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Role of cilia activity and surrounding viscous fluid in properties of metachronal waves
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Large groups of active cilia collectively beat in a fluid medium as metachronal waves, essential for some
microorganisms motility and for flow generation in mucociliary clearance. Several models can predict the
emergence of metachronal waves, but what controls the properties of metachronal waves is still unclear. Here,
we numerically investigate the respective impacts of active beating and viscous dissipation on the properties of
metachronal waves in a collection of oscillators, using a simple model for cilia in the presence of noise on regular
lattices in one and two dimensions. We characterize the wave using spatial correlation and the frequency of
collective beating. Our results clearly show that the viscosity of the fluid medium does not affect the wavelength;
the activity of the cilia does. These numerical results are supported by a dimensional analysis, which shows that
the result of wavelength invariance is robust against the model taken for sustained beating and the structure of
hydrodynamic coupling. Interestingly, the enhancement of cilia activity increases the wavelength and decreases
the beating frequency, keeping the wave velocity almost unchanged. These results might have significance in
understanding paramecium locomotion and mucociliary clearance diseases.

DOI: 10.1103/PhysRevE.110.014409

I. INTRODUCTION

The emergence of phase-traveling waves in dense arrays
of active beating cilia, known as metachronal waves, is a
complex multiscale physics problem [1–7] and is nonequi-
librium because of the internal activity-driven movements of
cilia. The active beating of each cilium arises from the sliding
of microtubules by thousands of molecular motors and the
subsequent interaction with the surrounding fluid medium.
The coupling of a large number of these oscillators lead to
synchronized dynamics over larger lengthscales. Illustrations
are abundant in nature with ciliary living systems differing
by cilia assembly geometry, cilia activity, or the properties of
the surrounding fluid. In respiratory tissues, the continuous
cleaning of our lungs is provided by cilia beating waves that
generate mucus flow [8,9]. For certain microorganisms such
as paramecium, synchronized beating of cilia help in their effi-
cient locomotion [10]. The complexity of a cilia active beating
pattern and their interaction with each other through a com-
plex environment makes it difficult to predict the emergent
wave properties, despite recent theoretical and experimental
advancements.

Models of cilia arrays [11–15] aim to identify the condi-
tions required for such a coordinated state and to comprehend
the physical parameters that govern the properties of the
metachronal wave and the subsequent mucus transport. Sev-
eral models have been proposed [11–13,16,17], wherein the
coupling was primarily described as a viscous hydrodynamic
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coupling. In these models, different types of active forces,
from simple to complex, successfully generated continuous
beating of a cilium. Numerical simulations enabled the in-
vestigation of the intricate structure of cilia by considering
their beating as a filament bending wave [12,18,19]. Another
approach was to model cilia by actuated micron-sized beads
called rotors [20–23] or rowers [11,24,25]. For a large group
of cilia arranged in an array, it was shown that hydrody-
namic coupling can lead to metachronal waves for various
models of cilia [12,14,15]. Recently, the influence, on these
collective behaviors, of several physical parameters such as
noise [25,26], and disorder in the arrangement and orienta-
tion of cilia was investigated both numerically [25,27,28] and
experimentally [28,29], showing that spatial heterogeneity fa-
vors transport. Other important physical quantities that may
play a role on the coordination are the activity related to
the sustained beating and the dissipation in the viscous fluid
that will have opposite impacts on the metachronal waves
emerging from cilia beating. Experimentally, a decrease in
beating frequency with viscosity was found [30,31], whereas
the beating amplitude and the metachronal wavelength were
found constant up to ≈50 times the viscosity of water [32,33].
Theoretically, the mutual influence of activity and dissipation
were almost not explored [34]. Here, our fundamental inquiry
pertains to the interplay between cilia beating characteristics
and the fluid medium and its impact on the overall properties
of metachronal waves.

II. ROWER MODEL

We study the metachronal waves in the rower model of
cilia in viscous fluid for one- and two-dimensional regu-
lar lattices in the presence of thermal noise. In the rower
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(a) (b) (c)

FIG. 1. Rower model of cilia [11]. (a) The motion of a micron-
sized bead in a viscous medium under two harmonic potential
branches, corresponding to σ ± 1, represents the stroke and anti-
stroke beating of a cilium. (b) The bead switches branches when it
reaches terminal position y = ±A. (c) Rowers are arranged in two
dimensions on a L × L square lattice, with their beating direction
along the y axis, as indicated by the double arrow. Hydrodynamic
interaction between rowers i and j is modeled by the Oseen coupling,
which is dependent on the ri j vector.

model [11,24,25], the complex active beating of a cilium is
simplified into the back and forth motion along an axis of a
micron-sized bead immersed in a viscous fluid, thus ensuring
a low Reynolds number regime. Such an oscillating motion is
driven by two harmonic potential branches, corresponding to
the stroke and antistroke of the cilia beating, with a geometric
switching mechanism. The bead moves downhill of a potential
until it reaches one of the two terminal positions for which
switching to the second branch occurs [Figs. 1(a) and 1(b)].
This switching is like pumping energy to lift the bead on the
upper side of the other potential at the terminal. At a given
time, the bead can be found in one of these two states, the
stroke and antistroke of the cilia beating, represented by a
discrete σ = ±1. The driving force for a bead displacement
y for a given σ can be written as

f (y, σ ) = −dV (y, σ )

dy
= −k(y − σμ/2), (1)

where k is the force constant associated with the harmonic
potentials, μ is the distance between minima of two potentials,
and A is the beating amplitude. The supply of energies during
each downhill motion in a harmonic potential kA2/2, and
during each switch the pumping energy kμA, keep the bead
oscillating in the dissipating media. We refer to this pumping
energy during each switch as “activity” for the rower model
of cilia. Therefore, for a given μ, the “activity” of the bead
depends on values of k and A. Because of its simplicity
and ability to capture the two-stroke beating of cilia, the
rower model has become a method of choice for theoretical
and experimental studies of synchronization in ciliary sys-
tems [15,29].

We consider a system of N rowers beating in the y direction
in a viscous medium. Rowers are placed regularly in one
or two dimensions (square) lattices [see Fig. 1(c)] at fixed
positions ri (for i = {1, 2, 3, . . . , N}). The displacement yi of
a rower i is hydrodynamically coupled with the others and is
given by

dyi

dt
= fi

γ
+

∑

j �=i

O(i, j) f j + ξi, (2)

where γ = 6πηa is the viscous drag coefficient for a bead
with radius a and O(i, j) the coupling strength between rowers
i and j. In the far-field hydrodynamic coupling approxi-
mation, for which both the distance from the surface and
the distance between two adjacent rowers (lattice spacing �)
are large compared to a, O(i, j) is set by the Oseen tensor
O(i, j) = 1

8πηri j
(1 + ( yi j

ri j
)2), with i �= j, and ri j = r j − ri the

separation vector between rowers i and j. The last term is
due to the thermal noise, obeying the following delta correla-
tion: 〈ξ (t )〉 = 0, 〈ξ (t1)ξ (t2)〉 = 2 D δ(t1 − t2). For simplicity,
we assume no correlation between the noise acting on each
of the rowers as in [25]. The noise strength or diffusivity is
equal to D = kB T/γ , with kB and T being the Boltzmann
constant and the temperature. The displacement of a single
isolated bead shows sustained oscillations with the frequency
ν0 = 1/(2 τd log[(μ + 2A)/(μ − 2A)]), where τd = γ /k is
the relaxation time for the bead to reach equilibrium in a
harmonic potential [24]. Two such coupled rowers beat collec-
tively with antiphase synchronization [11]. For many rowers,
the interplay between the activity of the rowers and the cou-
pling through the medium generates metachronal waves [11].

III. NUMERICAL RESULTS

The Euler method with an integration step equal to
5 × 10−3s is used to evolve the coupled dynamical equa-
tion [Eq. (2)], starting from random initial values for {σi, yi}.
The open boundary condition is implemented. Parameters
are chosen within the experimentally relevant range [24,35]
a = 1.5 µm, �= 8 µm, k = 2.6 pN µm−1, μ = 2 µm, A =
0.56–0.8 µm, η = 2–20 mPa s, and T = 300 K. The results
presented here are for large system sizes N = L = 200 (for
one dimension) and N = L2 = 1600 (for two dimensions).
Comparing the results with smaller systems (not shown here),
we confirm that the presented results have no system size
dependence.

A. Characterization of metachronal waves

Figure 2 shows the metachronal waves on the one-
dimensional lattice. The beads’ displacement against the
rowers’ position for a given time displays two spatial waves
that are visualized by connecting displacements yi by lines
for all rowers at the even and odd lattice sites separately
[Fig. 2(a)] in agreement with [11,36]. This is a unique fea-
ture of the rower model and arises due to a degree of
antiphase synchronization between two adjacent rowers. The
wave propagation is illustrated in Fig. 2(c) by the kymograph
obtained for σi(t ). To characterize it, we compute the spatial
correlation function between two rowers as a function of their
separation vector r:

C(r) =
∑

i j〈σi(ri, t )σ j (r j, t )〉δ(r − ri j )∑
i j δ(r − ri j )

. (3)

As the rowers are placed on a regular lattice with lattice
spacing �, the coordinates of r are discrete and can be written
as (m�, n�) with m, n ∈ {0, 1, 2, . . . , L}. The measurement is
done after a large equilibration time t0, where the system is
assumed to reach a steady state. Brackets 〈·〉 represent average
over time and ensembles. An ensemble is the collection of
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(a) (b)

(c)

FIG. 2. Metachronal waves in one dimension. (a) Snapshot of
displacements of the first 100 rowers. The displacement of even
(odd) sites is plotted in light (dark) color. (b) Correlation function
C(x = m�) between two rowers is plotted against separation distance
x. (c) Kymograph of the beating state σ , with white color (black)
representing σ=1 (σ = −1). Parameters: A = 0.8, η = 6 mPa s, and
N = 200.

5000 sets of {σi(t )} recorded every 2 seconds after t0 = 2500
seconds. Depending on the system size, we consider several
ensembles with random initial conditions. For one dimension
(N = 200) the number of ensembles is 100 and for two di-
mensions (N = 1600) it lies between 5 to 10.

B. Wave properties in one dimension

Figure 2(b) shows the variation of C(x) = C(x, y = 0) in
one dimension. For odd and even m values, two oscillating
curves decay to zero as the distance between rowers x = m�

increases. While the oscillations indicate the wave nature
of the collective beating, the loss of correlations at larger
x suggest a damping in the coordination on a characteristic
lengthscale ld . C(x) can be fitted with the simple function
±e−x/ld cos(2πx/λ), the + (−) sign being for even (odd) m.
This fit estimates the wavelength λ and decay length ld . For
Fig. 2, λ � 13.7� and ld � 9.0�. In a recent paper [37], the
wavelength and decay length were measured experimentally
for metachronal waves on the human bronchial epithe-
lium, and these two lengthscale values are comparable. Our
results are consistent with the experiment. The ensemble and
spatial average of the beating frequency was computed as
ν � 3.4 Hz and combined with λ to infer the metachronal
wave velocity V = νλ � 370 µm/s. This value corresponds
to the value that can be estimated by measuring the slopes in
the kymograph Fig. 2(c).

We then investigate the effect of viscosity of the fluid
medium and activity of the cilia on the metachronal waves’
quantities: λ, ld , ν, and V = νλ, by computing C(x) for vari-
ous η and A. The plot of C(x) for different A values shows
that both λ and ld increase with A [Figs. 3(a) and 3(c)],
whereas ν decreases with A, keeping V almost constant

(a)

(c)

(e) (f)

(d)

(b)

FIG. 3. Effect of viscosity and beating amplitude on metachronal
waves in one dimension (N = 200). Correlation function C(x = m�)
as a function of the distance between rowers, (a) for three different
A values (for η = 6 mPa s) and (b) for three different η values (for
A = 0.8 µm). The wavelengths λ are plotted against (c) A and (d) η,
together with the corresponding beating frequency ν. Propagation
velocity V is plotted against (e) A and (f) η. In (b), the different
symbols are not distinctively visible as the three curves completely
overlap.

[Figs. 3(c) and 3(e)]. As ν0, the frequency of a rower decreases
with A, the decrease of ν is expected. Along the same lines,
increasing A, which is a characteristic length of the prob-
lem, may naturally increase the lengthscale of the emerging
collective dynamics. Thus the respective variation of ν and
λ can be generally expected. What is remarkable though is
that they compensate to result in an almost constant wave
velocity. Interestingly, C(x) does not depend on the values
of η [see Fig. 3(b)], meaning λ and ld are independent of
η and implying that the spatial behavior of emergent waves
does not depend on the fluid viscosity and are only determined
by cilia activity parameters, in agreement with experimental
observations [30,33]. Finally, the frequency ν decreases as
a function of η and so does V , as measured experimentally
in [30,33].

C. Wave properties in two dimensions

On a square lattice, we find that the metachronal wave
propagates along the beating direction y whereas no wave is
obtained in the perpendicular direction (Fig. 5), suggesting
longitudinal waves. In Figs. 4(a) and 4(b), we plot the cor-
relation function along the y direction C(0, y = n�) against n
for various values of A and η. Similar to the one-dimensional
case, two spatial waves can be seen for even and odd values
of n for a given parameter set. For a fixed η, λ increases
and ν decreases with A, keeping the wave velocity V almost
constant [Figs. 4(c) and 4(e)]. On the contrary, λ remains
constant and ν decreases with η, leading to a decrease in V
with η [Figs. 4(d) and 4(f)]. We further note that, although
the qualitative behavior of metachronal waves in one and
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(a) (b)

(c)

(e) (f)

(d)

FIG. 4. Effect of viscosity and beating amplitude on metachronal
waves in two dimensions (N = L2 = 1600). Correlation function
along beating direction C(x = 0, y = n�) as a function of the dis-
tance between rowers, (a) for three different values of A (for η =
6 mPa s) and (b) for three different η values (for A = 0.8 µm). The
wavelengths λ are plotted against (c) A and (d) η, together with the
corresponding beating frequency ν. Propagation velocity V is plotted
as a function of (e) A and (f) η. In (b), the different symbols are not
distinctively visible as the three curves completely overlap.

two dimensions are similar, the values of λ and V are rela-
tively larger in one dimension. This result raises interesting
questions on the implications of the geometry of realistic cil-
iated tissues, which are mostly organized in two-dimensional
groups of cilia bundles.

In the direction perpendicular to beating, no oscillation
is obtained (Fig. 5). C(x, 0) either monotonically decays to
zero as for large A or shows a negative correlation for small
y = m� with odd m that eventually approaches zero for large
m. For a given A, C(x, 0) does not depend on η [Fig. 5(b)],
although odd and even m can follow different curves, reminis-
cent of C(0, y). We compare the decay lengths of correlations
along the x and y directions ld,x and ld,y. The decay length for
the damped oscillations along y, ld,y, can be estimated from
the fitting method discussed above. The decay length ld,x is

(a) (b)

FIG. 5. Effect of viscosity and beating amplitude on correlations
along the direction perpendicular to the beating direction C(x = m�,

y = 0). C(x = m�, y = 0) is plotted for (a) three different A for
a fixed η = 6 mPa s, and (b) for three values of η for a given
A = 0.69 µm.

estimated from the exponential fit of the C(x = m�, 0) for
even m values. The ratio ld,y/ld,x is plotted in the insets, one
notes that ld,y/ld,x � 2. For a fixed A, it remains unchanged
with η. However, for a given η, the ratio increases with cilia
activity A, which means an increased coordination along
the beating direction compared the perpendicular one. This
anisotropic response may be related to the anisotropy of the
interaction strength. Indeed, considering the same ri j value,
O(i, j) is two times larger along the y axis than along the
x axis.

IV. WHY SPATIAL WAVE PROPERTIES
ARE INDEPENDENT OF VISCOUS MEDIA

The fact that we obtain metachronal waves with spatial
properties unaffected by viscosity has not been emphasized by
previous studies, to our knowledge. Nevertheless, this remark-
able numerical observation is robust on an order of magnitude
of η and obtained with both one- and two-dimensonal simu-
lations. To rationalize this result, one needs to look into the
details of characteristic length and timescales of the system
set by the activity and the surrounding viscous medium. The
relaxation time τd = 6πηa/k for the bead motion in the vis-
cous medium under a harmonic driving potential, which also
determines the natural frequency ν0, is a crucial timescale in
our problem. In the rower model, there are two lengthscales, A
and μ (Fig. 1). Since we only vary A, we chose it as the typical
lengthscale. We note that our conclusion below, however, does
not depend on the choice of the lengthscale. Multiplying both
sides of Eq. (2) by τd/A leads to an adimensional equation for
the collective beating dynamics

dy′
i

dt ′ = f ′
i +

∑

i �= j

3 a

4ri j
(1 + (yi j/ri j )

2) f ′
j + ζi(t

′), (4)

where t ′ and y′ are dimensionless time t ′ = t/τd and
displacement y′ = y/A. f ′

j = −(y′
j − μσ j/2A) is the di-

mensionless force acting on rower j, and 〈ζ (t ′
1)ζ (t ′

2)〉 =
2kBT/(kA2)δ(t ′

1 − t ′
2) is the adimensional noise correlation.

As activity parameters A, k, and μ are constant, Eq. (4) is η

independent. The latter means that the spatial properties are
independent of η. However, as τd is affected by η, it impacts
the dynamical properties of the system. If any parameter A,
k, and μ are influenced by the medium, then our observation
will break down.

Above, we study the rower model, a minimal model for the
active beating of cilia. The hydrodynamic interaction between
cilia is implemented via Oseen coupling, assuming the beating
amplitude is very small compared to intercellular distance and
ignoring the surface effect and correlation in noise between
two cilia. We also assume that cilia are arranged in particular
ways in space and beat in a specific direction. Here, we argue
that the invariance of spatial properties of metachronal waves
in various viscous media is more general and not dependent
on the model chosen for cilia beating, nor on the cilia mu-
tual interaction in the viscous fluid, nor on the cilia spatial
arrangement. Indeed, for a more realistic cilia model, one
may choose a complex force profile for active beating having
more parameters fi [15,19]. For the hydrodynamic coupling,
the presence of the surface can be captured by the Blake
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tensor in the far field limit [38]. At low Reynolds number, the
hydrodynamic coupling tensor has the following properties: it
has a multiplicative scalar factor that is inversely proportional
to the drag coefficient γ and the tensorial part depends on the
position of the active forces.

For a generic hydrodynamic coupling G(ri, r j ) and corre-
lated noise between cilia, the equation of motion is given by

dri

dt
=

N∑

j=1

G(ri, r j )
(
f j + f r

j (t )
)
, (5)

where the random force (noise) f r
i obeys 〈f r

i (t1)f r
j (t2)〉 =

2kBT G−1(ri, r j )δ(t1 − t2) [25,39,40]. As we discussed above,
the coupling tensor can be written as G(ri, r j ) = G̃(ri, r j )/γ ,
with G̃ being dimensionless and independent of viscosity. We
note that this result may not hold true for the viscoelastic
or other complex fluids, which are beyond the scope of this
paper. However, the above analysis is expected to hold true for
complex models of cilia. As the motion of a cilium is localized
around a fixed position, for realistic cilia, there may at least
exist an effective force constant keff and a beating amplitude
Aeff. Therefore, the relevant lengthscale and timescale could
be written as Aeff and τd = γ /keff, respectively. The important
assumption here is that these activity parameters keff and Aeff

are independent of fluid viscosity. Now the dimensionless
dynamical equation for cilia i is given by

dr′
i

dt ′ =
N∑

j=1

G̃(ri, r j )
(
f ′

j + f r,′
j (t ′)

)
, (6)

where f ′
j = f j/(keffAeff ) is the dimensionless active force

on cilia j. For the dimensionless random forces, it can be
shown that they obey the following relation: 〈f r,′

i (t ′
1)f r,′

j (t ′
2)〉 =

2kBT/(keff(Aeff )2)G̃−1(ri, r j )δ(t ′
1 − t ′

2). Therefore, for a gen-
eral model for cilia with hydrodynamic coupling such as the
Oseen or Blake tensor, the equation can be written in dimen-
sionless form as in Eq. (6). Thus, in the steady state, the
spatial properties of the emergent waves will be independent
of viscosity, meaning that dissipation only affects temporal
parameters.

V. DISCUSSION AND CONCLUSION

Although the dimensional analysis cannot predict the oc-
currence or nature of emergent behavior, it is remarkable
in predicting that the wavelength or other spatial proper-
ties will be viscosity independent in general. This property
of hydrodynamically coupled oscillators could be used as a
simple framework to understand the origin of metachronal
waves in biological systems. The breakdown of such in-
variance can indicate the complexity of living systems. We
discuss three following scenarios where our prediction regard-
ing the independence of spatial wave properties with viscosity
may fail.

(1) For real cilia, the viscosity of the medium may in-
fluence the activity parameters and then our observation can
break down. As we discussed above, in this scenario the
right-hand side of Eq. (4), will be dependent of viscosity.
Therefore, we may not expect invariance of spatial proper-
ties of emergent waves. Experimental results [31,41] seem to

(a)

(b)

(c)

FIG. 6. Effect of viscosity in presence of athermal noise in one
dimension (N = L = 200). Correlation function C(x = m�) as a
function of the distance between rowers for (a) three different η

values (for A = 0.8 µm). The wavelength λ (in units of �) is plotted
against η (b). Decay length ld (in units of �) is plotted against η (c).
Unlike thermal noise where diffusivity is D = kBT/γ , in this ather-
mal case, the diffusivity D is kept constant to a value (=0.01µm2s−1)
while we vary η.

indicate a small dependency of cilia beating amplitude with
the liquid medium. Increased viscosity can also alter the
beating orientation [30,33], amplify the asymmetry between
the stroke and antistroke [41], and change other details of
the beating pattern [42]. These can cause changes in the
metachronal wave characteristics and in particular in the di-
rection of propagation. These experimental results indicate
that the beating machinery could adapt to the viscous load.

(2) The fluctuations in our study are thermal, where an
effective fluctuation-dissipation theorem is expected to hold.
However, some experiments point out that in real cilia and
flagella, the fluctuations are mostly dominated by those that
have an athermal origin [43–47]. To understand how this
athermal noise affects the spatial properties of metachronal
waves, we numerically study the model in presence of noise
with a strength kept constant against viscosity. We numeri-
cally solve Eq. (2) for different values of η, with a constant
noise strength D. The results are plotted in Fig. 6. There is
thus no thermal noise in this simulation and we expect spatial
properties then to depend on the viscosity as Eq. (4), will be
dependent of viscosity. We indeed observe that the correlation
lengthscale ld decays with viscosity, while the wavelength
remains almost constant. This is in contrast with the previous
(thermal) case where ld was constant as the viscosity was var-
ied. It also means that the wavelength is not much influenced
by dissipation.

(3) Another source of noninvariance of spatial properties
could be the viscoelastic nature of the fluid. For the viscoelas-
tic fluids, the timescales could be nonlinear as a function of
viscosity. The above dimensional argument will not hold, and
we believe that the invariance of spatial properties will not
be true in such a case. Experimentally, the wavelength seems
to be almost constant within a wide range of fluid viscosi-
ties [30,33], while the frequency ν and velocity V decrease as
a function of η. We note that in [34], the viscosity was varied
on a very large range. For viscosity larger than 20 mPa s, we
suspect that the liquid is no longer Newtonian and probably
viscoelastic given the high molecular weight polymers used
for the viscous solutions. For these higher viscosities, another
lower plateau in the wavelength is found: the wavelength
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seems to show a sudden change after a critical viscosity
value [34], after which the wavelength reaches a lower value
and remains constant.

In a recent work by Ringers et al. [48], an increase in
spatial correlation length (ld ) was observed with viscosity,
where methycellulose concentration was varied to increase
medium viscosity. Why this coherence lengthscale increases
with viscosity is not clear. This result cannot be explained by
our model either in the presence of athermal noise (Fig. 6) or
thermal noise. It is known that a higher methylcellulose con-
centration not only increases viscosity but also makes the fluid
viscoelastic. Whether viscoelasticity plays a role in increasing
the spatial coherence needs further investigations which is not
within the scope of this paper.

In conclusion, using a simple rower model of cou-
pled oscillators, we studied the influence of activity and
dissipation on the spatial and temporal synchronization
properties of cilia assemblies. The enhancement of cilia

activity increases the wavelength and beating period, keeping
the wave velocity almost unchanged. Remarkably, the viscos-
ity does not affect the spatial patterns of metachronal waves.
Using dimensional analysis, we demonstrate that this result is
robust against complexity of cilia model and hydrodynamic
coupling due to viscous media. On the contrary, the beat-
ing frequency and the wave velocity indeed decrease with
viscosity. The deviation from such a behavior may indicate
the influence of the medium on cilia activity, the presence
of athermal fluctuations, or the viscoelastic nature of the
medium. Our findings could pave the way for understanding
the emergence of specific functions of cilia in pathological
contexts [23].
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