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Inertial spin model of flocking with position-dependent forces
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We propose an extension to the inertial spin model (ISM) of flocking and swarming. The model has been
introduced to explain certain dynamic features of swarming (second sound, a lower than expected dynamic
critical exponent) while preserving the mechanism for onset of order provided by the Vicsek model. The inertial
spin model (ISM) has only been formulated with an imitation (“ferromagnetic”) interaction between velocities.
Here we show how to add position-dependent forces in the model, which allows to consider effects such as
cohesion, excluded volume, confinement, and perturbation with external position-dependent field, and thus
study this model without periodic boundary conditions. We study numerically a single particle with an harmonic
confining field and compare it to a Brownian harmonic oscillator and to a harmonically confined active Browinian
particle, finding qualitatively different behavior in the three cases.
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I. INTRODUCTION

Collective animal motion [1,2] is a particularly striking
aspect of emergent collective behavior where collective order
(as in flocks of birds flying together) can arise from simple
short-range interactions between individuals. Several models
have been proposed to describe flocking behavior, dating back
at least to the 1980s [3,4]. The paradigmatic Vicsek model of
flocking [5,6] (and the related Toner-Tu field theory [7–9])
has received much attention from the statistical physics com-
munity because it predicts the appearance of ordered flocks
starting with a simple set of microscopic local rules, simi-
larly to the way ferromagnetic order arises in the Ising or
Heisenberg models. It turns out that the phase diagram of
the Vicsek model is more complicated than that of the classic
ferromagnetic order-disorder transition, featuring a discontin-
uous transition and region with microphase separation (see
Ref. [10] for a review); however, it remains true that it allows
to explain how a flock with fully ordered velocities can result
from a local “ferromagnetic” imitation rule.

Although the Vicsek model is successful in explaining
many aspects of flocking at the static, or stationary, level, it
is not suitable. to interpret certain dynamical features related
to the presence of inertial effects. The finding of wavelike
propagation of direction information during turns in starling
flocks [11] led to the proposal of the inertial spin model
(ISM) [12], which we consider here. The model is described
in detail in Sec. II A, but it is essentially the Vicsek model
endowed with a Hamiltonian-like (second-order) dynamics,
so that second time derivative of the velocity is proportional to
the effective social force, instead of the first time derivative as
in Vicsek. Although it is true that in the thermodynamic limit
the large-scale behavior is described by an overdamped theory

[13], namely the Toner-Tu [8] hydrodynamic theory (which is
a coarse-grained version of the Vicsek model), inertial effects
can be observed in finite systems [14]. This is relevant in
the description of observations of biological flocks, which at
sizes of a few thousands of individuals are large but still far
enough from the thermodynamic limit that finite-size effects
are important. In the language of the renormalization group
(RG), a crossover phenomenon arises in the RG flow such that
at intermediate sizes the global properties will be described by
an inertial fixed point with an unstable direction, instead of the
stable overdamped fixed point that rules in the thermodynamic
limit [15].

The dynamic critical behavior of midge swarms [16] also
displays inertial effects. At moderate system size, the Vicsek
transition looks continuous [17], and it can be used to interpret
static aspects of swarms such as the presence of scale-free
correlations [18], but it is again insufficient to account for the
dynamic behavior. In particular the dynamic critical exponent
of the Toner-Tu theory [19] is higher than the experimental
value. A coarse-grained version of the ISM was recently em-
ployed [20] to show that both inertia and activity are needed
to explain the observations.

The ISM was introduced in Refs. [11,12] (see also the
review [21]). The formation of flocks at T = 0 was con-
sidered in Refs. [22] and [23], while the finite-temperature
equilibrium in the mean-field case was studied in Refs. [24]
and [25], and Ref. [26] considered a variant incorporating
uniform external fields controlling alignment and rotation but
with a sort of mean-field spin. In these works, as well as in
the numerical simulations of Refs. [12,20], infinite space or
periodic boundary conditions were employed.

In this work we consider extending the ISM to include
position-dependent forces. In the original ISM the interaction
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is between velocities (actually, velocity directions), such that
particles tend to align the velocities with each other, just as in
the Vicsek model. Positions enter the picture only indirectly,
through the definition of the interaction network (which can
be metric or topological [27]). There are several reasons why
positional forces are desirable. To treat finite systems with
metric interactions it is necessary to introduce some kind of
confinement, because otherwise small velocity fluctuations
eventually lead to particles becoming isolated from the flock
and thus “evaporating” the system to infinite dilution if the
boundary conditions are open. This can be avoided using
periodic boundary conditions, reflecting boundaries, external
fields, or interparticle interactions providing cohesion. Re-
flecting walls for confinement [28] or partial confinement
[29–31] and cohesion through attractive forces [32] have been
considered for the Vicsek case. Position-dependent interparti-
cle interactions may also be included for other purposes, e.g.,
to add an excluded volume potential that will limit the local
density [29]. Furthermore, an effective spatial confinement
mechanism, mediated by external landmarks, is crucial for
natural swarms to maintain global cohesion. Incorporating
this element into our theoretical model will thus offer a more
comprehensive understanding of the biological system. This
will help clarify the system’s bulk properties in the presence
of confinement as well as the significance of boundaries in
the swarm formation. A position-dependent external field can
also be interesting to study perturbation and response: A field
coupled to the velocities is straightforward to add (as it has
been done for Vicsek [33]), but experimentally it may be eas-
ier to impose a perturbation with a position-dependent field,
for example by implementing a moving artificial marker to
perturb an insect swarm [34].

Given the Hamiltonian structure of the ISM, which in-
volves velocity and spin as canonical variables, it is not
immediately obvious what is the best way to add a position-
dependent force. We discuss this in the next section. After
proposing a consistent way to implement these forces, we
explore numerically some results regarding field-induced
confinement.

II. INERTIAL SPIN MODEL WITH EXTERNAL
POSITION-DEPENDENT FORCES

Originally, the ISM was proposed [11,12] based on the ex-
perimental observation of second sound (i.e., order-parameter
waves) in the turning of starling flocks [11]. Second sound is
an indication that an inertial mechanism is at work that results
in propagation with constant speed (vs diffusive propagation
as it occurs in the overdamped case). The goal is then to
formulate a model with the static properties of Vicsek’s model
(i.e., capable of spontaneously producing orientational order)
but with inertial rather than diffusive dynamics [21]. It seems
thus reasonable to seek a Hamiltonian formulation, as this
will lead naturally to canonical (i.e., inertial) equations of
motion. One then needs to identify the correct canonical
coordinate-conjugate momentum pair. A key observation is
that when a flock changes direction of motion, individual
birds turn following paths of approximately the same radius
rather than following parallel paths (see Fig. 1). This suggests
that invariance under internal (rather than global) rotations

FIG. 1. Parallel path vs equal radius turns. Two three-particle
flocks are shown making a clockwise 90◦ turn (light red circles
represent the initial positions of the flock, light blue circles the
final positions). In the parallel path case (left), the result is a rigid
body rotation around a common center; this rotation is generated by
usual angular momentum. Instead, in the equal radius case (right),
which is required if all particles move at the same speed, the final
configuration does not result from a rigid body rotation: Note that the
particle at the front of the flock is c before the turn and a afterwards.
This transformation is generated by the spin, which rotates particles’
velocities.

is the relevant symmetry. Indeed, equal-radius turns are not
generated by rigid rotations (as are parallel-path turns) but by
rotations of the internal orientation of each individual, which
moves at approximately constant speed. These considerations
lead to recognize the Vicsek interaction as an interaction be-
tween orientations, rather than velocities, and to propose a
Hamiltonian formalism in which the particle orientation is the
canonical coordinate. Its canonical conjugate, the spin, is the
generator of internal rotations.

In a Hamiltonian theory, the symmetry under internal ro-
tations leads to conservation of the spin (the corresponding
momentum). Indeed this quantity can be conserved in an
equal-radius turn, in contrast to the angular momentum (gen-
erator of global, rigid rotations). Angular momentum could
be conserved in a turn following parallel paths, but this is for-
bidden by the requirement of constant speed. However, spin
conservation cannot be expected to hold exactly, so dissipation
of the spin is introduced by adding noise and friction terms
(as in the standard Langevin equation) in the spin equation of
motion. This is how temperature enters the theory, making it
possible to tune the system between order and disorder.

A. The original ISM

Let us first introduce the original ISM and then our pro-
posal to include position-dependent forces. For what follows,
it is convenient to derive the ISM using the velocity of the ith
particle vi and its canonical conjugate, instead of following
the original presentation [11,12,21] employing orientation and
spin. We do not consider speed fluctuations, so that a set of
hard constraints,

gi(vi ) = v2
i − v2

0 = 0, (1)

will be imposed. Note, however, that vi is treated as an internal
canonical coordinate, and completely unrelated, as far as the
Hamiltonian formalism is concerned, to the usual mechanical
momentum. Its canonical momentum, which we call wi, is
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defined by {
v

μ
i ,wν

j

} = δi jδ
μν, (2)

where {. . .} are Poisson brackets. The Hamiltonian formalism
applies to the space of the internal degrees of freedom (vi, wi );
the connection between vi and the actual particle velocity is
made through an extra equation

ṙi = vi, (3)

which complements the canonical equations of motion. Since
ri is also a parameter of the Hamiltonian (via the potential),
the whole theory is in this sense pseudo-Hamiltonian.

One proposes a Hamiltonian,

H =
∑

i

w2
i

2μ
+ V ({vi}) +

∑
i

λigi(vi ). (4)

The first term, which has the form of a kinetic energy, intro-
duces inertia, with μ a social, or effective, mass. The role
of the third term is to enforce the constraints through the
Lagrange multipliers λi. The second term is an interaction
potential, which in the ISM is chosen to implement Vicsek’s
[5] velocity-imitation. In continuous time this is obtained from

V ({vi}) = J

v2
0

∑
i j

ni jvi · v j, (5)

with J a coupling constant and ni j the adjacency matrix, which
defines the interaction network (ni j = 1 if i and j are interact-
ing neighbors, and 0 if not). Positions enter into H through
the adjacency matrix, which can be defined to implement
metric (through a cut-off radius) or topological (by choosing a
fixed number of nearest neighbors) interactions. As far as the
Hamiltonian formalism is concerned, positions are just param-
eters of the potential, but the extra equation ṙi = vi turns them
into coordinates and the model into an active model.

The canonical equations of motion are

v̇i = ∂H
∂wi

= wi

μ
, (6a)

ẇi = −∂H
∂vi

= fi − 2λivi, (6b)

where fi = ∂V/∂vi is the interaction force. The Lagrange
multipliers can be found using the relations v̇i · vi = 0 and
(v̇i )2 + vi · v̈i = 0, which follow from the first and second
time derivatives of the constraint. Equation (6b) is then

ẇi = f⊥
i − (v̇i )2

v2
0

vi, (7)

with ⊥ denoting the projection in the direction perpendicular
to the velocity,

a⊥ = a − (a · vi )
vi

v2
0

= − 1

v2
0

vi × (vi × a). (8)

Now it is convenient to introduce the spin of the ith particle
as si = vi × wi. The Poisson brackets{

sμ
i , vν

j

} = δi jε
μνρvρ,

{
sμ

i ,wν
j

} = δi jε
μνρwρ, (9)

where Greek superindices indicate cartesian components, δi j

is Kroneker’s delta, and εμνρ is the completely antisymmet-
ric tensor, show that si does generate the internal rotations.
Using the constraint again, the condition vi · wi = 0 allows to
express the momentum in terms of the spin, wi = −vi × si/v

2
0

and the Hamiltonian can be written as

H =
∑

i

s2
i

2χ
+ V ({vi}), (10)

defining χ = v2
0μ. The final equations of the ISM are

ṙi = vi, (11a)

v̇i = 1

χ
si × vi, (11b)

ṡi = vi ×
⎡
⎣ J

v2
0

∑
j

ni jv j − η

v2
0

v̇i + 1

v0
ξi

⎤
⎦, (11c)

where we have added the friciton and stochastic terms,
with 〈ξμ

i (t )〉 = 0, 〈ξμ
i (t )ξν

j (t ′)〉 = 2ηT δi jδ
μνδ(t − t ′). Note

that (11b) and the deterministic part of (11c) can be derived
either substituting si for wi in (6) or directly from the Hamil-
tonian (10) and the Poisson brackets,

v̇i = {vi,H} = −vi × ∂H
∂si

, (12a)

ṡi = {si,H} = −vi × ∂H
∂vi

− si × ∂H
∂si

. (12b)

In contrast, (11a) does not follow from {r,H}.
Let us stress again that the Hamiltonian structure of the

ISM involves vi and wi (or si) and not the positions. For
example, in two-dimensional (2-d) one can show that the
velocity orientations interact like in an inertial Kuramoto
model [23]. Adding an external force that acts directly on
the velocities is thus as straightforward as adding an external
field in a Kuramoto model: One can add a term h · ∑

i vi in
the Hamiltonian, and this fits in perfectly within the Hamil-
tonian equations, because vi is a canonical variable. On the
other hand, ri is not a canonical variable, but the integral
of vi, i.e., something analogous to the integral of the Ku-
ramoto orientations, which is a nontrivial object to treat within
the Hamiltonian formalism. For this reason, adding a force
that depends on ri is not straightforward. This is what we
discuss next.

B. Position-dependent forces

Now we want to introduce position-dependent forces and
fields. While a velocity-dependent field can be added quite
naturally in the formalism as a new term Hfield(vi ) in Hamil-
tonian (10), position-dependent forces require some thought
because position is not part of the canonical variables of this
Hamiltonian. There are in principle two ways to add these
forces. One can expect that they should appear in (11b), or
(6a), just as in ordinary Newton’s equation. Alternatively, one
can argue that the forces should appear in (11c) or (6b), since
it is this equation that encodes the inertial mechanism that
controls motion in this model. We shall add both kind of force,
but it will turn out that both can be handled as a new force in
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the spin equation, provided it depends on the velocity in a
specific way.

The forces must be added in a way that respects the con-
straint of constant speed, so that it is convenient to start
with (4), which uses wi and includes the constraint explic-
itly through the multipliers λi. We propose to add the forces
writing

H =
∑

i

w2

2μ
+ V ({vi}) −

∑
i

vi · F({r})

+
∑

i

wi · G({r})

m
+

∑
i

λi
(
v2

i − v2
0

)
, (13)

where G and F are the new position-dependent forces and we
have allowed the possibility that the mass associated to the
positional force, m, is different from μ. The corresponding
canonical equations are

v̇i = ∂H
∂wi

= wi

μ
+ Gi

m
, (14a)

ẇi = −∂H
∂vi

= − ∂V
∂vi

+ Fi − 2λivi. (14b)

So far our choice of the new terms in the Hamiltonian
has been motivated by how the equation of motion will look,
i.e., whether the force will act directly on the acceleration
v̇i, or indirectly through ẇi. However, looking directly at the
Hamiltonian one may wonder whether more general terms,
coupling nonlinearly to vi or wi, would be better choices. The
coupling to vi is standard in Hamiltonian systems, since vi

plays the equivalent of a position and can certainly be made
nonlinear. However, this is clearly not what we want here,
because that would lead to forces dependent on both vi and
ri, and we wish to separate the interactions between velocities
[the term V ({vi})] and those dependent on positions. As for
the term proportional to wi, it turns out that it would be
problematic to choose it nonlinear in wi. One needs that the
terms involving wi (the “kinetic energy”) be convex, so that
the Hamiltonian can be related to a corresponding Lagrangian
via a Legendre transformation. A nonconvex Lagrangian leads
to multivalued Hamiltonian and ill-defined dynamics [35].
Although nonconvex Lagrangians have been discussed for
quantum systems and to study spontaneous breaking of time-
translation invariance [35–37], we here we would rather stick
to the classical Hamiltonian formalism. Nonlinear couplings
can be introduced at the price of restricting the parameters
(e.g., the coefficients of a polynomial in wi) so that convexity
is preserved (as for example in Ref. [38], where a Hamilto-
nian with terms both linear and quadratic in the velocities is
considered), we avoid this because it could lead to imposing
restrictions on the form of G({ri}).

We thus restrict ourselves to linear couplings to vi and wi

and proceed to eliminate the λi from the equations of motion
using the fact that first and second time derivatives of the
constraints must vanish to find

λi = μ

2v2
0

(
wi

μ
+ Gi

m

)2

+ vi

2v2
0

· (fi + Fi ) + μ

2mv2
0

Ġi · vi.

(15)

Equation (14b) becomes then

ẇi = f⊥
i + F⊥

i − μ

v2
0

(
wi

μ
+ Gi

m

)2

vi − μ

mv2
0

(Ġi · vi )vi. (16)

As before, the equations assume a simpler form if one
introduces the spin. Defining si = vi × wi, this can be in-
verted with the help of the constraint to find wi = −μ(vi ·
Gi )/(mv2

0 ) − vi × si/v
2
0 and rewrite (14a) and (16) as

v̇i = − 1

χ
vi ×

[
si + μ

m
vi × Gi

]
, (17a)

ṡi = vi × (fi + Fi ) − χ

X 2
(vi · Gi )(Gi × vi )

− 1

X
Gi × (vi × si ), (17b)

with χ = v2
0μ, X = v2

0m, which reduce to (11) (apart from
noise) when Fi = Gi = 0. Equations (17) can be further sim-
plified, because not every form of Gi will lead to observable
changes in particle trajectories. The situation is similar to
the case of the Hamiltonian formulation of electromagnetic
forces, where a gauge transformation alters the vector poten-
tial but not the trajectories. This can be seen by redefining the
momentum and spin: Equations (14a) and (17a) suggest to de-
fine zi = wi + (μ/m)Gi, and s̃i = vi × zi. Renaming s̃i −→
si and adding the stochastic terms the equations of motion
finally read

v̇i = 1

χ
si × vi, (18a)

ṡi = vi ×
[
− ∂V

∂vi
+ Fi + χ

X
(vi · ∇)Gi

]

+vi ×
[
− η

v2
0

v̇i + 1

v0
ξi

]
. (18b)

The final equations of motion cannot be written from Poisson
brackets, because ri is not a canonical coordinate, and in
consequence Ġi = (vi · ∇)Gi does not follow naturally from
{G,H}. However, it is possible to write a slightly differ-
ent Hamiltonian that will yield (18) from v̇i = {vi,H}, ṡi =
{si,H}, provided Gi can be written as a gradient, Gi = ∇�i:

H =
∑

i

s2
i

2χ
+ V ({vi}) −

∑
i

vi · Fi(ri )

+ μ

2m

∑
iμν

v
μ
i vν

i

∂2�(ri)

∂rμ
i ∂rμ

i

. (19)

C. Overdamped limit and dimensionless quantities

It is possible to eliminate si and write a single, second-
order, equation of motion for the velocity. This can be more
convenient for numerical integration, as then one can apply
one of the well-known discretizations used in molecular or
stochastic dynamics (see, e.g., Ref. [39]):

χ
v̈i

v0
+ χ

(v̇i )2

v2
0

vi

v0
+ η

v̇i

v0

= J
∑

j

ni j

v⊥
j

v0
+ v0F⊥ + χ

X

(
vi

v0
· ∇

)
v2

0G⊥
i + ξ⊥. (20)
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Writing the equation in this way makes it clear that the left-
hand side is independent of v0 (in effect, we are writing an
equation of motion for the orientation), and so must the right-
hand side. The interaction force is clearly independent of v0

(as it should since it comes from a potential energy involving
orientations), but in this form we realize that the positional
forces must be such that v0Fi and v2

0Gi are independent of
the speed. For what follows it is then convenient to introduce
ψi = vi/v0.

We now seek the overdamped limit of (20). Rescaling the
time t → t̂ = t/a we have x̂i(t̂ ) = x̂i(t/a) = xi(t ), v̂i(t̂ ) =
d x̂/dt̂ = av, v̂0 = av0, ψ̂(t̂ ) = v̂/v̂0 = ψ(t ), and ˙̂ψ = aψ̇ , so
that

χ

a2
¨̂ψi + χ

a2
( ˙̂ψi )

2ψ̂i + η

a
˙̂ψi = J

∑
j

ni jψ̂
⊥
j + v0F⊥

+ χ

X
(ψ̂i · ∇)v2

0G⊥
i +

√
2T η

a
ξ⊥(t̂ ), (21)

where we have redefined ξ so that 〈ξi(t̂ )ξ j (t̂
′)〉 = δ(t̂ − t̂ ′)δi j .

Choosing a ∝ η one arrives at an equation that will become
first order in the limit χ/η2 → 0. It is convenient that a have
units of time so that t̂ is nondimensional. We choose a = η/J ,
and write the equations of motion as

˙̂x = v̂0ψ̂(t̂ ) (22a)


 ¨̂ψi + 
( ˙̂ψi )
2ψ̂i + ˙̂ψi =

∑
j

ni jψ̂
⊥
j + F̂⊥ + χ

X
(ψ̂i · ∇)Ĝ⊥

i

+
√

2T

J
ξ⊥(t̂ ), (22b)

where we have defined


 = Jχ

η2
, (23a)

F̂i = v0

J
Fi, (23b)

Ĝi = v2
0

J
Gi. (23c)

All these quantities are dimensionless [provided one
chooses the units of G so that μ and m have the same units
so that χ/X is nondimensional, see Eq. (14a)].


 is a measure of the relative weight of inertia vs dis-
sipation. The overdamped limit is obtained taking 
 → 0,
in which case the equation for the orientation becomes first
order, yielding a continuous-time version of the Vicsek model:

˙̂x = v̂0ψ̂(t̂ ) (24a)

˙̂ψi =
∑

j

ni jψ̂
⊥
j + F̂⊥ + χ

X
(ψ̂i · ∇)Ĝ⊥

i +
√

2T

J
ξ⊥(t̂ ).

(24b)

In what follows we shall consider the case of a single
particle and a harmonic restoring force F̂ = −k0x̂. For this
force, the overdamped equation (but not the full ISM) reduces
to a form that looks like the harmonic oscillator,

¨̂x = −v̂0k0x̂⊥ + v0

√
2T

J
ξ⊥(t̂ ), (25)

but with a nonlinearity introduced by the projector operator.
Explicitly, going back to dimensionful time,

ηẍ = −k0Jv0x + k0Jv0(ψ · x)ψ +
√

2ηT ξ⊥(t ). (26)

III. NUMERICAL RESULTS

To gain some insight into the behavior of the modified
model, we consider the case of a single particle in an ex-
ternal field to study the confinement effects. We solve the
equations of motion numerically in their second-order form
(20). We have employed an integration scheme used for the
ISM in Ref. [39], which has been used in Brownian dynamics
simulations [40] and based on a velocity Verlet integrator with
Lagrange multipliers to enforce fixed speed (see Appendix for
details). We consider the simplest form of the force to achieve
confinement, namely a simple harmonic force,

Fi = − 1

v0
k0xi, (27)

and set Gi = 0. All results shown are in 2-d .
This is the simplest situation one can think of beyond a

free particle. We choose this as the first application of the
modified ISM because we can clearly gauge the effects of
the position-dependent field, which is the new element in
the model, and check that it effectively produces the desired
effect, i.e., confinement. But this scenario is also useful for
the case of swarms of insects in laboratory conditions, in
closed environments (e.g., Refs. [41–44]) and low densities
[45], where interactions can be mostly neglected. We ask
whether inertial effects can be inferred from the trajectory
of a single individual and whether in this situation the ISM
can be distinguished from other simple models of a confined
particle. Thus we will compare results at high and very low

 (essentially equivalent to comparing the ISM and Vicsek
models) and also to two other simple models of confined
inertial particles: the Brownian (massive) harmonic oscillator
and the active Brownian particle [46,47].

The Brownian harmonic oscillator (HO) is a useful com-
parison, partly in view of Eq. (25), but mostly as a null model,
being the simplest nonactive model for a confined, fluctuating
particle. Clearly the complications of active models are not
worth if the resulting phenomenology cannot be distinguished
from that of the HO. The Brownian HO is described by the
inertial Langevin equation

mẍ + ηẋ + k0x = ξ (t ), (28)

and the inertial parameter describing the underdamped–
overdamped crossover is 
HO = k0m/η2. The dynamic equa-
tions for the inertial active Brownian particle (ABP) [48] with
an harmonic confining field are, in 2-d

mẍ = −ηẋ − k0x + ηv0(cos θ, sin θ ) + ξ (t ), (29)

θ̇ = ζ , (30)

where θ (t ) is the heading direction, v0 will be held constant
and ξ (t ) and ζ (t ) are Gaussian white noise processes with
zero mean and variances 2T η and 2Dr , respectively (T is the
temperature and Dr is a rotational diffusion constant). The
inertial parameter is 
ABP = k0m/η2.
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FIG. 2. Mean-squared displacement d2(t ) vs time for the ISM
with harmonic confining force at different values of 
 and k0. Left
panels correspond to 
 = 3 × 10−5, and right panels to 
 = 2.5.
The top panels show the MSD for k0 = 1 (blue) compared to the
free particle (k0 = 0, orange), and the lower panels have k0 = 0.02
(green) and k0 = 0. Note that the orange curves correspond to free
particles with different inertia, and hence the diffusive regime is
reached at different times. The dashed lines have slope 2 (green)
and 1 (orange) and are a guide to identify the ballistic and diffusive
regimes. Time is measured in units of η/J and position in units of
v0η/J . The MSD is an average over 100 trajectories. Insets show
sample trajectories, with the same color code as the main panels.

A quantity that must be sensitive to confinement effects
is the mean-squared displacement (MSD) d2(t ) = [x(t ) −
x(0)]2, which we show in Fig. 2 for the ISM with two different
values of the dimensionless parameter 
 (23a) (recall 
 	 1
means inertia dominates, while 
 
 1 corresponds to over-
damped systems) and different field strengths (i.e., different
k0). The MSD curves are obtained as an average over 100
trajectories, after discarding an initial time so that the MSD is
stationary. In all cases, for very short times there is a ballistic
regime (d2 ∼ t2) which crosses over to a diffusive (d2 ∼ t)
regime for the free case. If the confining field is present,
then the displacement eventually saturates at an 
-dependent
plateau (Fig. 3). For weak-enough fields, the diffusive regime
can be observed before the plateau, but at high fields the con-
finement effects manifest before the transition from ballistic
to diffusive motion. The presence of the external field brings a
qualitative change in the shape of d2(t ) in the expected direc-
tion, i.e., a plateau appears indicating the particle is confined.
However, there is no qualitative difference between high and
low 
. The ballistic regime results from the persitence of the
velocity (i.e., the fact that velocities have a finite correlation
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FIG. 3. Dependence of the plateau of the mean-squared displace-
ment on 
 and confinement strength k0 for the harmonically confined
ISM.

time, see below). In the usual Brownian motion, persistence
is a result of an inertial term, but the pure Vicsek particle (the
overdamped 
 → 0 limit) also leads to a persistent random
walk at low-enough temperature, so all the curves of Fig. 2
look qualitatively the same (except for the obvious fact that
there is no plateau if k0 = 0). Increasing 
 delays the onset
of the diffusive regime, which is hardly observable when
both 
 and k0 are high. Also, the value of the plateau itself
depends on 
 and on k0 (Fig. 3). The asymptotic d2 goes as
∼1/k0, similarly to the Brownian harmonic oscillator where
by equipartition one has 〈x2〉 = kBT/k0. On the other hand,
the plateau grows (almost linearly in the explored range) with

, quite differently from the Browinan oscillator, where the
confinement scale is independent of the mass. The ABP (not
shown) behaves very similar to the ISM (the plateau goes as
∼1/k0 and depends on 
ABP), except that the plateau depen-
dence with inertia is clearly superlinear for 
ABP greater than
approximately 2.

The effects of confinement can also be noticeable in the ve-
locity correlation function Cv (t ) = 〈v(t ) · v(0)〉 (Fig. 4). If the
confining field strength is large enough, then there is a range
of times for which anticorrelation is observed and followed,
at high 
, by damped oscillations. The first anticorrelation
minimum should not be mistaken for an inertial effect: It is
due to the fact that the velocity changes direction due to the
confinement force, and it is actually observed both at low
and high 
 for large-enough k0. For k0 = 1 it can be seen
that Cv (t ) has its first minimum around t ≈ 3, which is the
time at which confinement effects start to be noticeable in
d2(t ) (cf. top panels of Fig. 2). At this time, the diffusive
regime has not yet been reached, and the correlation function
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FIG. 4. Velocity time correlation function Cv (t ) for 
 = 3 ×
10−4 (left) and 
 = 2.5 (right) and three values of k0. The vertical
dotted line indicates the time at which the system with k0 = 1 starts
feeling the confinement effects of the field (Fig. 2). For the lower
value of k0, confinement is only observed around t ≈ 20 to 25 η/J ,
which is out of the scale of the abscissa.

of the free particle is still nonvanishing. In contrast, for weaker
fields (e.g., k0 = 0.02 in Fig. 4) it can happen that the MSD
starts deviating towards the plateau already in the diffusive
regime, when the velocity has lost correlation [as measured
by Cv (t ) for the free case]. In this case no anticorrelation
minimum is observed. Inertial effects manifest, for large k0, in
the presence of damped oscillations in Cv (t ), lasting roughly
during the transition from the ballistic regime to the plateau in
the MSD. For all k0, when 
 is large the correlation function
has a flat derivative as t → 0, a sign of second-order dynam-
ics (see discussion in Ref. [16]). This can be seen plotting
h(x) = − logC(x)/x with x = t/τ and τ is the correlation
time (Fig. 5). h(x) tends to a constant for x → 0 if C(t )
resembles a simple exponential for short times (overdamped
system) or to 0 if C(t ) has a flat derivative. For the correlation
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t/τv
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h
(t

/
τ v

)
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k0 = 1.0
k0 = 0.02

FIG. 5. The function h(x) = − logCv (x)/x|x=t/τ for 
 = 3 ·
10−4 (full lines) and 
 = 2.5 (dotted lines). Colors indicate values
of k0 as in Fig. 4.
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FIG. 6. Correlation times ratios vs inertial parameter for the
ISM (top), 2-d stochastic harmonic oscillator (middle) and active
Browinian particle (bottom).

time τ we have used the spectral definition [49],∫ ∞

0

dt

t

C(t )

C(t = 0)
sin

(
t

τ

)
= π

4
. (31)

The extrapolation of h(x) to x = 0 is appreciably different
from 0 only for rather low values of 
, dropping rather sharply
to very low values around 
 = 10−1 (see Fig. 7).

The velocity time correlations look similar to those of an
harmonic oscillator with Langevin dynamics. However, the
behavior of the active system is different from the harmonic
oscillator’s. One way to see this is considering the correlation
times of the three dynamical variables position x, velocity v,
and spin s. Since the spin can be computed from the trajec-
tories as s = μv × v̇, this definition can also be applied to
trajectories of the harmonic oscillator and the ABP, even if
the spin does not play a significant role in those models. So
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FIG. 7. Number of times a trajectory crosses itself during one
velocity correlation time vs inertial parameter for the ISM, harmonic
oscillator, and ABP (middle panel). The values have been normalized
to 1 at 
 = 0 to be able to plot them together, since the value at small

 varies much for the three models. Bottom panel: h(x) (see Fig. 5)
extrapolated to x = 0 for the ISM. Top panel: Example trajectories
near the crossover in crossings.

we can compute the time correlation functions for position
Cx(t ), velocity Cv (t ), and spin Cs(t ) in the three systems.
The ratios τv/τx and τs/τx show quite different behavior as
a function of 
, 
HO, or 
ABP (Fig. 6). In the HO, both
ratios increase monotonically as the system becomes more
underdamped, while in the ISM τv/τx is monotonically de-
creasing and τs/τx reaches a maximum near 
 = 1 and then
decreases. The third ratio, τs/τv , is monotonically increasing
in both cases, but as 
 → 0 it tends to 1 for the HO while it
goes to zero for the ISM, as in the latter the spin correlation
time vanishes more quickly than that of the velocity. In the
ABP, τs and τv are always very similar and are both smaller
than τx. Their value relative to τx increases monotonically
with 
ABP, and as 
ABP grows all correlation times tend
to coincide.

If the relaxation times could be computed at several values
of the inertia, then it would be possible to discriminate among
the three models. However, this is harder when working at

fixed 
 (which would be the typical situation in experimental
observations). But in principle one could use h(x) for the
velocity correlation function Cv (t ) to estimate whether 
 is
high or low and then study the relaxation time ratios. If h(x)
stays finite for x → 0 (low 
), then τs/τv < 1 is not compati-
ble with simple harmonic motion, and neither is the presence
of a ballistic regime in d2(t ). At high inertia instead, τs/τx

and τv/τx both less than one and of similar value would be
incompatible with an HO. Also τs/τv much different from 1
would exclude the ABP at any value of inertia.

Finally, we have considered a measure of the trajectories’
shape. The sample trajectories in Fig. 2 show that in the iner-
tial case the particle finds it more difficult to turn back on itself
and responds to confinement making turns with smoother
curvature than in the overdamped case. This suggests that
measuring the number of times the trajectory intersects with
itself might be a way to detect inertial effects directly from the
trajectory. We show the number of self-intersections during
one velocity correlation time in Fig. 7. It is clear that at
low inertia the trajectory crosses itself much more often than
at high 
. This tendency is also observed in the harmonic
oscillator and the ABP. A rather sharp drop is observed at
a model-dependent value of 
. Inspecting the trajectories
directly, it is clear that this number decreases as trajectories
turn less on themselves and tend to make smoother loops
rather than sharp turns. However, it is not evident that there is
a clear qualitative change in their shapes across the crossover.
Figure 7 also shows the value h0 of h(x) extrapolated to x = 0.
Although it also displays a rather sharp crossover, it occurs at
a value of 
 about a hundred times smaller than that of the
crossings. The two quantities thus reflect different properties
of the trajectories.

IV. DISCUSSION AND CONCLUSIONS

We have shown how the inertial spin model equations of
motion must be modified to include position-dependent
forces. The most compact formulation is in terms of velocity
and spin, Eqs. (18), where the positional forces enter only
in the equation for the spin. The ISM was proposed as an
extension of the Vicsek model, and thus it introduces activ-
ity in the same way, which is perhaps the simplest one can
imagine: by imposing a hard constraint on the particles’ speed.
This, plus the ISM’s own Hamiltonian structure, greatly limits
the way in which position-dependent forces may be added
to this model. Another approach to introducing activity is to
endow the particles with a “heading” or “spin,” which is an
internal degree of freedom related to but different from the
velocity, as in active Brownian particles [46,47]. This is also
the approach of the purely Hamiltonian, conservative, active
model of [50]. Interestingly, in that model the Hamiltonian
structure also places limits in the kind of interaction term one
can consider (in that case the interaction between velocity and
spin [38]).

As a simple application of the new equations, we have
considered a single harmonically confined active particle,
and shown how inertia can be detected in this simple case
without collective effects. We have shown the confined ISM
shows behavior qualitatively different from both the Brownian
harmonic oscillator (our null, nonactive, model for confined
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motion) and the active Brownian particle, another simple
model for self-propelled particles. The three models show a
plateau in the mean-square displacement that depends in the
same way on the strength of the confining field (measured by
the value of the harmonic constant k0). However, the active
models distinguish themselves from the harmonic oscillator
in that the plateau also depends on the value of the inertial
parameter 
 or 
ABP. Up to the explored values of 
, this
dependence is linear for the ISM, while a nonlinear regime is
evident in the ABP.

We have also studied the time correlation functions that
can be computed from the trajectory. The effect of strong con-
finement is the appearance of an anticorrelation minimum in
the velocity temporal self-correlation. This anticorrelation ap-
pears when the velocity is forced to change direction at times
shorter than the correlation time of the free particle under
otherwise identical parameters; it appears in over- and under-
damped systems and is unrelated to inertia. When present,
inertia manifests in the slope of the correlation function at
short times (Fig. 5) and in the presence of damped oscillations
beyond the first anticorrelation minimum. Such damped oscil-
lations were recently reported for male Anopheles gambiae
(malaria mosquitoes) in laboratory swarms [44]. Also, the
trajectories recorded in that work appear to show relatively
smooth loops, similarly to the simulated trajectories at high

 (Fig. 2), rather than the more tortuous trajectories of the
low-
, Vicsek-like case. Thus, inertia seems an important
ingredient to include in the modeling, even for the study of
single individuals, making the present developments useful
for attempting to apply the ISM to the analysis of these
and other experiments on laboratory-confined swarms (e.g.,
Refs. [42,43]). However, the velocity correlation function
alone is not enough to distinguish among the harmonic oscil-
lator, the ISM and the ABP, as the different parameters in each
model can be tuned to give very similar correlation functions.
We have shown that the models display clear differences when
one examines the trends of the relaxation times and the plateau
in the mean-squared displacement (Figs. 3 and 6). Unfortu-
nately in the experimental case one will usually not be able to
tune 
, so discriminating among models will be harder, but
some conclusions can be drawn examining together the MSD
and the three relaxation times.

As a next step, it is clearly of interest to study systems of
many particles with open boundary conditions, maintaining a
finite density through confinement or cohesive interactions.
This can be done with the present formulation of the iner-
tial spin model, and it is worth pursuing to achieve a better
description of experimental results as well as to gain fur-
ther theoretical understanding of the collective properties of
active models. As an example, in a series of recent papers
[51–53], it has been claimed that, for the Vicsek model, re-
placing periodic boundaries with an harmonic confinement
alters the behavior of the model near ordering, giving rise
to a phase transition characterized by scale-free chaos and
an extended criticality region and yielding different static
and dynamic critical exponents. Open conditions thus deserve
deeper inquiry for both over- and underdamped inertial sys-
tems. Finally, position-dependent forces can also be used to
investigate the response of a swarm to external perturbations
that do not directly alter the velocities.

In summary, we have shown how positional forces should
be added to the inertial spin model, preserving its Hamiltonian
structure, and presented evidence that a single confined parti-
cle displays qualitatively different behavior in the ISM than
in two other simple models of confinement (one equilibrium,
one active). This development makes it possible to use the
ISM without periodic boundary conditions by introducing
either a confining field or cohesion. The addition of these
new ingredients allows to apply the ISM to a broader range
of conditions and to simulate more closely various aspects of
biological groups.
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APPENDIX: DETAILS OF THE NUMERICAL
SIMULATIONS

To simulate the ISM or the Brownian harmonic oscilla-
tor we integrate numerically the corresponding differential
equations. In the case of the ISM model, since we have the
constraint v2(t ) = v0 we use an integration scheme used in
Brownian dynamics which allows for an exact implementation
of said constraint via Lagrange multipliers and which in the
underdamped case 
 → ∞ reduces to the velocity Verlet
integrator widely used in molecular dynamics due to its good
energy conservation properties and computational affordabil-
ity [40]. The only drawbacks is that the overdamped case with
χ strictly equal to 0 cannot be integrated using this method.
This scheme has been employed before in simulations of the
ISM, e.g., in Ref. [39].

To arrive at an integration algorithm we start from the
second-order equation (20), which we rewrite as

d2v
dt2

= v2
0

χ
[F + Fv + fc], (A1)

where the first term represents the position-dependent external
(in our particular simulation case F = − k0

v0
x), the next term

includes the random and viscous forces and fc is the con-
straint force. At the continuous level it is given by the rest
of (20), but for the numerical integration it is computed as
explained below, so that the constraint is enforced exactly. To
obtain the discretized equations we integrate (A1) assuming F
varies linearly with time in a small interval �t . The term fc is
disregarded at first and later reintroduced as explained below.
Defining a = dv

dt , b = da
dt one arrives at

r(t + �t ) = r(t ) + �tv(t ), (A2)

v(t + �t ) = v(t ) + �tc1a(t ) + (�t )2c2b(t )

+ (�t )2c2ζ1v(t ) + �v (t ), (A3)
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a(t + �t ) = c0a(t ) + (c1 − c2)�t[b(t ) + ζ1v(t )]

+ c2�t[b(t + �t ) + ζ2v(t + �t )] + �a(t ),

(A4)

b(t + �t ) = v2
0

χ
F[r(t + �t )], (A5)

where λ and μ are related to the constraint, the other constants
result from the integration as

c0 = e−η�t/χ , (A6)

c1 = χ

η�t
(1 − c0), (A7)

c2 = χ

η�t
(1 − c1), (A8)

and �v and �a are random variables related to the random
force. They are independent for each axis and each pair of
components is drawn form a bivariate Gaussian distribution
with zero first moments and second moments given by

〈
�2

v

〉 = T χ

η2

(
2

η

χ
�t − 3 + 4c0 − c2

0

)
, (A9)

〈
�2

a

〉 = T

χ

(
1 − c2

0

)
, (A10)

〈�v�a〉 = T

η
(1 − c0). (A11)

The discrete equations reduce to the velocity Verlet integrator
for molecular dynamics [54,55] in the underdamped η → 0
limit.

The constraint is enforced as in the RATTLE algorithm
[56], only that since the constraints on each particle are inde-
pendent, the Lagrange multipliers can be found analytically
and there is no need of an iterative procedure. Imposing
v2(t + �t ) = v2

0 and v(t + �t ) · a(t + �t ) = 0 one obtains

ζ1 = ω+ − 1

(�t )2c2
, (A12)

ζ2 = −v(t + �t ) · a′(t + �t )

c2v
2
0�t

, (A13)

where ω+ is the positive root of

v2
0ω

2 + 2v · �vω + �v2 = v2
0, (A14)

�v = c1�ta(t ) + c2(�t )2b(t ), (A15)

and a′(t + �t ) is equal to a(t + �t ) without the term propor-
tional to ζ2.

Each step is performed in two stages, as in the velocity
Verlet scheme [54]. First the random variables are drawn, r
is updated, a is partially updated using only the terms that
depend on quantities evaluated at t , v is updated and then the
constraint terms are computed and applied. Second the forces
for the new positions and velocities are computed, and finally
the update of a is completed.

For the results reported here, we have set �t = 0.001 and
the friction coefficient and temperature respectively to η = 1
and T = 1.
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