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Exploring spatial segregation induced by competition avoidance as driving mechanism for emergent
coexistence in microbial communities
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This study investigates the role of spatial segregation, prompted by competition avoidance, as a key mechanism
for emergent coexistence within microbial communities. Recognizing these communities as complex adaptive
systems, we challenge the sufficiency of mean-field pairwise interaction models, and we consider the impact of
spatial dynamics. We developed an individual-based spatial simulation depicting bacterial movement through a
pattern of random walks influenced by competition avoidance, leading to the formation of spatially segregated
clusters. This model was integrated with a Lotka-Volterra metapopulation framework focused on competitive in-
teractions. Our findings reveal that spatial segregation combined with low diffusion rates and high compositional
heterogeneity among patches can lead to emergent coexistence in microbial communities. This reveals a novel
mechanism underpinning the formation of stable, coexisting microbe clusters, which is nonetheless incapable
of promoting coexistence in the case of isolated pairs of species. This study underscores the importance of
considering spatial factors in understanding the dynamics of microbial ecosystems.
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I. INTRODUCTION

Micro-organisms do not function in isolation; rather, they
exist within multispecies communities, cohabiting the same
environment and engaging in a spectrum of complex in-
teractions. This complexity poses a substantial challenge in
understanding how the physiological behaviors of individual
species contribute to emergent properties such as stability,
productivity, and resilience. From this perspective, microbial
communities can be regarded as “complex adaptive sys-
tems” [1], making them well-suited for rigorous quantitative
theoretical analysis. Indeed, a plethora of mathematical mod-
els have been applied to describe the microbiome. These
range from variations of the Lotka-Volterra equations [2] and
MacArthur’s consumer-resource model [3,4] to frameworks
based on evolutionary game theory [5], among others.

Recently, Chang et al. [6] presented solid experimental
proofs that multispecies coexistence is an emergent phe-
nomenon: they isolated organisms from stable synthetic
bacterial communities consisting of various species and com-
peted all possible combination of pairs of organisms to test
their ability to live together; in most cases, one species out-
competed the other, leading to exclusion. From this, they
concluded that coexistence in communities cannot be reduced
to pairwise coexistence rules, and they left open the question
about the fundamental mechanisms behind it. In particular,
they wondered whether the complex nature of multispecies
coexistence derives from higher-order interactions (HOIs), or
whether it can be explained by a complex network of pairwise
relations.

Providing a precise definition of HOIs, particularly in
the field of ecology, is challenging [7]. One possible sim-
plified conceptualization is to view HOIs as a modification

of pairwise interactions in the presence of a third or more
species. The research by Mickalide and Kuehn [8] reveals a
HOI aligning with this definition. An “interaction modifica-
tion” unfolds, wherein a single-celled algae (Chlamydomonas
reinhardtii) alters the dynamics between a predatory ciliate
(Tetrahymena thermophila) and the bacterium Escherichia
coli. This modification stems from a phenotypic change in
E. coli triggered by the presence of C. reinhardtii; the algae
inhibits the aggregation of E. coli cells, rendering them more
susceptible to predation by the ciliate.

In general, it is always possible to generalize mathematical
models to incorporate group interactions [9], but identifying
the various and often intricate driving physical mechanisms
behind them can be demanding. Before employing such so-
phisticated tools and concepts, we wonder whether the simpler
framework of complex networks of pairwise interactions is
sufficient to explain the emergent phenomena.

Studies such as those conducted by Thebault and Fontaine
[10] or Rohr et al. [11] have illustrated how the architec-
ture of the network of pairwise interactions among species
significantly influences the stability and overall macroscopic
characteristics of an ecosystem. In this context, a pertinent
question emerges: why, within the same ecosystem, do certain
species interact among them while others do not? Perhaps
the most straightforward explanation lies in how species are
spatially distributed.

There is abundant evidence indicating the significance of
spatial constraints in the formation of microbial communities
and the emergence of spatially segregated clusters of bacteria.
For instance, Welch et al. [12] discovered highly organized
spatial structure in the oral microbiome and a surprising corre-
lation between the position in space of taxa and their function.
Conwill et al. [13] showed how lineages with in vitro fitness
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differences coexist within centimeter-scale regions on human
skin, but each skin pore being dominated by a single lineage.
Shi et al. [14] developed a new technology for mapping the
microbiome, and they discovered that microbial communities
in oral biofilms are spatially structured as stable microarchi-
tectures over time. Cho et al. [15], through the utilization of an
innovative microfluidic device, showed that bacterial colonies
of E. coli have the capability to autonomously self-organize
within chambers of varying shapes and sizes that permit con-
tinuous cell escape. In general, colonies of bacteria exhibit
a fascinating propensity to form tight structures in various
settings in response to unfavorable environmental conditions
including various types of chemical stress [16].

The core concept of this study is to explore the potential
of spatial self-organization among microbes as the underlying
factor contributing to the observed emergent coexistence iden-
tified by Chang et al. To achieve this objective, it is necessary
to understand bacterial movement.

Bacteria in a liquid medium exhibit a movement pattern
characterized by alternating between tumble and swim phases
[17]. In a uniform environment, the movement of a bacterium
resembles a random walk, with relatively straight swimming
segments occasionally interrupted by random tumbles that
reorient the bacterium. Notably, bacteria such as E. coli lack
the ability to deliberately choose their swimming direction
and cannot maintain a straight path for an extended period
due to rotational diffusion, essentially “forgetting” their tra-
jectory. To compensate for this, they continuously assess their
course and make adjustments when necessary, allowing them
to steer their random walk towards favorable locations. This
movement of bacteria in response to chemical gradient is
called chemotaxis. The combination of these forces can result
in complex colony formation and various types of collective
motion, as proved by numerous experiments and theoretical
models [18–21].

While it may be reasonable to attribute bacterial move-
ments primarily to nutrient-driven research, it is essential to
acknowledge that chemotaxis is both imprecise and ener-
getically costly for bacteria, especially in densely populated
environments (see Ref. [22]). Chemotaxis involves the abil-
ity to perceive gradients, specifically differences in nutrient
concentrations across different spatial locations. In densely
populated environments, discerning specific directions to-
wards which bacteria should move becomes challenging
due to the multitude of simultaneous stimuli. Additionally,
when considering bacterial communities in batch cultures
in vitro, such as those studied by Chang et al., there is
no clear reason to assume uneven nutrient distribution or
strong nutrient gradients influencing bacterial motion. A more
plausible proposition would be that the predominant driving
force behind bacterial movement is an unoriented escape
response from highly competitive environments to less com-
petitive ones. This does not require the bacterium to calculate
directions, but rather relies on sensing local density and sub-
sequently initiating an escape. Our hypothesis is that this
behavior can still be triggered even in crowded environments
and may be less energetically costly compared to chemotaxis.

Following this direction, we developed an individual-based
spatial simulation to depict the individual movement of bac-
teria, leading to the formation of spatially segregated clusters

resulting from the escape from regions with high competition.
Under the assumption of timescale separation between move-
ment and growth, the result of the spatial simulation was then
utilized to calculate the initial conditions for a metapopula-
tion Lotka-Volterra model with only competitive interactions,
capturing the growth dynamics of such patches of bacteria.
This study shows that (i) segregation of clusters of bacteria
can be obtained as a result of competition avoidance only and,
therefore, it can potentially occur in any conditions regard-
less of the environmental setup; (ii) building upon the latter
justification, a metapopulation Lotka-Volterra formalism can
be adopted, and this alters considerably the pattern of coexis-
tence for the species at the equilibrium. Specifically, for low
diffusion rates and high compositional heterogeneity among
patches, it is possible to reproduce the emergence observed
by Chang et al., i.e., the formation of stable communities
formed by multiple microbial species, the majority of which
do not coexist when isolated in pairwise combinations. As
a benchmark to validate our model, we also confirmed its
ability to replicate the three macroecological laws governing
microbial communities, as discovered by Grilli [23].

II. INDIVIDUAL-BASED SPATIAL SIMULATION FOR
BACTERIAL MOTION

The simulation starts by uniformly distributing n bacteria
within a two-dimensional square and subsequently randomly
assigning each of them to one of N < n different species.
While other initial spatial distributions are conceivable—such
as placing bacteria of the same species in closer proximity—
these variations do not appear to influence the final results.
Hence, we opted to proceed with the initially uniform distri-
bution for its generality. We can then assume that each cell
interacts only with the cells in its proximity. If we think about
bacteria as nodes in a network, the simple formalism of a ran-
dom geometric graph (RGG) [24] can be employed to rapidly
evaluate the number of bacteria in the neighborhood of each
node. In a RGG, two nodes are connected when their distance
is within a certain neighborhood radius R. Here, the Euclidean
distance is considered, i.e., two nodes i and j are connected
when di j = √

(xi − x j )2 + (yi − y j )2 < R. The idea is that the
higher the density of competitors in the vicinity of node i, the
more it is inclined to escape from that region. Therefore, we
update node positions according to

xi(t + 1) = xi(t ) + Ii(t ) cos θi(t ),

yi(t + 1) = yi(t ) + Ii(t ) sin θi(t ), (1)

with θi uniformly distributed between [0, 2π ] at each time-
step, and

Ii(t ) = R

1 + e−α

(
Ni

c (t )
Nth

−1
) . (2)

Stated differently, we model bacterial movement selecting a
random direction and an intensity proportional to the level
of competitiveness, i.e., the number of competitors Ni

c in the
neighborhood of the node i. Taking inspiration from neural
networks, the intensity of motion is modeled as a sigmoid
function. The parameter α controls the shape of the curve;
if α → ∞, the function tends to the Heaviside step-function.
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The threshold parameter Nth controls the position of the in-
flection point Ni

c = Nth. This function cannot be equal to zero,
disallowing bacteria to be completely still, and its maximum
value is equal to R, i.e., the radius of the neighborhood area.
The simulation stops when all the bacteria minimize their
intensity motion, i.e., when their activity results in a random
walk confined in a small portion of space. Note that in this
framework, there is no distinction made between different
species, and all agents are considered indistinguishable at
this stage. Consequently, when counting neighboring nodes,
bacteria of the same species are also perceived as competitors.
The underlying assumption is that, in dense environments,
bacteria lack the capability (or exhibit limited efficiency) to
distinguish between different species at an individual level.
However, they can sense when neighboring populations be-
come dense. If bacteria primarily perceive their environment
through quorum sensing [25]—that is, by releasing signaling
molecules—our hypothesis posits that in dense environments,
they may respond to the overall quantity of these molecules
reaching high levels, rather than identifying specific ones
emitted by particular species.

To quantitatively compute the different clusters of bacteria
in the final network, we employed the classical Louvain algo-
rithm for communities detection [26]. It optimizes a quality
function known as modularity, which quantifies the strength
of the community structure in a network. The algorithm
optimizes modularity by iteratively moving nodes between
communities, enhancing the overall cohesion within commu-
nities while reducing connectivity between them. The Louvain
algorithm is a popular choice in the field of network science,
despite the numerous limitations associated with modularity
optimization algorithms [27]. In our context, the selection of
a particular algorithm has negligible effects.

We assume that the spatial rearrangement occurs rapidly
enough to achieve equilibrium before species start to grow.
This separation of temporal scales allows us to model growth
using a classical population-based ecological model as the
Lotka-Volterra formalism, adapted to our context as described
in the following section.

III. METAPOPULATION LOTKA-VOLTERRA MODEL

The Lotka-Volterra equations are the gold standard to
model the dynamics of interacting populations in ecology
[28]. In the generalized version for N species, they can
reproduce each possible type of relations according to the sign
of the interactions matrix entries, from competition to cooper-
ation. A growing debate surrounds the significance of positive
interactions among bacterial species. Numerous studies, such
as the one by Palmer and Foster [29], showed that negative in-
teractions tend to predominate, and instances of cooperation,
where two species mutually benefit, are generally infrequent.
Contrary findings are presented in studies such as that of
Kehe et al. [30], wherein positive interactions, particularly
parasitisms, are identified as common occurrences, especially
among strains exhibiting distinct carbon consumption profiles.
In this work, we have opted for the exclusive incorporation
of negative interactions in Lotka-Volterra equations. We posit
that the simpler and more justified assumption lies in
considering competition for nutrients as the primary

environmental-mediated interactions shaping bacterial
populations.

Given that the initial setup involves spatially separated
bacterial clusters, adopting a metapopulation model proves
advantageous. Metapopulation models are frameworks in
ecology that conceptualize the dynamics of interconnected
populations within a fragmented landscape. Coined by Levins
[31], the metapopulation concept views a population as a set
of subpopulations occupying discrete patches of habitat, with
occasional migration or dispersal occurring between these
patches. The dynamics of each subpopulation are influenced
by local factors such as birth, death, and interactions, as well
as the exchange of individuals among patches. Ngoc et al.
offer an illustration of the Lotka-Volterra formalism tailored
for metapopulation in their work [32]. Their model explores
the dynamics of two species in competition for an implicit
resource within a habitat divided into two patches.

In this work, we have adapted the Lotka-Volterra formal-
ism as follows:

dXiα (t )

dt
= riXiα (t )

(
1 − 1

Kα

∑
j∈α

Ai jXjα (t )

)

+ μ

Np∑
β

Mαβ (Xiβ (t ) − Xiα (t )), (3)

where the Latin indices refer to species, while the Greek
ones refer to the different Np patches; thus, Xiα represents the
population of species i in patch α. The intrinsic growth rate
of species i is indicated as ri and the carrying capacity with
Kα . Note that the latter depends on the patch rather than on
the species. This aligns with our spatial simulation, where a
patch is characterized by the maximum bacterial density that
does not trigger the escape response. For the same reason, we
will assume that each patch has the same carrying capacity,
denoted as Kα = K , for all patches. The interaction coefficient
Ai j depends only on the species types i and j, and the sum
in the first term runs over all the species j placed in patch
α, i.e., species interact only if in the same patch. Moreover,
in this formulation the entries of A are all positive in order
to reproduce only competitive interactions. The final term,
modulated by the coefficient μ, incorporates diffusion when,
for example, a species grows enough to spread to neighboring
patches. The matrix M represents the network connecting the
patches, obtained from the last random geometric graph pro-
vided by the simulation. In particular, Mαβ = mαβ/nαnβ , with
mαβ the number of links between the communities, and nα, nβ

the number of nodes in α and β, respectively. In summary, the
weights Mαβ quantify the spatial proximity between different
patches.

A. Stability of Lotka-Volterra equations

As μ approaches 0, the equilibrium solutions within each
patch become well-established and are solely dependent on
the interaction pattern and carrying capacities, given by X ∗

iα =∑
j∈α (A−1)i jK . It is recognized that for global stability of

the feasible fixed point (X ∗
iα > 0 ∀ i, α), the matrix A must

be negative-definite. In other words, A + AT should possess
exclusively negative eigenvalues, as thoroughly explained by
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Grilli et al. in their study [33]. In his groundbreaking research
[34], May demonstrated that large ecological networks exhibit
a notably low probability of stability. Specifically, when ma-
trix entries are sampled from a random distribution with a
mean of zero and a mean square value of α, the system is
almost certain to be unstable if α > 1/

√
N . Building upon

May’s findings, Allesina and Tang [35] extended the results
differentiating between the various types of relationships,
including predator-prey, competition, or mutualism. They pro-
vided analytical stability criteria for each scenario. The key
takeaway from these insights is that in the case of competition,
system stability is only assured when there is a predominant
presence of very weak interactions.

Mathematical analyses of stability typically focus on con-
ditions near equilibrium points due to analytical challenges in
dealing with nonlinear systems at a distance from equilibrium.
For this reason, Holling [36] suggested defining the behavior
of ecological systems with two distinct properties: resilience
and stability. Resilience pertains to the persistence of rela-
tionships within a system and measures its ability to absorb
changes in state variables, driving variables, and parameters
while still persisting. Stability, on the other hand, refers to a
system’s capacity to return to equilibrium after a temporary
disturbance, with a more rapid and less fluctuating return
indicating greater stability. The well-known mutual invasion
criterion, often associated with the concept of resilience,
serves as a notable benchmark. For stable coexistence, it de-
mands that each species within a community demonstrates
positive population growth rates when invading a preexisting
community of competitors from low density [37]. This is
exactly the indicator used by Chang et al. to assess stable
coexistence in their experimental communities of microbial
species. Take a moment to focus on a scenario involving only
two species within the system. In the context of competitive
Lotka-Volterra equations with identical carrying capacities,
it is established that the invasion criterion holds true when
both A12 and A21 are less than 1 [38]. Consequently, note
that weak interactions with zero mean would almost always
satisfy the invasion criterion and, consequently, lead to sta-
ble coexistence. However, Chang et al. [6] observed in their
experiments that only a relatively small fraction (about 30%)
of possible pairs of species complies with the invasion crite-
rion. When contemplating the parameters Ai j as “universal”
coefficients for pairwise interactions, i.e., only depending on
species’ types, it appears that these experimental results are
scarcely consistent with the conditions necessary for math-
ematical asymptotic stability. The work by Abramson and
Zanette [39] provides us with a workaround. They randomly
selected interaction coefficients for a system comprising N
Lotka-Volterra species from a uniform distribution centered
around one. Remarkably, the resulting phase space exhib-
ited a multitude of fixed points, with a majority featuring
both positive and negative eigenvalues—indicating instability.
Consequently, the system traverses various unstable equilib-
ria, leading to instances in which the population of certain
species undergoes pseudoextinctions, reaching very low con-
centrations before rebounding. The noteworthy finding in their
study is the demonstration that introducing a lower bound, X0,
to the populations induces a shift in the stability of nearly all
equilibria, transforming them into stable states.

All of these heuristic discussions provide compelling jus-
tifications for our parameter choices in the model, which will
be detailed in Sec. IV. Moreover, we recall that our theoretical
setup incorporates the structural aspect of patches, a factor
that significantly influences coexistence and stability require-
ments. The next section will provide further clarification on
this point.

B. Mesoscopic interpretation of the interactions parameters

Let us consider the dynamics for the entire population
Xi = ∑

α Xiα of the species rather than focusing on the sub-
populations in individual patches. If we express the population
of species i in terms of fractions φ ranging from 0 to 1 [i.e.,
Xiα (t ) = φiα (t )Xi(t )], we obtain the following equation:

dXi(t )

dt
= riXi(t )

(
1 − 1

K

∑
α, j

φiα (t )Ai jφ jα (t )Xj (t )

+ μ

ri

∑
α,β

Mαβ [φiβ (t ) − φiα (t )]

)
. (4)

Because the metapopulation network is undirected, i.e.,
Mαβ = Mβα , the last term of the above equation is zero.
Indeed, the migration between patches does not affect the
global population. To recover the standard Lotka-Volterra
equations for entire populations, we define

AG
i j (t ) ≡ Ai j Si j (t ) = Ai j

Np∑
α

φiα (t ) φ jα (t ). (5)

Here, Si j , ranging between 0 and 1, measures the proximity
between species i and j, i.e., the extent of segregation between
them, indicating how much they occupy the same patches.
When they do not share any patches, Si j is zero; when their
entire populations are in the same patch, Si j = 1. This inter-
pretation of the global interaction parameters AG

i j combines
the “true” strength of interaction Ai j between two species
with the mesoscale spatial distribution across patches. It is
noteworthy that even two strongly interacting species with a
high Ai j can have a limited global impact on each other if
they are adequately segregated in space. Indeed, the proximity
measure changes the solutions at equilibrium, which now have
to satisfy ∑

j

(S∗ 	 A)i jX
∗
j = K. (6)

Let us see how the invasion criterion in the case of two
species changes in this new fashion. Suppose that species 1 is
rare, X1 ∼ 0, while species 2 is at equilibrium, X ∗

2 :

dX ∗
2

dt
= r2X ∗

2

(
1 − 1

K

Np∑
α

(φ∗
2α )2A22 X ∗

2

)

= 0 ⇔ X ∗
2 = K

A22
∑

α (φ∗
2α )2

. (7)

Species 1 will be able to invade the system if dX1(t )/dt > 0,
i.e., if

A12 <

∑
α (φ∗

2α )2∑
α φ1αφ∗

2α

≡ �21, (8)
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(a) (b)

FIG. 1. In this example, the individual-based simulation was conducted in a two-dimensional square of dimensions 2 × 2 with R = 0.2,
α = 7, and Nth = 60. We considered n = 2000 nodes (bacteria) randomly assigned to N = 100 different species. The top row of panel
(a) presents the random geometric network representation of the system where each species is indicated with a different color, while the
bottom row illustrates the intensity motion distribution as described by Eq. (2), both shown at three different time-steps (t = 0, t = tend/2
and at the end of the simulation tend). In panel (b), we present the outcome of the community detection algorithm. Initially, we depict the
identified communities using distinct colors (top row). Subsequently, we construct a patch network wherein communities are represented by
individual nodes of corresponding colors (bottom row). In this network, the size of each node is proportional to the number of bacteria within
the community, and the edges are weighted based on the number of links connecting the communities.

where we have considered Aii = 1. To comply with the mutual
invasion criterion, the same must hold also for A21, inverting
the indices. However, species 2, in the absence of species 1,
has grown equally in all the patches until equilibrium; this
means that φ∗

2α = 1/Np, ∀α. Considering also that
∑

α φ1α =
1, we obtain that the factor � is equal to 1 and we revert to the
classical invasion criterion conditions. This elucidates how the
mesoscale structure can at the same time relevantly affect the
global interactions AG

i j , and so the steady state, for species in
communities while maintaining the same conditions for pair-
wise stable coexistence in the sense of the invasion criterion.

C. Macroecological laws

A recent contribution by Grilli [9] represents a signifi-
cant stride in the macroecological exploration of microbial
communities. Through the analysis of data from different
biomes, the study delineates patterns of abundance variation,
encapsulating three macroecological laws: (i) the abundance
fluctuations of any given species across samples adhere to a γ

distribution; (ii) the variances of these distributions for distinct
species are proportional to the square of their means, known
as Taylor’s law [40]; and (iii) the mean abundances across
species conform to a log-normal distribution. He also showed
how a stochastic logistic model (SLM), which enhances a
logistic growth with a multiplicative stochastic term repro-
ducing environmental effects, can perfectly reproduce the
phenomenology. In an even more recent work by Camacho-
Mateu et al. [41], a generalized stochastic Lotka-Volterra
model (SLVM) was introduced, incorporating pairwise inter-
actions. This model was also able to uphold Grilli’s three

empirical laws. They considered only weak interactions in
order to comply with the global stability of the feasible fixed
point requirements. We will demonstrate that our framework
can replicate Grilli’s laws, even when accounting for stronger
interactions and incorporating information about environmen-
tal stochasticity within our spatial simulation.

IV. RESULTS

We conducted multiple runs of our spatial simulation, con-
sidering n = 2000 bacteria, i.e., nodes in the RGG, assigned
to N = 100 different species and exploring various values of
the radius R and threshold Nth. Remarkably, for each radius
value, it is always possible to find a corresponding Nth such
that the simulation reaches a form of equilibrium relatively
quickly. This equilibrium comprises different spatially seg-
regated clusters of bacteria, where each bacterium attains a
very low velocity of motion and predominantly occupies a
single patch. Figure 1 presents an example of a simulation
with R = 0.2, α = 7, and Nth = 60, with snapshots of the
system at different time-steps. In panel (a) the RGG is dis-
played alongside the associated intensity motion distribution.
As the nodes cluster, the distribution shifts towards very low
values. This phenomenon persists across all the higher values
of R investigated, extending up to 0.5. The straightforward
outcome of increasing the distance in the RGG is a reduction
in the number of patches and an increase in their dimensions.
Consequently, for the subsequent analysis, we focus solely on
the case in which R = 0.2. This specific value arises as the
lowest threshold at which a patchy network forms within a
relatively short time frame. Lower values resulted in bacteria
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interacting with an insufficient number of neighboring indi-
viduals, leading to rapid attainment of equilibrium without
the formation of a patch structure. Conversely, higher values
delayed equilibrium to an unacceptable extent, as we assume
that these processes occur before the initiation of species
growth.

All the simulations are performed in a 2 × 2 bidimensional
square. It is important to note that the range of velocities
considered is biologically plausible: bacteria can move at a
wide range of speeds ranging from 1 to 1000 µm/s [42]; con-
sidering the square as 2 × 2 mm2, this implies that bacteria at
the beginning of our simulation travel on average 141 µm in a
few seconds of straight-line motion, with a maximum possible
value of about 280 µm; then, at the end of simulation, they all
reach velocities of very few µm per second.

Upon reaching equilibrium, each simulation yields the ini-
tial distribution of various species across patches, representing
the initial conditions in our metapopulation model for species
growth. We normalized the resulting discrete abundances for
the total population of each patch and then we numerically
solved the system of differential equations using an explicit
Runge-Kutta method of order 5. For simplicity, we opted for
identical and unitary intrinsic growth rates and carrying ca-
pacities for all patches and species (Kα = 1, ∀α, ri = 1, ∀i).
In light of Sec. III A, we chose not to require asymptotic
stability but to follow a direction similar to Abramson et al.
[39], therefore we randomly sampled the off-diagonal entries
of the interaction matrix from a log-normal distribution with
a mean (ν) set to 1, varying its variance (σ 2) from 0.05
to 0.5 [Ai j ∼ log-normal(ν, σ )]. The diagonal elements were
uniformly set to 1 (Aii = 1). Additionally, we incorporated a
lower limit for the population, denoted as X 0

iα , set at 10−3.
Furthermore, we explored various values for the diffusion
parameter (μ), spanning from 0 to 1. Confirming the findings
of Abramson et al. [39], in this setup we observed that the
numerical simulations display equilibrium. We considered the
system to exhibit equilibrium dynamics if the coefficient of
variation for the populations of the species was below 1% in
the last 500 time-steps. This criterion was met in the majority
of cases, while in some instances, species’ populations ex-
hibited oscillatory behavior. We focused solely on the former
cases for our analysis. To assess the stability of these equilib-
rium configurations, we employ the mutual invasion criterion.
This involves systematically reducing the abundance of each
surviving species at equilibrium one by one and observing
whether they exhibit a positive growth rate, ultimately return-
ing to values close to their previous abundance levels ( note
that this perturbation occurs abruptly and does not allow the
system to reequilibrate). We observed that approximately 90%
of the surviving species consistently demonstrate regrowth
potential in all the cases investigated, guaranteeing a form of
stability for our simulated systems. Those species that became
extinct were primarily those with already minimal abundance
levels at equilibrium.

The idea is to organize the simulations to replicate the
procedure in [6]: the spatial simulation ends up with the
RGG at equilibrium, on which we employed the modularity
optimization Louvain algorithm which successfully identifies
distinct communities, i.e. the different patches of the metapop-
ulation network [panel (b) of Fig. 1]. Afterwards, we use the

metapopulation Lotka-Volterra formalism to simulate species
growth and to identify the species that reach equilibrium.
Subsequently, we proceed to reexecute the entire model again,
including both spatial simulation and growth, considering all
the possible pairs of survivors. Consistent with the experimen-
tal design, we investigate three different initial distribution
proportions for the pairs (50%-50%, 95%-5%, 5%-95%) to
assess their potential for coexistence under each scenario in
the absence of the other species.

The initial series of simulations consisted of 100 runs,
considering different combinations of the interaction standard
deviation (σ ) along with the diffusion parameter (μ). We ex-
amined three values of σ (0.05, 0.1, and 0.5) and three values
of μ (0.1, 0.3, and 0.5). Figure 2 displays the outcomes for the
number of survivors (NS) while varying σ and keeping μ con-
stant (top row), and vice versa (bottom row). A vertical dashed
red line indicates the mean number of surviving species over
100 runs of the classical mean-field Lotka-Volterra without
patch structure. Notably, across all cases, the patch struc-
ture consistently facilitates a significantly higher number of
surviving species compared to the mean-field scenario, indica-
tive of enhanced coexistence among species. The distribution
shifts towards higher values for the number of survivors with
higher σ and lower diffusion rates μ. This latter trend can
be explained straightforwardly: as μ increases, species can
explore the entire patch network more rapidly, converging
towards the classical mean-field approach. Conversely, when
variance increases, the distribution exhibits heavier tails, and
the correlation between higher variances and a greater num-
ber of survivors suggests that increased heterogeneity in the
interaction patterns among species, and therefore in the com-
position of the patches, can promote coexistence. We will
revisit the effect of heterogeneity later in our analysis.

Further insights can be obtained looking to the fractions
φi before and after executing the model. Specifically, refer to
Fig. 3 to observe the “proximity measure” Si j , as defined in
Eq. (5), for each pair of species both before and after allowing
them to grow and migrate. In the initial state, Si j exhibits
a bell-shaped distribution, indicating that the spatial simula-
tion results in species that are, on average, evenly segregated
among the patches. Following the model execution, the sur-
viving species demonstrate a distribution more concentrated
around zero and with a long tail, suggesting that survivors are
more likely to be highly segregated with a small minority of
them being able to coexist in the same patches. As described
by Eq. (5), this phenomenon facilitates the coexistence of
species, even when their net interaction Ai j is high. This last
analysis suggests that the mechanism behind the observed
multispecies coexistence is that the majority of patches are
dominated by a single species (or just few of them) who, due
to strong interaction coefficients, cannot be invaded or invade
neighboring patches. In this scenario, the initial distribution
of species and the specific structure of the metapopulation
network become crucial factors, as further explored in the next
two analyses.

First, we aim to assess the influence of the initial distribu-
tion of species across the patches on the number of coexisting
species at equilibrium. To achieve this, rather than conducting
our spatial simulation, we sampled the initial populations
from a Dirichlet distribution to ensure equal abundances for
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FIG. 2. Distributions of the number of survivors (NS) obtained after 100 runs of the spatial simulation and the metapopulation model for
three different values of the interaction standard deviation σ = 0.05, 0.1, 0.5, while keeping μ = 0.3 in the top row and for μ = 0.1, 0.5, 0, 5
while keeping σ = 0.1 in the bottom one. The vertical dashed red line indicates the mean number of surviving species over 100 runs of the
classical mean-field Lotka-Volterra model (mean-field LV). For all the simulations n = 2000, N = 100, R = 0.2, Nth = 60, α = 7, Kα = 1,
and ri = 1 ∀i, X 0

iα = 10−3 ∀ (i, α).

all species [
∑Np

α=1 Xiα (0) = 1], but with varied distributions
among the patches,

�Xi(0) = (Xi1(0), Xi2(0), . . . , XiNp ), (9)

p( �Xi(0)) = 1

N

Np∏
α=1

X aα−1
iα (0), (10)

with N the normalization factor (multivariate beta func-
tion) and �a = (a1, . . . , aNp ) concentration parameters for the

FIG. 3. Distribution of the proximity measure Si j , as defined in
Eq. (5), for each possible pair of species, before and after species’
growth and over 100 runs of the complete model. Given that Si j is
not defined when one or both species are extinct, in the final state
we considered all possible couples of only survived species. For the
simulation here, n = 2000, N = 100, R = 0.2, Nth = 60, α = 7, σ =
0.1, μ = 0.3, Kα = 1 and ri = 1 ∀i, X 0

iα = 10−3 ∀ (i, α).

different patches. We chose to consider equal aα = a, ∀α, in
order to give the same importance to all the patches. Lowering
the global parameter a introduces greater random variability
in the species’ concentration among the patches, and therefore
higher heterogeneity in the patch composition. We conducted
multiple model runs, varying the value of a from 100 to 0.01
while simultaneously adjusting the diffusion rate to gener-
ate the heat map depicted in Fig. 4. The figure highlights
that lower values of the diffusion rate and greater variabil-
ity between patch compositions (lower a) yield the best
performance in terms of the number of surviving species.
This further suggests that heterogeneity promotes coexistence
among multiple species. Upon attempting to describe the ini-
tial distribution of species yielded by our spatial simulation
with the Dirichlet distribution, we find that the value of a
which best fits it is approximately 0.1 (indicated by the dashed
horizontal line in Fig. 4). This indicates that the spatial simu-
lation effectively reproduces highly heterogeneous patches.

Another intriguing aspect to consider is the role of the
patch network in reproducing the observed coexisting pat-
terns. To investigate this, we conducted multiple simulations,
examining three distinct network types characterized by vary-
ing levels of connectivity. Here, connectivity refers to a
fraction between 0 and 1, representing the number of realized
links divided by the maximum possible number of edges
n(n − 1)/2 for a given set of nodes n. We examined the
following three networks types (Fig. 5): (i) The Newman-
Watts-Strogatz graph [43], resembling a grid where each node
maintains a fixed number of connections but also allows

014404-7



MATTIA MATTEI AND ALEX ARENAS PHYSICAL REVIEW E 110, 014404 (2024)

FIG. 4. The heat map depicts the number of survivors (NS) at the
equilibrium varying the initial distribution of the species, through
the concentration parameter a in a Dirichlet distribution (y-axis in
log scale), and the diffusion rate μ (x-axis). Brighter colors indicate
higher values for the number of survivors. The white horizontal
dashed line indicates the value of a which best fits with the initial
distribution of the species provided by our spatial simulation. For
each pair of values (a, μ) we performed 100 runs of the model with
σ = 0.1, Kα = 1 and ri = 1 ∀i, X 0

iα = 10−3 ∀ (i, α). To ensure the
figure appears continuous, we used quadratic interpolation.

for additional shortcuts between non-neighboring nodes; (ii)
the Erdos-Renyi graph [44], representing a standard random
network where links are randomly established based on a pre-
determined probability; and (iii) a “Mainland-type” network
[45], featuring a single central patch connected to all others,
with options to include extra links between peripheral patches
to control connectivity. Across all three network types, we
conducted 100 simulations of the model, considering four
different levels of connectivity for each while keeping other
model features fixed. It is evident that the network structure
primarily influences the results through its connectivity, with
an increase in connectivity correlating with a decrease in the
number of coexisting species at equilibrium across all net-
work types. Evaluating the effect of different topologies at the
same level of connectivity is less straightforward. However,
it appears that the specific structure also plays a role, par-
ticularly evident at lower connectivity levels, where the three
types exhibit more distinct distributions. The last two analyses
conducted demonstrate how compositional heterogeneity of
the initial conditions and sparseness in the metapopulation
network promote coexistence at equilibrium; both of these
features are reproduced by our spatial simulation, which now,
under this perspective, becomes essential to explain the results
at equilibrium.

Interestingly enough, upon reexecuting the model for all
possible pairs of surviving species after all simulations, we
discovered that only a minority of pairs can coexist in iso-
lation, mirroring the experimental findings and replicating
the emergent behavior. The boxplot in Fig. 6 illustrates the
distributions of the percentage of species’ pairs coexisting

FIG. 5. This graph illustrates how the number of coexisting
species at equilibrium is influenced by the connectivity of the patch
network across three different topologies. Points here are averages
over 100 simulations of the metapopulation model for four different
connectivity values and for all three network types. The Newman-
Watts-Strogatz (NWS) graph, denoted with a dashed blue line,
features nodes with a fixed degree and the possibility of additional
shortcuts. The Mainland network (ML), depicted with a dashed-
dotted red line, consists of a central main patch connected to all
others, with additional links between the latter with varying prob-
abilities. Results for the Erdos-Renyi graph (ER), where nodes are
randomly connected based on a fixed probability, are displayed with
a solid green line. The star marker indicates the mean connectivity
and number of survived species provided by the model when the
metapopulation network emerges from the spatial simulation. Other
parameters of the model were held constant, with σ = 0.1, μ = 0.3,
Kα = 1, ∀α, ri = 1, ∀i, and X 0

iα = 10−3 for all combinations of
species i and patches α.

in isolation for the same combinations of μ and σ as previ-
ously examined. A horizontal dashed line represents the value
reported by [6], which stands at 28.5%. Specifically, cases
with the highest σ and the lowest μ demonstrate a signifi-
cantly high probability of replicating the experimental value.
For the remaining cases, although the average probabilities
exceed those observed experimentally, again only a minority
of pairs exhibit coexistence. In fact, in the absence of mul-
tiple species, spatial self-organization in this scenario leads
to a random process distributing both species equally across
all patches with high probability. This implies an unaffected
interaction pattern, rendering the spatial distribution incapable
of promoting coexistence, in contrast to what happens in the
case of multiple species, where the spatial simulation natu-
rally generates more heterogeneous patches. When there is
a significant disparity in the initial concentration of the two
species, as previously mentioned, the patch structure does
not impact the invasion criterion when one species invades
the other. Consequently, the mesoscale structure, while poten-
tially influencing coexistence in multispecies configurations,
does not change the criteria for coexistence in the case of two
species. This elucidates the findings illustrated in Fig. 6.
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FIG. 6. Each box represents the distribution for the percentage
of coexisting species’ pairs (picked from the set of survivors in the
multispecies simulation) over 100 runs for different combinations
of μ and σ , as depicted along the x-axis. The box extends from
the first quartile (Q1) to the third quartile (Q3) of the data, with a
line at the median. The whiskers extend from the box to the farthest
data point lying within 1.5× the interquartile range (IQR) from the
box. Flier points indicate outliers. The red horizontal dashed line
indicates the experimental value for the percentage of coexisting
pairs found in [6]. For the multispecies part, the chosen parameters
are n = 2000, N = 100, R = 0.2, Nth = 60, Kα = 1, and ri = 1 ∀i,
X 0

iα = 10−3 ∀ (i, α). The same for the two-species part except for
N = 2.

As mentioned earlier, a robust testing ground for a model
aspiring to describe the microbiome involves verifying its
ability to replicate the three macroecological laws outlined
in Sec. III C. To achieve this, we conducted 100 model
runs, again for different combinations of the interactions vari-
ance and the diffusion rate, and then we checked for the
abundance distribution of species across samples [abundance
fluctuation distribution (AFD)], the relationship between the
variance and mean of species abundances, and the distribu-
tion of mean abundances across species [mean abundance
distribution (MAD)]. In the left column of Fig. 7 the three
laws are displayed, considering σ fixed to 0.1 and for
three different values of μ = 0.1, 0.3, 0.5. In the right col-
umn we did the same but fixing μ to 0.3 and for three values
of σ = 0.05, 0.1, 0.5. The three laws are depicted along the
rows. All these analyses demonstrated good agreement with
the patterns identified by Grilli, resulting in mean R2 values of
0.97, 0.5, and 0.86, respectively, for the three laws. The fits are
performed considering a number of bins of the distributions
for the first and the third law according to the Freedman-
Diaconis rule [46].

Note that our exploration of the agreement of the AFD to
a γ distribution was conducted only at the aggregate level
while in [23] it was observed also at species level. Due to
our specific choice of interactions, the majority of species
become extinct in each simulation run, and those that survive
vary across different runs. As a result, statistical data for most
species may not adequately explore the entire γ distribution at

FIG. 7. The simulations were conducted with σ = 0.1 and vary-
ing μ across 0.1, 0.3, and 0.5 for the plots in the right column.
Similarly, the simulations were repeated with μ = 0.3 while adjust-
ing σ to 0.05, 0.1, and 0.5 in the left column. The different colors of
the circles represent the three values of μ in the right column and of
σ in the left column. The remaining parameters in the model were set
as in Fig. 2. The top row presents the abundance fluctuation distribu-
tion, depicting the probability density for the rescaled log relative
abundance of the species across 100 model runs. Here, the black
line represents a γ distribution. In the second row, we plotted the
variance of the relative abundance as a function of the corresponding
means across 100 simulations. The black line corresponds to Taylor’s
law with an exponent of 2. The third row displays the distribution
for the rescaled log average relative abundance, again across 100
different simulations, compared with a log-normal distribution (black
line). The analysis yielded mean R2 values of 0.97, 0.5, and 0.86,
respectively, for the three laws.

the individual species level, and aggregation may yield better
results.

The second law exhibits less alignment with theoretical
expectations. Nevertheless, recent findings [47] strongly in-
dicate that the second law cannot be regarded as a precise
relationship between mean and variance. Instead, the expo-
nent appears to be sampled from a distribution rather than
remaining a constant, leading to increased dispersion in data
points, as observed in our case. This hypothesis finds support
in both empirical observations and the predictions of an ap-
proximate theory.
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In the context of the stochastic logistic model, achiev-
ing a log-normal MAD involves sampling carrying capacities
from a log-normal distribution. In our study, the emergence
of this pattern appears to be linked to the log-normally dis-
tributed interactions. To investigate further, we conducted a
brief analysis where interactions were sampled from a normal
distribution with a mean of 1 and varying variances (0.1,
0.3, and 0.5). Interestingly, in this revised setup, the MAD
deviated further from a log-normal distribution compared to
the previous case (Euclidean distance decreased by one-half
and the R-squared value decreased by one-third).

V. DISCUSSION

In this study, we have developed a theoretical framework
that combines an individual-based spatial simulation of bac-
terial motion with a metapopulation Lotka-Volterra model
to describe abundance dynamics. The current model has
demonstrated its capability to replicate certain experimental
phenomena, such as the intriguing emergence of coexistence
observed by Chang et al. Specifically, the model facilitates
coexistence in multispecies systems by fostering the spatial
rearrangement of bacteria into distinct clusters. This spatial
segregation is a consequence of a high escape response trig-
gered when the local environment becomes densely populated
and competitive. The self-organization into different patches
consistently leads to a greater number of bacteria surviving, as
spatial separation limits interactions among them. However,
this process proves to be less efficient in the case of a two-
species system. When two species have a strong interaction,
the only viable way to coexist is complete segregation within
the system. If bacteria are uniformly distributed, there is a high
probability that both species will end up in each patch, there-
fore not changing the pattern of competition. In summary, our
spatial simulation demonstrates the capability to generate het-
erogeneous patches in scenarios involving multiple species,
whereas this heterogeneity is not observed in cases with only
two isolated species. This discrepancy results in the promotion
of coexistence in the former case, while not in the latter.

The exploration of how a spatial structure influences the
outcomes of a standard Lotka-Volterra model has been pre-
viously examined in the literature. As stated by Denk and
Hallatschek [48], several theoretical studies [49,50] on meta-
communities and metapopulations have repeatedly shown that
dispersal between patches can alleviate global extinctions of
species and stabilize biodiversity, whereas we illustrated how
increasing the diffusion parameter leads to more extinctions.
We believe that this apparent discrepancy can be attributed to
the choice of interaction regime. All these studies primarily
explored the weak regime (ν 
 1), while we investigate the
area bordering niche partitioning (ν < 1) and competitive ex-
clusion (ν > 1). In their case, species survival hinges on local
species extinction being balanced by dispersal from within the
metacommunity. In contrast, in our scenario, diffusion merely
enhances connectivity among strongly interacting species,
thereby reducing coexistence.

One could posit that the described phenomenon occurs
because bacteria, when assessing the density of surround-
ing competitors, are unable to discriminate between different
species. This leads to the inclusion of cells from the same

species as perceived competitors. However, there is no in-
herent reason to assume any form of cooperation between
bacteria of the same species. As mentioned earlier, cooper-
ation, although possible, tends to be infrequent both among
bacteria of the same species and across different species
[29,51,52]. This rationale underlies our decision to exclu-
sively consider negative interactions in the formulation of the
growth model.

Similarly, it can be argued that the absence of uneven
nutrient distribution in our model may impose limitations on
its applicability. Nevertheless, when considering experimen-
tal communities, they are typically cultured in agar plates
or batch cultures where nutrients are generally thoroughly
mixed, resulting in a uniform distribution throughout the
medium. Given this context, we assume that there is no sub-
stantial nutrient concentration gradient influencing bacterial
motion. Thus, we posit that the predominant driving force for
movement is the avoidance of competition, and we showed
how even in isotropic environments with no particular nutrient
distribution, is still possible to have a spatial structure with
metacommunities affecting the coexistence among species.
A consumer-resource model would necessitate making vari-
ous assumptions about nutrient abundances, types, temporal
dynamics, spatial distribution, and more. The Lotka-Volterra
formalism allows the modeling of resource competition with-
out delving into specific resource details.

Bacteria rank among the fastest reproducers globally, dou-
bling at the scale of minutes [53]. However, their motion
is also remarkably rapid, with swimming speeds exceeding
100 body lengths per second [54,55]. This substantiates our
assumption of effectively separating the temporal scales be-
tween self-organization in space and growth.

While numerous instances of empirical evidence support
bacterial self-organization in space, our model currently lacks
experimental validation. Nevertheless, we have shown that
our theoretical framework aligns with the three macroecolog-
ical laws identified by Grilli, providing a form of empirical
confirmation. Efforts are underway to experimentally validate
our assumptions and to scale the model for increased biolog-
ical plausibility. Future endeavors will involve a significantly
higher number of bacteria situated in a three-dimensional
space with varied geometry, a task currently beyond reach due
to the limits of the computational power at our disposal.

In conclusion, we believe that our approach is inno-
vative as it validates the utilization of population-based
models integrating mesoscale structures. While a fully mi-
croscopic approach poses technical challenges, a mean-field
approach would oversimplify, and existing works incorporat-
ing mesostructures often do not provide generative mecha-
nisms for them. We introduced a microscopic process that
potentially rationalizes the adoption of patch configurations.
Simultaneously, we illustrated how minimal adaptability lev-
els can lead to the formation of isolated bacterial clusters,
maintaining a high degree of randomness that mirrors the
intricate stimuli influencing bacterial motion. We believe that
this work has the potential to pave the way for a new research
direction, emphasizing the importance of considering the del-
icate spatial equilibrium between species within a microbial
community as a pivotal element to be incorporated into theo-
retical models and investigations.
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A. Sanchez-Gorostiaga, D. Segrè, P. Mehta, and A. Sanchez,
Emergent simplicity in microbial community assembly, Science
361, 469 (2018).

[4] A. Posfai, T. Taillefumier, and N. S. Wingreen, Metabolic trade-
offs promote diversity in a model ecosystem, Phys. Rev. Lett.
118, 028103 (2017).

[5] E. Frey, Evolutionary game theory: Theoretical concepts and
applications to microbial communities, Physica A 389, 4265
(2010).
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