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Active shape control by plants in dynamic environments
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Plants are a paradigm for active shape control in response to stimuli. For instance, it is well known that a tilted
plant will eventually straighten vertically, demonstrating the influence of both an external stimulus, gravity, and
an internal stimulus, proprioception. These effects can be modulated when a potted plant is additionally rotated
along the plant’s axis, as in a rotating clinostat, leading to intricate shapes. We use a previously derived rod model
to study the response of a growing plant and the joint effects of both stimuli at all rotation speeds. In the absence
of rotation, we identify a universal planar shape towards which all shoots eventually converge. With rotation,
we demonstrate the existence of a stable family of three-dimensional dynamic equilibria where the plant axis is
fixed in space. Further, the effect of axial growth is to induce steady behaviors, such as solitary waves. Overall,
this study offers insight into the complex out-of-equilibrium dynamics of a plant in three dimensions and further
establishes that internal stimuli in active materials are key for robust shape control.
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I. INTRODUCTION

Active materials are characterized by their ability to
adapt to external stimuli, often manifested by changes in
shape. A paradigm of this adaptability is observed in the
growth patterns of plant shoots, which exhibit remarkable
sensitivity not only to their environment (e.g., light, gravity,
wind) [1] but also, intriguingly, to their own evolving shapes,
a phenomenon called proprioception [2,3]. We show that
this synergistic response to multiple stimuli serves as a
robust mechanism for plants to maintain their shape in highly
dynamic environments. An important type of response in plant
shoots is gravitropism [Fig. 1(a)], the tendency to react and
orient their growth against the direction of gravity [4]. While
modifying gravity experimentally is challenging, it is possible
to nullify its influence by rotating the plant sufficiently fast in
a clinostat [5], shown in Fig. 1(b). This device, patented by
Julius von Sachs circa 1880 [6,7], imparts a constant rotational
motion to the plant, thereby cyclically altering the relative
direction of gravity. To simulate weightlessness, the clinostat
must rotate at a relatively high angular speed ω, compared
to the response of the plant, allowing for the averaging out
of gravity’s influence over multiple rotations [8]. In such a
case, the plant grows straight. Further, the general observation
that growing shoots tend to straighten in the absence of
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other influences indicates another well-established necessary
response, called autotropism, the tendency to minimize
curvature during growth [9]. Under slower rotations, the
relative influence of autotropism and gravitropism can be
gauged by varying the angular speed, leading to the possibility
of complex three-dimensional shapes that we study here.

The first model for the gravitropic response of slender
shoots was formulated by Sachs in 1879 [7]. His sine law
states that the rate of change of curvature at a point is given
by the sine of the inclination angle θ (s, t ) between the tangent
to the shoot centerline and the vertical direction, where s is
the arclength from the base and t is time [Fig. 1(a)]. Recalling
that the curvature is the arclength derivative of this angle, the
sine law can be expressed as

θ̇ ′ + α sin θ = 0, (1)

with α a rate constant and where (·)′ and ˙(·) denote differ-
entiation w.r.t. s and t , respectively. Notably, unbeknownst
to Sachs and his successors, the sine law is an instance of
the celebrated sine-Gordon equation, a fully integrable system
with a well-known conservative structure [10]; in fact, the sine
law is the earliest appearance of this equation as a physical
model. While the sine law is the starting point of many aug-
mented models [9,11–17], it is restricted to planar motion and
does not include autotropism, which is necessary for shoots to
eventually straighten [9,18].

Here we follow the plant tropism modeling framework
developed in [1] to model the clinostatting plant in three
dimensions as an unshearable and inextensible morphoelastic
rod [20,21] of length �. We neglect self-weight and centrifugal
effects, which is valid for small shoots and slow rotation (i.e.,
ρg�3 � B and ρω2�4 � B, with B and ρ denoting the bending
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FIG. 1. (a) A potted plant realigns itself with gravity when tilted
horizontally. (b) In a clinostat, the effect of gravity is nullified at
sufficient angular speed. In both cases the plant’s axis lies in a plane.
(Adapted from [19].)

stiffness and the linear density, respectively). In this case,
the shoot assumes its stress-free shape. While the intrinsic
shape is the result of a balance of internal elastic stresses
due to growth, we assume that the extra stresses acting on
the centerline are negligible. In the first scenario studied here,
we also neglect the axial growth of the shoot and focus on
curvature generation through tissue growth and remodeling.
Thus, the shoot has a constant length (we address elongation
at a later stage).

II. MODEL

The centerline of a rod is a spatial curve r(s, t ) = x(s, t )i +
y(s, t )j + z(s, t )k, parametrized here by its arclength s ∈
[0, �] (s = 0 at the base) at time t � 0; where {i, j, k} is the
canonical basis of R3, with k pointing upward against the
gravity direction (Fig. 2). The Frenet-Serret frame {t, n, b},
is built from the tangent vector t := r′ and the unit normal
and binormal vectors, n and b, defined through

t′ = κn, n′ = τb − κt, b′ = −τn, (2)

where κ and τ are the curvature and torsion, respectively. In
addition to its centerline, a rod is equipped with a right-handed
orthonormal director basis d1(s, t ), d2(s, t ), and d3(s, t ) =
t(s, t ) [21] that obeys

d′
i = u × di, ḋi = w × di, i = 1, 2, 3. (3)

The Darboux vector u and spin vector w obey the compatibil-
ity condition

u̇ − w′ = w × u. (4)

FIG. 2. Rod model for a clinostatting plant. We model the shoot
as a rod with centerline r and tangent t = d3. At a given point at
arclength s from the base, the vectors d1 and d2 lie in the principal
directions of the cross section. At the base of the rod, d1 and d2 are
rotating around i with angular speed ω.

The evolution of the tangent vector along the shoot is given
by Eq. (3):

t′ = u × t. (5)

In gravitropism, gravisensing mechanisms activate path-
ways that result in differential growth of the cells [2,15,22–
27]. Changes in curvature then occur when cells on the
bottom side of the shoot expand more than those on the
upper side [1,25,28], a phenomenon reminiscent of, and me-
chanically equivalent to, the thermal bending of a bimetallic
strip [29]. As shown in [1], assuming local growth laws for
both gravitropism and autotropism leads, through dimensional
reduction [30], to a generalization of the sine law that in-
cludes autotropism and three-dimensional effects, written as
(Appendix A):

u̇ + u × w = α t × k − β u. (6)

Here u × w accounts for the passive advection of u by the spin
vector w. The first term in the r.h.s accounts for gravitropism
with rate constant α. The second term models autotropism,
with rate constant β, and leads to an exponential decay in time
of the curvature in the absence of other effects. This equa-
tion reduces to the sine law in the planar case when β = 0 and
no rotation is imposed. The relative strength of gravitropism
and autotropism is captured by the dimensionless bending
number λ := α�/β [9,13]. The constitutive hypothesis that the
local growth of the cells is parallel to the central axis precludes
the rod from twisting, imposing [30]

u · t = 0. (7)
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Geometrically, a consequence is that d1 and d2 propagate par-
allel to the curve, i.e., the field of directors {d1, d2, d3} forms
a so-called Bishop frame [31]. For such a rod, the following
identities hold [21]:

κ = √
u · u, τ = − ∂

∂s
arctan

(
d1 · u
d2 · u

)
. (8)

The torsion τ here measures the winding rate of the curvature
vector u around the centerline as we move along the rod.

Equations (4)–(7) form a closed system for u, w, and
t which, given appropriate initial and boundary conditions,
fully captures the shape and evolution of the shoot. For com-
parison, our model is the three-dimensional and geometrically
exact generalization of the standard “AC model,” which has
been validated experimentally in numerous genera [9]. In
particular, our approach is general enough to include complex
movements such as clinostatting, enforced through a nonzero
spin w(0, t ) �= 0 at the base.

III. EQUILIBRIA

We start our analysis by looking for equilibrium solutions
in the absence of rotation, but for an arbitrary orientation
of the base θ0 (Appendix B). In that case the equilibrium
solution is planar with the exact solution z̃λ/� = log(sin θ0) −
log[sin(θ0 − x̃λ/�)], for 0 � x̃λ/� < θ0, with the tilde de-
noting quantities at equilibrium. We will establish that this
solution is stable and gives the asymptotic shape of the shoot
centerline when the base is tilted to an angle θ0 from the
vertical, as shown in Fig. 3(a). On rescaling all lengths by
the auto-gravitropic length �ag := �/λ, we obtain a universal
curve [see Fig. 3(b)]:

z̃ = log(sin θ0) − log[sin(θ0 − x̃)], 0 � x̃ < θ0. (9)

We refer to this curve as the simple caulinoid (from Latin
caulis, meaning stem).

Next, we consider a clinostat imparting a counterclock-
wise rotation around the horizontal axis i with period T =
2π/ω. In this case the boundary conditions are t(0, t ) = i and
w(0, t ) = ωi. By definition, at equilibrium, we have ẇ = u̇ =
ṫ = 0, which gives w = ωt. In this configuration, the shoot
revolves at constant angular velocity ω about a fixed centerline
[Fig. 3(a)] with tangent vector given by (Appendix B)

t̃(s) = cos 
s

cosh �s
i − sin 
s

cosh �s
j + tanh(�s) k, (10)

where 
 := αω/(ω2 + β2) and � := αβ/(ω2 + β2). The
curvature, κ̃ (s) = √

�2 + 
2 sech�s, and torsion, τ̃ (s) =
−
 tanh �s, of this general caulinoid satisfy

κ̃2

�2 + 
2
+ τ̃ 2


2
= 1. (11)

Thus, along an equilibrium solution, starting from τ̃ (0) = 0 at
the base, the torsion increases while the curvature decreases
along an ellipse in the curvature-torsion plane. In physical
space, the centerline follows a modulated left-handed helix
that gradually uncoils away from the base towards the vertical,
and we can interpret 
 and � as the curve’s winding and
rise densities [Fig. 4(b)]. In the limit ω → 0, we have 
 = 0
and � = 1/�ag, recovering the planar case discussed above.

FIG. 3. Steady solutions in the absence of clinostatting. (a) Hor-
izontal clamp |θ0| = π/2 and upside-down clamp |θ0| → π− for
various λ. (b) The equilibrium solution is a simple caulinoid [Eq. (9)]
parameterized by θ0. Dashed lines show the horizontal and upside-
down solutions. (c) Shape adopted by a wheat coleoptile (reproduced
from [9], courtesy of B. Moulia) with overlaid caulinoid.

When ω → ∞, the plant remains straight with 
 = � = 0
[Fig. 4(c)]. The equilibrium curve is uniquely determined by

 and �. Experimentally, given ω, both parameters α and β

can thus be estimated uniquely from the centerline (unlike
in the planar case), e.g., by using the height of the plant
H = z̃(1) = log(cosh �)/� and the radius of the caulinoid at
the base R = 1/
.

A numerical linear stability analysis of the full sys-
tem conducted across a wide range of realistic parameters
λ ∈ [0.1, 100] [Fig. 3(c)], consistent with reported values
[9,13,32], reveals that, for β > 0, the equilibrium solution
is linearly stable (Appendix D). Further, the local dynamics
near the base can be obtained asymptotically, showing that
the Darboux vector spirals towards its equilibrium value with
a typical exponential decay e−βt [see Fig. 4(d) and Movie 1
in the Supplemental Material [33]]. In the limit case β = 0
but with ω �= 0 [1], the equilibrium solution is a segment of
a horizontal circle of radius ω/α. Here, however, the previous
stability result does not apply and the shoot “orbits” around
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FIG. 4. Dynamic equilibrium of a clinostatting plant. (a) The material revolves at angular speed ω around a fixed centerline. (b) Example
equilibrium configurations obtained for various values of 
 and �. (c) Dependency of the equilibrium solution on ω. Blue rods show the limits
ω → 0 (no rotation) and ω → ∞ (standard clinostat experiment). The surface shows the set of equilibrium solutions obtained for finite values
of ω/β (λ = 5). (d) Dynamic solution. Course of the apex in two cases, β > 0, with convergence to equilibrium (β = ω/5), and β = 0, after
convergence to a limit cycle (in both cases α = ω). Dashed line shows the corresponding equilibrium solution.

the equilibrium; see Fig. 4(d) and Movie 2 [33], showing
numerically simulated solutions (Appendix C).

IV. SHOOT ELONGATION

Plants also lengthen due to the coordinated expansion of
the cells along the central axis. Generally this primary growth
is mostly confined to a region close to the apex [34]. To model
elongation, including apical dominance, we assume that both
the tropic response and axial growth gradually diminish as we
move away from the apex with exponential decay of charac-
teristic length δ and with growth �0 and autogravitropic rates,
β and α, at the tip (Appendix E). In this case, the system
supports a traveling front solution connecting a flat base to a
steady apical structure migrating forward at a speed c = �0δ

[see Fig. 5(a) and Movie 3 [33]]. The shape of this solitary
wave can be described in terms of an initial value problem
that can be integrated numerically. Figure 5(b) shows example
solutions obtained for various rotation speeds and bending
numbers λ. An interesting limit is � � δ (uniform growth
rates along the shoot). Assuming a timescale separation β 	
�0, and noting that 
 and � are independent of �, we see that
the shoot’s shape will progress quasistatically, spreading itself
uniformly along a unique caulinoid [see Fig. 5(d) and Movie
4 [33]]. Overall, the existence of these solutions demonstrates
that steady configurations are a robust property of the system
that can persist even upon significant elongation.

V. DISCUSSION

The clinostat holds a significant place in plant physics,
addressing a precise technical challenge: simulating weight-
lessness by effectively “confusing” the plant through fast
rotation. At lower speeds, the interaction between rotation,
gravitropism, and autotropism reveals more subtle behaviors.
A distinct property of this system is the universal existence
of a dynamic equilibrium where the shoot revolves around
a steady centerline, the caulinoid. This equilibrium is dy-

namic as it requires cyclic deformations in the material to
maintain this configuration as rotation is applied. In contrast
to the classic planar case, whose equilibrium is determined
solely by λ (Fig. 3), this solution is uniquely characterized
through two dimensionless numbers α�/ω and β/ω. When the
plant undergoes elongation, two distinct behaviors emerge:
solitary waves when growth, autotropism, and gravitropism
are confined to the tip, or stationary elongation along a unique
caulinoid when the shoot grows uniformly. In conclusion, we
predict that a clinostatting shoot will naturally assume the sole
shape that enables it to counterbalance rotation and minimize

FIG. 5. Shoot elongation: (a) examples of simulated growing
shoots (parameters: α = ω and 5ω; β = ω; δ = �; �0 = ω/10). (b, c)
Solitary wave profiles computed for different (b) bending numbers λ

and (c) rotation speeds ω. The labels ∗ and ∗∗ indicate corresponding
sets of parameters between the simulation and the asymptotic profile.
(d) Uniform growth rate (δ 	 �). The plant spreads along a unique
caulinoid (
 = 5, � = 1, �0 = ω/10).
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its overall movement in the laboratory frame, strikingly, even
in the absence of a dedicated rotation-sensing mechanism.

The importance of proprioception in plant posture control
is now well established [2,3,9,15,35,36]. We further showed
that the role of proprioception, in the form of autotropism,
is crucial in stabilizing the clinostatting shoot, as its absence
would lead to nonsteady behaviors [1]. These nonsteady be-
haviors of the sine law can be now understood as a direct
consequence of the conservative nature of the sine-Gordon
equation. Physically, autotropism acts as a damping (i.e.,
energy-dissipating) mechanism in curvature space, hence pro-
viding a stabilization mechanism for the universal shapes
that we have uncovered. The exact caulinoid solutions may
be difficult to observe experimentally with precision as it
would require pristine conditions. In plants, heterogeneity,
stochasticity, memory effects [37,38], and other tropic re-
sponses also play a role. Yet these ideal solutions present
a new paradigm for the study of plant active properties and
the design of experiments. They can be further generalized to
include other effects, such as light or elasticity [1]. Crucially,
the slow clinostat, through its consistent disruption of the
plant’s equilibrium, allows for the establishment of adaptable
and prolonged conditions for observing the out-of-equilibrium
responses of the system, encompassing phenomena such as
biological fatigue (generally any process that may affect the
response capability of the system on a long timescale), or
temporal integration effects such as frequency filtering.

Finally, the static and dynamic equilibria demonstrate that
the coupling of internal and external regulation mechanisms
is key for shape control, a problem of general importance in
biology and active matter physics [39] with direct implications
for nonliving active materials [40,41]. While these ideas have
surfaced in different contexts previously, plants have predom-
inantly been explored under specific conditions: (i) the planar
case, (ii) the linear case, and (iii) in a static environment. In
contrast, our contribution offers a comprehensive perspective,
presenting a full, nonlinear, dynamic, three-dimensional treat-
ment of the problem.

Our analysis of the clinostat problem provides a paradigm
for deciphering experimentally the mechanisms through
which an organism develops robustly under changing en-
vironmental conditions, and for studying dynamic, out-of-
equilibrium aspects of living matter.

All numerical methods were implemented in Wolfram
Mathematica 13.0. Source code is available upon request.
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APPENDIX A: KINETICS OF CURVATURE EVOLUTION

We summarize here the derivation of the kinetic model for
curvature evolution, Eq. (6).

1. Local coordinates

We introduce Antman’s sans-serif notation [42] to denote
a vector field attached to a curve and expressed in the local
material frame di. Namely, for a vector field u(s, t ), we write

u(s, t ) =
3∑

i=1

ui(s, t )di(s, t ), (A1)

where ui = u · di denotes the ith local coordinate, with i =
1, 2, 3. Similarly, we note u = (u1, u2, u3), the vector of local
coordinates. Differentiating Eq. (A1) with respect to time, and
using ḋi = w × di [Eq. (3)], we obtain the kinematic relation

u̇ + u × w =
3∑

i=1

u̇idi, (A2)

which will be useful in the next section.

2. Kinetics

The kinetics of curvature evolution [Eq. (6)] is derived in
[1]. The model is based on the Cholodny-Went paradigm of
auxin-driven curvature evolution, which states that curvature
emerges from a heterogeneous distribution of the growth hor-
mone auxin at the scale of a cross section [43]. A summary of
the model’s assumptions and developments is given here; we
refer to [1] for more details.

The starting point of the model is to define a scalar field
A(x1, x2, s) which models the concentration of auxin at a
given point p = x1d1(s) + x2d2(s) in the cross section �s

located at the arclength s of the centerline. We assume that
a tilt with respect to the vertical induces a flux of auxin, taken
to be of the form j := −vA(k1d1 + k2d2), with v > 0 is a
constant transport velocity, and with ki = k · di for i = 1, 2, 3,
where k is the vertically aligned unit vector (i.e., the opposite
direction of gravity). This constitutive assumption models
an active flow of auxin towards the downward side of the
cross section and may be viewed as a simplification of the
starch-statolith hypothesis [26,27] and the so-called position
sensor hypothesis [44,45]. The flux j of auxin is included in
a continuity equation expressing conservation of auxin mass,
taking the general form

∂A

∂t
+ ∇ · j = S − koff A, (A3)

where ∇ := ∂/∂x1 d1 + ∂/∂x2 d2 + ∂/∂s d3 is the standard
Del operator, koff denotes an absorption/decay rate of auxin,
and S symbolizes any source or sink whose specific expres-
sion is detailed in [1]. Next, we focus on the steady regime of
Eq. (A3), given by

v∇ · (A(k1d1 + k2d2)) + koff A = S. (A4)

To model auxin-mediated growth, a second constitutive
equation is then introduced that couples the rate ġ(x1, x2, s)
of cell axial expansion, i.e., expansion along d3, to the
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concentration of auxin A. A simple growth law, capturing
auxin-mediated growth and autotropism, is

ġ = c1(A − A∗) − c2(g − ḡ). (A5)

The first term on the right-hand side states that the growth rate
increases (if c1 > 0) with the level of auxin above a baseline
level A∗. Generally, the rate constant c1 will be taken to be pos-
itive in shoots doing negative gravitropism, where the growth
rate increases with the presence of auxin. Conversely, c1 will
be typically taken to be negative in roots that exhibit positive
gravitropism and where higher levels of auxin correlate with
slower growth. The second term on the right-hand side mimics
the effect of autotropism (with rate constant c2 � 0) by penal-
izing deviations of the growth field from its average level

ḡ := 1

A

∫
�s

g(x1, x2, s) dx1 dx2 (A6)

(A is the cross-sectional area, taken to be constant).
Lastly, the goal is to perform a dimensional reduction of

the model, from three dimensions (tissue continuum) to one
dimension (curve) to derive a rod theory. On averaging the
growth field over the cross section, following the dimensional-
reduction procedure detailed in [30], we obtain

I1u1(s, t ) =
∫

�s

x2g(x1, x2, s) dx1dx2, (A7a)

I2u2(s, t ) = −
∫

�s

x1g(x1, x2, s) dx1 dx2, (A7b)

where I1 and I2 denote the second moments of area around
d1 and d2 respectively. Here we assume a symmetric and
centered cross section such that I1 = I2, and∫

�s

x1 dx1 dx2 =
∫

�s

x2 dx1 dx2 = 0. (A8)

Since the cross section does not vary with time, the curvatures
evolve according to

I1u̇1(s, t ) =
∫

�s

x2ġ(x1, x2, s) dx1 dx2, (A9a)

I2u̇2(s, t ) = −
∫

�s

x1ġ(x1, x2, s) dx1 dx2. (A9b)

The dimensional reduction also yields

u3 = 0 (A10)

meaning that the rod is twistless. Inserting Eq. (A5) into
Eq. (A9) and using Eq. (A8) to eliminate the terms with A∗
and ḡ gives an equation for u̇1 in terms of u1 itself and the
integral of x2A, and similarly for u2. The integral can be com-
puted by replacing A via Eq. (A4) and repeated applications
of the divergence theorem along with a no-flux condition on
the cross-sectional boundary (for full details see the Supple-
mentary Material of [1]). This manipulation yields the local
autogravitropic laws given by

u̇1 = −αk2 − βu1, (A11a)

u̇2 = αk1 − βu2, (A11b)

where α and β are lumped parameters that emerge from the
homogenization. Since u̇3 = −βu3 is trivially satisfied in

virtue of Eqs. (A10), Eqs. (A11) can be written in a more
compact vector form as

u̇ = αt × k − βu. (A12)

Equation (A12) expresses the evolution of curvatures from
a local point of view, i.e., in a reference frame attached to
the material. In our case, since global gravity is important,
it is convenient to express the dynamics in the nonrotating,
laboratory frame. Indeed, the equilibrium solutions are natu-
rally expressed in the laboratory frame, whereas in the local
frame, the dynamic equilibrium is associated with T -periodic
variables. As can be seen, Eq. (A12) is equivalent to Eq. (6).
Indeed, using the kinematic formula (A2) and the rotational
invariance of the cross product, Eq. (A12) can be rewritten in
the laboratory frame as in Eq. (6).

APPENDIX B: EQUILIBRIUM SOLUTIONS

1. Without rotation

We derive the equilibrium solutions for the nonrotating
case (ω = 0). Here we choose � ≡ 1 as a reference length
unit. Setting u̇ = 0 and w = 0 in Eq. (6) provides ũ = λt̃ × k,
which can be substituted into Eq. (5) to obtain

t̃′ = λ(t̃ × k) × t̃. (B1)

Provided an initial tilt 0 � θ0 < π , such that t̃(0) = sin θ0 i +
cos θ0 k, we integrate this equation and derive the tangent

t̃(s) = sin θ0

cos θ0 sinh λs + cosh λs
i

+ (cos θ0 + 1)e2λs − 1 + cos θ0

(cos θ0 + 1)e2λs + 1 − cos θ0
k. (B2)

Integrating once more gives the position vector r̃(s) =
x̃(s) i + z̃(s) k:

λx̃(s) = θ0 − 2 arccot

(
eλs cot

θ0

2

)
, (B3a)

λz̃(s) = log[1 + cos2(θ0/2)(e2λs − 1)] − λs. (B3b)

Inverting Eq. (B3a) and rescaling all lengths as x̃ → x̃/λ,
z̃ → z̃/λ, we obtain an implicit relation between z̃ and x̃
[Eq. (9)], which corresponds to a universal equilibrium shape
for all orientations θ0 of the shoot.

2. With rotation

Next, we derive the equilibrium solution for a plant under-
going rotation (ω > 0). To determine the equilibrium shape,
we posit ẇ = ṫ = u̇ = 0. Equations (3) and (4) directly pro-
vide that w̃ = ωt̃. Substituting this ansatz into Eq. (6), we
obtain

βũ = t̃ × (αk + ωũ). (B4)

On inverting this identity, we can express ũ as an explicit
function of t̃, given by

ũ = (
t̃1t̃3 + �t̃2) i + (
t̃2t̃3 − �t̃1) j

+ 

(
t̃2
3 − 1

)
k, (B5)

with t̃ = t̃1 i + t̃2 j + t̃3 k. Substituting this last expression into
Eq. (5) and integrating it, we obtain the expression for the
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tangent given by Eq. (10). Remarkably, we can integrate the
tangent to obtain an exact parametrization of the centerline

r̃, in terms of the hypergeometric function 2F1, the harmonic
number Hn and the polygamma function of order zero ψ (0):

x̃(s) = es(�+i
)

� + i

2F1

(
1,

� + i


2�
;

3� + i


2�
; −e2s�

)
+ es(�−i
)

� − i

2F1

(
1,

� − i


2�
;

3� − i


2�
; −e2s�

)
− π

2�
sech

(
π


2�

)
, (B6a)

ỹ(s) = i

4�

[
ψ (0)

(
� + i


4�

)
− ψ (0)

(
3� + i


4�

)
+ H− �+i


4�
− H− 3�+i


4�

]
+ es(�+i
)


 − i�
2F1

(
1,

� + i


2�
;

3� + i


2�
; −e2s�

)
+ es(�−i
)


 + i�
2F1

(
1,

� − i


2�
;

3� − i


2�
; −e2s�

)
, (B6b)

z̃(s) = log[cosh(�s)]

�
. (B6c)

Figure 6 shows the set of solution shapes for different values
of 
 and �. Inset shows the path of the solution in the κ-τ
space, which follows the ellipse given by Eq. (11).

APPENDIX C: NUMERICAL RESOLUTION
OF THE NONLINEAR SYSTEM

We use a method based on Chebyshev polynomials
to integrate numerically the nonlinear system given by
Eqs. (4)–(7). We first remark that the system, albeit originally

FIG. 6. Set of equilibrium solutions. The colored surface plot
sweeps solutions for a range of 
 (with � = 1). Red solid lines show
the course of the shoot tip s = 0 as 
 varies, and for different values
of � > 1, with height given by h(�) = log(cosh �)/�. Red dashed
line shows the tip position for 
 = 0 as a function of �, given by
(x(�), z(�)) = (gd�/�, h(�)). Inset shows the path of the solution
in the κ-τ plane [Eq. (11)].

defined for s ∈ [0, 1], can be extended naturally to s ∈ [−1, 1]
(by considering two “twin” shoots oriented opposite to each
other with respect to the plane y-z). Here the extended
equilibrium solution is invariant with respect to the mirror
symmetry x → −x, s → −s. This situation is ideal for using
Chebyshev polynomials (of the first kind) Tn [46] as they
are defined canonically on [−1, 1]. Thus, we consider the
truncated Chebyshev expansions for the variables

t ≈
N∑

n=0

TnTn, (C1a)

w ≈
N∑

n=0

WnTn, (C1b)

u ≈
N∑

n=0

UnTn, (C1c)

with N a positive integer.
The formal solutions for t and w,

t = i +
∫ s

0
u × t, (C2a)

w = ωi + α

∫ s

0
t × k − β

∫ s

0
u, (C2b)

can be decomposed in the Chebyshev basis as follows. From
the products TnTm = (Tn+m + T|n−m|)/2 [46], we derive the
expansion of the cross products; i.e., for any vector field a
and b with respective Chebyshev coefficients An and Bn, we
have

a × b = 1

2

∞∑
p=0

(Ap × Bp + Ap × B−p)T0 + 1

2

∞∑
n=1

n∑
p=0

× (Ap × Bn−p + Ap × Bn+p + An+p × Bp)Tn.

(C3)

For integration, we use the recurrence formulas [46]∫
T0 = T1,

∫
T1 = 1

4
(T2+ T0), (C4a)∫

Tn = 1

2

(
Tn+1

n+ 1
− Tn−1

n− 1

)
, ∀n � 2, (C4b)
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to obtain∫
a = A1

4
T0 + A0T1 +

∞∑
n=2

An−1 − An+1

2n
Tn. (C5)

Conveniently, integration corresponds to a linear operation on
the An, whose matrix can be precomputed.

Given the coefficients Un, the Chebyshev expansion of
Eq. (C2a) yields a linear system that can be inverted to obtain
the Tn. Then the Wn are obtained by direct integration, using
Eq. (C5). After expressing the Tn and Wn as functions of the
Un, we obtain a dynamical system of the form

U̇N = F (UN ), (C6)

where UN is the 3(N + 1)-dimensional vector formed by the
concatenation of the Un; and F is a second-degree polynomial
vector that is evaluated numerically. Provided appropriate ini-
tial conditions, Eq. (C6) can be integrated numerically using
a standard IVP solver (here we used Mathematica’s built-in
routine NDSolve).

A general problem is to find an initial condition for u
that satisfies the orthogonality condition, Eq. (7). Indeed, by
differentiating u · t with respect to time and using Eq. (6), we
observe that

∂

∂t
(u · t) = −βu · t. (C7)

Since β > 0, Eq. (7) is a stable property, in particular, if
Eq. (7) is satisfied at t = 0, it will be automatically satisfied at
all times t . Note that, if u · t = 0, then we have automatically

u = t × t′ (C8)

(the converse is trivial). Thus a suitable initial condition can
always be found by first defining a curve and its tangent
t, and then obtaining u through Eq. (C8). Once an initial
configuration is defined, the initial Chebyshev coefficients
for UN (0) are computed efficiently by means of the discrete
cosine transform [47].

1. Convergence analysis

We here provide a comment on the influence of N on the
accuracy of the solver. Given a resolution N we can embed
a solution UN vector in an infinite-dimensional real space by
adopting the convention

UN
n = 0 (C9)

for all n > 3(N + 1). The exact steady solution ũ is known,
and its Chebyshev coefficients can be computed. The distance
of the solution at a given time t , to the actual fixed point is
defined as

DN (t ) =
√√√√ ∞∑

n=0

(
UN

n (t ) − Ũn
)2

(C10)

(the existence of the sum is ensured by Parseval’s theorem). A
measure of the convergence error for the solver is obtained
by considering the limit of DN (t ) as t → ∞. Indeed, for
a perfectly accurate solver, we expect DN (t ) → 0 since the

FIG. 7. Logarithmic plot of the asymptotic accuracy error err(N )
[Eq. (C11)] vs N .

equilibrium is unique and stable. We then define the asymp-
totic accuracy error as

err(N ) = limt→∞ DN (t )√∑∞
n=0 Ũ

2
n

. (C11)

A plot of err(N ) obtained for various values of N and for
realistic parameters (α = 10ω, β = ω) is shown in Fig. 7,
showing exponential convergence.

APPENDIX D: STABILITY

1. Asymptotic analysis near the base

To gain insight into the dynamics of the shoot and the
stability of the equilibrium, it is useful to first restrict our
attention to the base of the plant, s = 0, where t(0, t ) = i and
w(0, t ) = ωi. Letting U(t ) = u(0, t ), Eq. (6) reduces to

U̇2 = −α − βU2 − ωU3, U̇3 = ωU2 − βU3 (D1)

with U = U1 i + U2 j + U3 k. We have U1 = 0 by Eq. (7). The
system admits a unique fixed point (U2,U3) = (−�,−
)
(this is simply the equilibrium curvatures at the origin derived
in Appendix B 2), associated with a pair of conjugate eigen-
values −β ± ωi with a negative real part: The fixed point is
a spiral sink associated with a decaying amplitude ∼e−βt and
rotation speed ω. When β = 0 the fixed point is a center, and
the solution orbits around the fixed point.

We can extend this analysis to higher orders in s > 0
in principle (that is, expanding all variables in orders of s
and performing a regular perturbation analysis). For instance,
Fig. 8 shows the second-order approximation of the solution
taken at s = 0.25. The second-order estimate converges to-
wards equilibrium when β > 0 and s � 1 (in the case β = 0,
however, there is a secular term that must be treated by a
dedicated method, but we leave this problem outside the scope
of this study, focusing on the physiologically relevant case
β > 0).
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FIG. 8. Example course of the Darboux vector U(t ) in the j-k
plane, computed asymptotically (to second order in s) near the base
(s = 0.25). The asymptotic solution spirals towards an equilibrium
value (α = 4ω, β = 0.2ω). Blue and orange dots show the exact
value of u at equilibrium at s and its second-order approximation,
respectively.

2. Linear stability analysis

The previous analysis provides insight into the dynamics of
the system; however, in principle, it is valid only near the base.
To complement that approach, we perform a linear stability
analysis of the equilibrium solution. Therefore, we take the
first variation of Eqs. (4) to (7) around the base equilibrium
solution derived in Appendix B 2. Rearranging the terms, we
obtain

δt′ = δu × t̃ + ũ × δt, (D2a)

δw′ = α δt × k − βδu, (D2b)

δu̇ = δw′ + δw × ũ + w̃ × δu, (D2c)

with the conditions

ũ · δt = −δu · t̃, t̃ · δt = 0. (D3)

The boundary conditions at s = 0 fix the values of t(0, t ) and
w(0, t ), thus,

δt(0, t ) = 0, δw(0, t ) = 0. (D4)

We start by solving Eq. (D2a). As can be seen, a linearly
independent basis of solutions for the homogeneous part of

FIG. 9. Numerical linear stability analysis. Density plot showing
the value of the largest real part ωi of the eigenvalues of Eq. (D6)
(to generate this plot, the system was re-expressed in terms of the
dimensionless time ωt). This shows that the dynamics is dominated
by a decay rate of order e−βt as expected from Appendix D 1.

Eq. (D2a) is provided by the di at equilibrium (defined up to
an arbitrary rotation of the clinostat). A particular solution is
then obtained by means of variation of constants. For a given
δu, the solutions to Eqs. (D2a), (D2b), and (D4) are

δt = d1

∫ s

0
δu · d2 − d2

∫ s

0
δu · d1, (D5a)

δw = −αk ×
∫ s

0
δt − β

∫ s

0
δu. (D5b)

Last, we perform a Chebyshev spectral analysis of the lin-
earized system. Namely, expanding Eqs. (D2c) and (D5) as
in Appendix C, we obtain a linear dynamical system

δU̇ = LδU (D6)

for the Chebyshev coefficients δU . Note that, since the or-
thogonality constraint, Eq. (D3), is stable by Eq. (C7), we
need not consider it in the stability analysis, as coordinates
orthogonal to the constraint surface will vanish. The complex
eigenvalues of L can be computed numerically as illustrated
in Fig. 9; specifically, the system is linearly stable if all the
real parts ωi ∈ R3(N+1) of these eigenvalues are negative. Here
the system appears to be stable for all values of λ and ω

tested. The results are consistent with the dynamics predicted
in Appendix D 1, which is dominated by a decay rate of order
e−βt .

APPENDIX E: SHOOT ELONGATION

1. General model

To model growth, we introduce the standard growth mul-
tiplier γ := ∂s/∂s0 which connects the arclength s0 ∈ [0, �0]
in the initial configuration of the shoot, to the arclength s ∈
[0, �(t )] in the current, grown configuration [21]. To account
for apical dominance, we assume that growth and curvature
generation mostly happen within a finite distal section of
the stem of length δ. Therefore, we introduce an activation
function:

a(s0, t ) = f (�(t ) − s(s0, t )), (E1)

with f (σ ) = e−σ/δ , modeling the slowing down of growths
as we move away from the tip of the shoot, located at

014405-9



OLIVERI, MOULTON, HARRINGTON, AND GORIELY PHYSICAL REVIEW E 110, 014405 (2024)

FIG. 10. Kymograph showing the apical growth field. Lines
show the trajectories of the material points with initial arclength
emphasized by colors.

�(t ) = s(�0, t ). A kymograph illustrating this growth profile
is shown in Fig. 10. Accordingly, we assume an exponential
growth kinetics given by [21]

� := γ̇

γ
= �0 a(s0, t ), (E2)

which captures a type of growth where all cells in a small
portion of the tissue expand and proliferate at the same
rate. Similarly, we define the rates of curvature generation
A(s0, t ) = αa(s0, t ) and B(s0, t ) = βa(s0, t ). Note that the
model can be easily adapted to include richer apical growth
models, e.g., sigmoids [48]; however, we do not expect any
significant qualitative change in the results.

On integrating the standard kinematic relation ∂ ṡ/∂s = �

using Eqs. (E1) and (E2), we obtain

ṡ = ce−�/δ (es/δ − 1), (E3)

with c := �0δ a characteristic speed; and where � is governed
by

�̇ = c(1 − e−�/δ ), (E4)

as a particular case of Eq. (E3). Provided the initial condition
�(0) = �0 ≡ 1, the previous equation integrates as

�(t ) = δ log((e1/δ − 1) e�0t + 1). (E5)

Integrating Eq. (E3) with Eq. (E5) then gives

s(s0, t )

= δ log

[
1

2
− 1

2
tanh

(
�0t

2
+ 1

2δ
+ arctan(1 − 2es0/δ )

− 1

2
log((e1/δ − 1)e�0t + 1)

)]
. (E6)

Thus,

a(s0, t ) =
[

exp

(
ct + 1 − s0

δ

)
− ect/δ + 1

]−1

(E7)

and

γ (s0, t ) =
[

(1 − ect/δ ) exp

(
s0 − ct − 1

δ

)
+ 1

]−1

. (E8)

In the context of a growing spatial domain, one must differ-
entiate between the material (Lagrangian) derivative, denoted
with an overdot u̇, and the Eulerian derivative denoted ∂u/∂t ,
and such that

u̇ = ∂u
∂t

+ ṡ
∂u
∂s

. (E9)

The vectors u and w are defined here in the Eulerian sense,
namely, such that

∂t
∂s

= u × t,
∂t
∂t

= w × t, (E10)

with the compatibility condition

∂u
∂t

− ∂w
∂s

= w × u. (E11)

In contrast, the Lagrangian spin vector, p = w + ṡu, is asso-
ciated with

ṫ = p × t. (E12)

The revised governing equations, including growth, are then

t′ = γ u × t, (E13a)

p′ = γ (At × k − Bu), (E13b)

u̇ + u × p + �u = p′/γ , (E13c)

where (·)′ denotes a derivative with respect to the Lagrangian
coordinate s0. The extra term �u accounts for the passive
decrease of curvature due to axial stretch. The presence of
the factor γ simply results from the chain rule, as we have
expressed the system with respect to s0.

2. Solitary waves

To derive the shape of self-similar, traveling-front solutions
we introduce the comoving coordinate σ := � − s, measuring
the arclength from the apex, with the base located at σ = � →
∞. Setting ∂u/∂t = 0, Eq. (E13) becomes upon this change
of coordinate

∂t
∂σ

= t × u, (E14a)

∂p
∂σ

= f (σ )(αk × t + βu), (E14b)

c f (σ )
∂u
∂σ

+ ∂p
∂σ

= p × u − �u, (E14c)

with the conditions limσ→∞ t = i, limσ→∞ p = ωi and
limσ→∞ u = 0. In practice, the system can be integrated for
σ ∈ [0, �] with � 	 δ, and with boundary conditions ex-
pressed at �. There is, however, a removable singularity at
σ → ∞, as f (σ ) is transcendentally small, which causes
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numerical difficulties in Eq. (E14c). To alleviate this issue, we
consider perturbed boundary conditions of the form t(�) =
i + εt (�), p(�) = ωi + εp(�), and u(�) = εu(�), where εt ,
εp, and εu denote small perturbations from the boundary con-

ditions at σ = ∞. Expanding Eq. (E14) and keeping only the
higher order nonzero terms allows us to solve for εt , εp, and εu,
in order to express the perturbed boundary values [Fig. 5(b) is
obtained with � ≈ 5δ].
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