segments
plays the role of the order parameter of this phase transition

and it goes to zero as we approach the critical point from either
below Tc or above fc.

The critical point (Tc, fc) satisfies the equation

GL(�−1) = G −1
Z (�−1) (41)

and, after some algebra, it yields the equation of phase
boundary:

(b fc)2 = a(kBTc + u)2 + w, (42)

where

a = a(ζ , τ, γ )

= 12

γ
ln ζ + 12

2γ − 1
ln(1 − cτ 2), (43)

u = u(ζ , τ, γ , ε)

= − ε

2(2 − 1/γ ) ln ζ + 2 ln(1 − cτ 2)
, (44)

w = w(ζ , τ, γ , ε)

= − 3ε2

(2γ − 1)[(2 − 1/γ ) ln ζ + ln(1 − cτ 2)]
, (45)

and c = (3/4π )3Li3/2(1). This equation of the phase bound-
ary implies the phase diagrams that are shown in Fig. 10.
Here, we refer to the mixed state as “Bound” and the com-
pletely looped state as “Denatured.” These terms are borrowed
from the melting transition of DNA, even though the GN
is not exclusively intended to describe it. When it comes to
DNA melting, stretching forces are reported to induce melting
[58–61], which is contrary to our result. This discrepancy
prompts a comparison with a Poland-Scheraga version of the
necklace, as follows.

Let us consider a different type of necklace, denoted by
GN′, where the zipped segments of the GN are modeled as
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(a) (b)

FIG. 10. (a) Phase diagram of the GN in terms of the dimensionless temperature kBT/ε and the dimensionless force b f /ε. (b) Phase
diagram of the GN in terms of the temperature and the force for b = 10 Å, ζ = 6, τ = (0.1)3, γ = 2, and ε = 1.3 × 10−20 J (≈1.9 kcal/mol).

rigid rods. The canonical partition function Z G
zGL,z in Eq. (33)

is then replaced by

Z G
R =

∫
d� exp

(
f Nb cos θ

kBT
+ Nε

kBT

)

= 4π sinh(Nb f /kBT )

Nb f /kBT
exp

(
Nε

kBT

)
, (46)

where � is the solid angle and θ is the polar angle between
the rod of length Nb and the axis of the stretching force.
Accordingly, the new partial grand partition function for the
zipped segment becomes

G ′
Z =

∞∑
N=1

Z G
R qN = 2πkBT

b f
ln

(
1 − e(−b f +ε)/kBT q

1 − e(b f +ε)/kBT q

)
(47)

and the total grand partition function of the GN′ is now
given by

G ′
GN =

∞∑
N=1

Z ′
GNqN = G ′

Z

1 − G ′
ZGL

. (48)

Because the detailed analysis for the GN′ closely resembles
that of the original GN, including the type of the phase tran-
sition (continuous), we can now directly jump into the altered
equation of phase boundary:

exp

(
b fc

2πα Li3/2(1)kBTc

)

=
1 − ζ−2 exp

(
− b2 f 2

c

12kB
2T 2

c
− b fc

kBTc
+ ε

kBTc

)
1 − ζ−2 exp

(
− b2 f 2

c

12kB
2T 2

c
+ b fc

kBTc
+ ε

kBTc

) . (49)

While this equation cannot be expressed in a closed form
like in Eq. (42), it still yields phase diagrams for the GN′

as shown in Fig. 11. Compared to the original case, it ex-
hibits a qualitatively distinct topology in the phase diagram,
predicting, under certain conditions, force-induced melting.

A reentrance regime appears in the f − T plane, where the
phase of the system changes twice with varying values of f
or T , eventually returning to the initial phase. It is interesting
to point out that the topology of the phase diagram (reentrant
transition vs single line) depends on the rigidity of the zipped
segments of the model (infinitely stiff vs infinitely flexible).

VI. DISCUSSION AND CONCLUSIONS

The reversible two- or multistate Gaussian loop is the
simplest physical system of an unconfined flexible chain that
exhibits statistical ensemble inequivalence and negative ex-
tensibility in the Helmholtz ensemble. Caruel et al. [62,63]
have analyzed a mechanical model of the sarcomere cross-
bridge, where the cross-bridge is represented by a reversible
two-state linear spring. However, the physical realization of
that spring is lacking. As far as the pure elasticity is con-
cerned, a (stable) Gaussian chain and a (stable) Gaussian loop
are linear springs. An important result of our article is that,
in order to properly describe the elasticity of a reversibly
looping Gaussian chain (�GC), we need to take into account
parameters that are commonly ignored when we analyze the
stable counterparts (such as the entropy of the dangling ends
and the range of the binding potential of the loop). We show
that having more than one reversibly looped state (in addition
to the open state) does not make any qualitative difference in
the elasticity of the system.

In the reversibly zipped Gaussian loop (zGL), we have the
whole loop or part of it zipping reversibly. In the zipping
process, two linear strands simultaneously and cooperatively
bind together. This process has been observed experimentally
in the cooperative hybridization of oligonucleotides [38,39].
As in the �GC, the reversibly zipped Gaussian loop exhibits
statistical ensemble inequivalence and negative extensibility
in the Helmholtz ensemble. A significant difference between
the elastic behavior of the zGL and that of the �GC is the
emergence in the latter of a sawtooth pattern with several
regions of negative extensibility in the Helmholtz ensemble,
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(a) (b)

FIG. 11. (a) Phase diagram of the modified version of the Gaussian necklace (GN′) with the zipped blocks represented by rigid rods in
terms of the dimensionless temperature kBT/ε and the dimensionless force b f /ε. (b) Phase diagram of the GN′ in terms of the temperature
and the force for the same parameter values as in Fig. 10(b).

if we have multiple zipped states. Giordano et al. have shown
that flexible chains consisting of bi- or multistable springs also
exhibit sawtooth behavior [64–70]. Similar behavior appears
in the tensile and bending elasticity of a wormlike chain with
bistable blocks (having fluctuating bending stiffness) [56,71].

In this article, we also analyzed the phase behavior of
a flexible chain under tension consisting of alternating, re-
versibly zipped and looped blocks of all possible sizes that we
call Gaussian necklace (GN). In our model, both the zipped
parts and the looped parts are flexible. The increased stiffness
of the zipped blocks is encoded in a larger value of the cor-
responding Kuhn length. We believe that this approximation
is more realistic compared to modeling the zipped blocks as
rigid rods. In the thermodynamic limit, the phase behavior
is determined by the large-scale conformations of the two
types of blocks in the necklace. If we intend to describe chains
of contour length much larger than the persistence length, a
flexible model for the zipped blocks seems more appropri-
ate. As expected, there is a tension- and temperature-induced
continuous phase transition. This is a universal result which
depends on the size scaling of the statistical weight of the
loops (“bubbles”) [45]. An important result of our study is that
the phase diagram on the force-temperature plane can have
dramatically different form (topology) depending on whether
we model the zipped blocks as Gaussian chains or as rigid
rods. In our case, the phase boundary between the unzipped
and the mixed phase is a curve of positive slope in the f − T
plane. If we assume that the zipped parts are rigid rods, the

phase boundary becomes a concave curve with a maximum in
the same plane. That is the case in the model of Hanke et al.
who consider self-avoiding flexible loops as bubbles and rigid
rods as zipped blocks [47,48].

Our model of the Gaussian necklace is not the first to
consider flexible zipped parts, even though it is the simplest
and it allows us to obtain an analytic expression for the phase
boundary in the f − T plane [Eq. (42)]. Rudnick et al. used
the generating function method for a self-avoiding necklace
whose elements are freely jointed chains [49]. Rahi et al.
analyzed, using the transfer-matrix method, a necklace whose
elements (zipped blocks or looped blocks) consist of small
rods connected by aligning hinges [50]. As expected, for small
forces, the phase diagrams of those models qualitatively agree
with our prediction. There is a discrepancy at higher forces,
due to the fact that the Gaussian chain does not satisfy the
local inextensibility constraint. The extension of this work to
consider freely jointed or wormlike chains, loops, and neck-
laces is in preparation. We hope to discuss this in detail in a
subsequent publication.
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