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State-dependent complexity of the local field potential in the primary visual cortex
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The local field potential (LFP) is as a measure of the combined activity of neurons within a region of
brain tissue. While biophysical modeling schemes for LFP in cortical circuits are well established, there is a
paramount lack of understanding regarding the LFP properties along the states assumed in cortical circuits over
long periods. Here we use a symbolic information approach to determine the statistical complexity based on
Jensen disequilibrium measure and Shannon entropy of LFP data recorded from the primary visual cortex (V1)
of urethane-anesthetized rats and freely moving mice. Using these information quantifiers, we find consistent
relations between LFP recordings and measures of cortical states at the neuronal level. More specifically, we
show that LFP’s statistical complexity is sensitive to cortical state (characterized by spiking variability), as well
as to cortical layer. In addition, we apply these quantifiers to characterize behavioral states of freely moving
mice, where we find indirect relations between such states and spiking variability.
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I. INTRODUCTION

Cortical neurons exhibit remarkable variability in their
spiking patterns [1]. The technological advance of simulta-
neous recording techniques for large neuronal populations
[2–5] has revolutionized our understanding of cortical dynam-
ics, particularly the variability of spiking activity in several
cortical areas, including the primary visual cortex. This spik-
ing variability during spontaneous activity (in the absence
of induced sensory stimulation), exhibits similarities to the
spiking activity triggered by stimuli in freely moving ani-
mals [6,7]. Notably, spiking variability in primary sensory
cortices varies across different cortical states, characterized
by different levels of neural synchronization [8–11], sug-
gesting that it serves as a proxy for cortical state at both
macro and microscopic scales. This variability appears to
be a dynamic property, changing over time on a timescale
of seconds. Therefore, investigating the state-dependence of
cortical functions is fundamental for understanding the intri-
cate mechanisms underlying cortical computations and their
modulation by multiple behavioral factors.

The power spectrum of combined electrophysiological
activity in the cortical extracellular medium typically ex-
hibits a 1/ f structure, characterized by elevated power in
lower-frequency components [12,13]. These components are
primarily characterized by the concerted local activity of neu-
ral networks, which takes place within a restricted volume of

*Contact author: nivaldo.vasconcelos@ufpe.br
†Contact author: pedro.carelli@ufpe.br

tissue surrounding the electrode tip [13]. Such time-varying
signal has been termed local field potential (LFP). The use
of LFP to assess the overall neural function within a specific
tissue area is gaining more and more attention [14–16]. LFP is
mainly believed to reflect the synaptic currents of neuron pop-
ulations in the vicinity of the recording site, being sensitive to
the geometry and arrangement of the neurons [17]. However,
any transmembrane current in the brain tissue contributes to
the LFP, giving rise to limitations in the interpretation of the
signal’s precise origin and spatial reach [18–20]. Despite this
hardship, analyzing LFP signals is essential to understand-
ing presynaptic activity and inferring properties of network
dynamics. However, there is a lack of studies regarding the
complexity of LFP signals along different cortical states,
mainly in the sensory areas.

To address this issue, we used simultaneous recordings
of large neuronal populations in the primary visual cor-
tex, in multiple experimental conditions: deep layers of
urethane-anesthetized rats, and all layers of freely moving
mice. Based on these data, segmented by level of variabil-
ity of population spiking activity, we employ two quantifiers
based on Information Theory: Shannon entropy, and MPR-
statistical complexity, based on the disequilibrium between
the actual time series and one with a uniform probability
distribution function [21–26]. We assign to each system un-
der study a position in a two-dimensional space spanned
by an entropy and a statistical complexity measure. These
quantifiers are evaluated using the probability distribution
function (PDF) obtained with the Bandt-Pompe symbolization
methodology [27].
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FIG. 1. Cortical dynamics in different levels of spiking variability. (a) Schematics of silicon probe (six shanks) inserted in the rat’s primary
visual cortex (V1). (b) Coefficient of variation (CV) of spiking activity calculated for 10-s-long nonoverlapping windows, followed by the
CV histogram of a single animal; symbols (blue circle, green square, and red triangle) indicate the level of spiking variability of three
representative examples: low (CV = 0.42, desynchronized activity), intermediate (CV = 1.04), and high (CV = 2.03, highly synchronous
activity). (c) Spiking activity across the three levels of CV depicted in panel (b). (Top) Firing rate calculated using 50 ms bin. (Bottom) Raster
plots of single- and multi-units activity (SUA = 90 and MUA = 145). (d) 10-s-long LFP data across the three levels of CV. LFP is tracked
using 500 Hz sample rate and a low-pass Butterworth filter is applied with cutoff frequency of fcutoff = 200 Hz. (e) Power spectrum density
(PSD) of data shown in panel (d).

This approach was originally introduced to distinguish
chaotic from stochastic systems [23] in time series analysis.
Recently, it has been applied to different brain signals: to show
that complexity is maximized close to criticality in cortical
states using spiking data [28], to distinguish cortical states
using EEG data [29], MEG data [30], as well as neuronal
activity [31–33]. Furthermore, it has been applied to monkey
LFP to estimate response-related differences between go and
no-go trials [34], to estimate time differences during phase
synchronization [35], and to explore Hénon maps as a model
for brain dynamics based on LFP data from subthalamic
nucleus (STN) and medial frontal cortex (MFC) of human
patients [36].

II. METHODS

A. Surgery and recordings

The in vivo experiments targeted recordings in albino
urethane-anesthetized rats (n = 4, Wistar Han, male, 350–
500 g, 3–6 months old, 1.44 g/kg urethane), from the
primary visual cortex (V1, Bregma: AP = −7.2 mm, ML
= 3.5 mm). Such as is illustrated in Fig. 1(a), the record-
ings have been done using a 64-channel silicon probe,
with six shanks, 200 µm apart, inserted around the central
coordinate, along the direction defined by the anterior-
posterior axis [37]. The extra-cellular signal in each channel
was sampled at 30 kHz (Intan RHD2164, 16 bits/sample),
based on Open Ephys acquisition system [38]. The in vivo

experimental procedures, encompassing animal housing, sur-
gical interventions, and data recordings, strictly adhered to the
FELASA guidelines [39] and were conducted in full compli-
ance with European Regulations (European Union Directive
2010/63/EU). Both the animal facilities and the personnel
responsible for conducting these experiments were officially
certified by the Portuguese regulatory body, DGAV (Direcção-
Geral de Alimentação e Veterinária). Furthermore, all research
protocols underwent thorough scrutiny and received approval
from the Ethics Committee of the Life and Health Sciences
Research Institute (ICVS). More detailed information can
be found in our recent studies [40,41]. Additionally, we
employed nonalbino urethane-anesthetized Long-Evans male
rats (n = 3, 350–500 g, 3–6 months old, 1.44 g/kg urethane),
under approval by the Federal University of Pernambuco
(UFPE) Committee for Ethics in Animal Experimentation
(23076.030111/2013-95, 12/2015, and 20/2020). Addition-
ally, we used recordings from 19 freely moving mice,
implanted with 64-site linear silicon probe (H3, Cambridge
NeuroTech). The freely moving mice database is public
from Buzsáki’s laboratory, as recently published [42]. In
summary, surgery and electrode implantation, extracellular
electrophysiological recording, electrolytic lesions, histolog-
ical processing, spike sorting, and detection of monosynaptic
functional connectivities were performed. Electrophysiolog-
ical data were acquired using an Intan RHD2000 system,
digitized with a 20 kHz rate, and the wide-band signal was
downsampled to 1.25 kHz for use as the LFP signal.
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B. Data analysis

The basic neuronal spiking data is modeled as a set of spike
trains, where each spike train can be defined as

sk (t ) =
∑
ti∈Tk

δ(t − ti ), (1)

where Tk is a list with the spike times of the kth neuron
within the neuronal population. Based on the Eq. (1), the
corresponding instantaneous firing rate is defined as

rk (t,�t ) = 1

�t

∫ t+�t

t
sk (τ )dτ, (2)

where �t defines the time resolution of this measure. Once
one selects the time resolution, �t (also known as the bin
size), the result from the Eq. (2) is discrete and can represented
by a corresponding time-series, rk,i, with approximation based
on a rectangular kernel (�t long). Based on the population
instantaneous firing rate, on its discrete form, ri, we calculated
the corresponding coefficient of variation as

CVi = σi

μi
, (3)

where, numerator and denominator are standard-deviation and
average values for the ith 10-s-long population instantaneous
firing rate time-series, respectively. For each 10-s period, the
cortical state has been assessed by using the corresponding
coefficient of variation of population instantaneous firing rate
time-series, according to Eq. (3).

In total, single-unit (SUA) and multi-unit (MUA) spiking
activity encompassed 2535 neurons (833 from albino rats,
921 from nonalbino rats, and 781 from freely moving mice).
The average number per recording of SUA and MUA was,
respectively, 75.5 ± 15.44 and 132.75 ± 15.46 for albino rats,
89.67 ± 23.31 and 241.67 ± 79.46 for nonalbino rats, and
78.29 ± 22.25 and 33.29 ± 12.50 for freely moving mice.
The LFP recorded from all animals was tracked using a
500 Hz sample rate and a low-pass Butterworth filter, with
a cutoff frequency of 200 Hz, was applied. In total, we
used 6000-s-long data for each rat and 8000-s-long data for
each mouse.

C. Information quantifiers

Let X (t ) ≡ {xt ; t = 1, 2, ..., M} be the time series repre-
senting a set of M measurements of the observable X . We
can associate to X , a probability distribution given by P ≡
{pj ; j = 1, 2, ..., N} where

∑N
j=1 p j = 1 and N is the number

of possible states of the system.
After evaluating the PDF (P ≡ {p j ; j = 1, 2, ..., N}) as-

sociated to a time series X (t ) one can calculate different
information quantifiers such as entropy and complexity.
The Shannon’s entropy associated to the distribution P is
defined by

S[P] = −
N∑

j=1

p j ln(p j ). (4)

This function is a information measure which is equal
to zero when we can predict with certain the outcome
of the observable. By contrast, the entropy is maximized

when all states have equal probability (uniform distribution)
Pe = {p j = 1/N,∀ j = 1, 2, ..., N}. Therefore, the normalized
Shannon’s entropy is defined by H[P] = S[P]/S[Pe] where
0 � H � 1.

Here we consider the Martín-Platino-Rosso statistical com-
plexity (MPR) [43], based on the notion of a statistical
complexity proposed by López-Ruiz et al. [26]. The main
idea of this complexity measure is to differentiate systems on
intermediate configurations between complete order (H = 0)
and disorder (H = 1). These opposite extremes of perfect
order and maximal randomness are too simple to describe and
the complexity should be zero in both cases.

Therefore, the complexity can be defined through the
product

C[P] = Qj[P, Pe] × H[P], (5)

where QJ [P, Pe] is a disequilibrium defined in terms of the
Jensen-Shannon divergence as

Qj[P, Pe] = Q0J[P, Pe], (6)

where

J[P, Pe] = S

[
(P + Pe)

2

]
− S[P]

2
− S[Pe]

2
, (7)

and Q0 is a normalization constant (0 � QJ � 1). Q0 is equal
to the inverse of the maximum value of J[P, Pe], which is
obtained when one of the N states, say the state m, has pm = 1
and the remaining states have p j �=m = 0. The Jensen-Shannon
Divergence J[P, Pe] is used to quantify the difference between
the distribution associated with the system of interest and the
uniform distribution.

It has been demonstrated that, for a given value of nor-
malized entropy H , the complexity C can vary between a
well-defined minimum Cmin and a maximum Cmax value which
restricts the possible occupied region in the C-H plane [43].

D. Bandt and Pompe symbolization technique

Here, we use a symbolic representation of a time se-
ries introduced by Bandt and Pompe [27] for evaluating the
probability distribution function (PDF) associated to each
time series X (t ) of interest. This symbolization technique
consist of extract the ordinal patterns of length D, by in-
dexing each time t to the D-dimensional vector s(t ) =
(xt , xt+1, · · · , xt+D−1, xt+D).

The specific jth ordinal pattern associated to s(t ) is the
permutation π j = (r0, r1, ..., rD−1) j of (0, 1, ..., D − 1) which
guarantees that xt+r0 � xt+r1 � · · · � xt+r(D−2) � xt+r(D−1) . In
other words, each permutation π j (with j = 1, 2, ..., D!) is
one of our possible symbols and we have D! different symbols
(ordinal patterns). To calculate the PDF we should identify
and count the number of occurrences of each symbol π j of
length D.

This procedure is essential to a phase-space reconstruction
with embedding dimension (pattern length) D. For practical
purposes, Bandt-Pompe [27] suggested to use 3 � D � 7.
Note that the probabilities to evaluate the PDF naturally arises
from the time series after defining the symbols. This technique
takes into account the temporal structure of the time series
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and yields information about the temporal correlation of the
system.

To have an example, choosing D = 3, all six possible sym-
bols associated with the permutations π j are π1 = (0, 1, 2),
π2 = (0, 2, 1), π3 = (1, 0, 2), π4 = (1, 2, 0), π5 = (2, 0, 1),
and π6 = (2, 1, 0). Considering an illustrative time series
X (t ) = {2, 7, 4, 1, 3, 6, 0, 8, 5}, the first vector is s(t = 1) =
(2, 7, 4), corresponding to the permutation π2 = (0, 2, 1);
the second vector is s(t = 2) = (7, 4, 1), corresponding to to
the permutation π6 = (2, 1, 0); the third vector is s(t = 3) =
(4, 1, 3), corresponding to the permutation π5 = (2, 0, 1).
Similarly, one can find the other four vectors s(t ) and its
respective π j to build the PDF associated to X (t ).

It is also possible to include a time delay τ to evaluate
the PDF in different timescales. This means that we can skip
every τ − 1 points of our time series X (t ) to find and count
the symbols. In the above example we use τ = 1 and consider
every point in X (t ). For τ = 2 we would skip every other
point, in such a way that the first vector is s(t = 1) = (2, 4, 3),
corresponding to the permutation π2 = (0, 2, 1); the second
vector is s(t = 2) = (7, 1, 6), corresponding to the permu-
tation π5 = (2, 0, 1); the third vector is s(t = 3) = (4, 3, 0),
corresponding to the permutation π6 = (2, 1, 0). For τ = 3
the first vector is s(t = 1) = (2, 1, 0), the second vector is
s(t = 2) = (7, 3, 8); the third vector is s(t = 3) = (4, 6, 5).
Therefore, to each time series X (t ) we can associate many
PDFs, each one for a different value of the time delay τ .

III. RESULTS

A. Local neuronal populations in deep layers of V1

Deep layers of pyramidal neurons in rodents’ primary vi-
sual cortex have dendrites reaching all six layers, making them
important integrators in the cortical column [44]. We already
investigated its complexity based on its spiking activity [28].
However, an analysis of the statistical complexity of local field
potential in deep layers of V1 is still lacking, especially when
observed along multiple cortical states. Figure 1(a) displays an
illustration of details for a pair of shanks of the silicon probe
(Buzsaki64sp, Neuronexus) used to record six local neuronal
populations, 200 µm apart.

Here we associate different cortical states with different
levels of summed spiking variability in large neuronal popu-
lations [8,9,28,40,41,45]. Figure 1(b) displays the time-series
of the coefficient of variation [CV, Eq. (3)], calculated over
nonoverlapping 10-s-long windows, illustrating the summed
spiking variability within neuronal populations in V1 of
urethane-anesthetized rats. In addition, its right panel displays
the corresponding CV histogram. Figure 1(c) illustrates the
detailed spiking activity across the same neuronal population
in its different levels of summed spiking variability, according
to the corresponding colored markers in Fig. 1(b): low (blue),
intermediate (green), high (red). The spiking activity of each
SUA and MUA is shown along a time window of 10s in a
binary form. This means that if a dot is colored, then a spike
of that unit was registered at that instant, if it is white, then that
unit was at silence at that instant. The top panels in Fig. 1(c)
show the firing rate calculated in a time window of 50 ms. The
bottom panels show the raster plots of 90 single-units and 145

multi-units activity in the vertical axis. Each dot represents a
spike.

Figure 1(d) shows samples of 10-s-long local field poten-
tials along the different levels of summed spiking variability
shown in (b) (using the same color code), whereas Fig. 1(e)
shows the corresponding power spectrum density (PSD) of
LFP signals. At low CV, the spiking activity is desynchronized
and the LFP power spectrum is relatively flat. At intermediate
CV, the spiking activity becomes more synchronized. At high
CV, the spiking activity is highly synchronous and the LFP
power spectrum is dominated by low frequencies. This is sim-
ilar to previous report by Hahn et al. [46], where they found
that the variability of cortical dynamics can be characterized
by different cortical states based on the frequency composition
of the LFP power spectrum.

Recently, we used the statistical complexity and Shannon
entropy analysis to investigate the signaling output of deep
layers in the primary visual cortex of urethane-anesthetized
rats [45]: its spiking data. A natural step further in the study
of different cortical states is to investigate the statistical com-
plexity and Shannon entropy of LFP across multiple cortical
states. Figure 2(a) shows the statistical complexity of 10-s-
long windows of LFP data versus the time delay τ calculated
for each shank (dashed lines) for multiple levels of variability
in population spiking activity (low CV in blue and high CV
in red). Average (lines) and standard deviation (shading) is
performed based on all shanks. The complexity correlation
matrix of all six shanks for low and high CV, which measures
the correlation between the time series of the statistical com-
plexity calculated in different shanks of the same experimental
setup, is also shown. Figure 2(b) shows the statistical com-
plexity (left) and Shannon entropy (middle) of LFP versus CV
of the spiking activity for τ = 200 ms. The average group data
(black circles) and standard deviation (blue shading) are taken
over all shanks of a single animal using bins of 0.02 for the
CV axis. Complexity and entropy plane (right) are represented
using group average. Black lines represent the theoretical
maximum Cmax and minimum Cmin complexity values in the
C-H plane for D = 6. The results show that the statistical
complexity of the LFP increases with increasing CV, regard-
less of the time delay τ . This suggests that the LFP becomes
more regular, less noisy (as expected for more synchronized
regimes) with increasing spiking variability. The complexity
correlation matrix also shows that the LFP signals across dif-
ferent shanks become more correlated with increasing spiking
variability. The Shannon entropy of the LFP decreases with
increasing CV, although the effect is less pronounced than for
the statistical complexity. This suggests that the LFP becomes
more predictable with increasing spiking variability.

The diverse group data based on all urethane-anesthetized
rats, male/female, albino/nonalbino (please refer to methods
for more details) is shown in Fig. 2(c). Group average (black
circles) and standard deviation (blue shading) are taken over
all 42 shanks of all 7 rats using bins of 0.02 for the CV axis.
The average of each animal is also presented (colored mark-
ers). Qualitatively, results are the same for each rat: increasing
relation between the statistical complexity of the LFP and CV
(left) and inverse relation between the Shannon entropy of the
LFP and CV (middle). The C-H plane (right) suggests the
maximum values achieved of complexity are associated with
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FIG. 2. Complexity and entropy quantifiers across different levels of spiking variability. (a) (Left) Statistical complexity of 10-s-long
windows of LFP data versus the time delay τ calculated for each shank (dashed lines) for low (blue) and high (red) CV. Average (lines)
and standard deviation (shading) is performed over all shanks. (Right) Complexity correlation matrix of all six shanks for low and high CV.
(b) Statistical complexity (left) and Shannon entropy (middle) of LFP versus CV of the spiking activity for τ = 200 ms. Group average
(black circles) and standard deviation (blue shading) is taken over all shanks using bins of 0.02 for the CV axis. Complexity and entropy
plane (right) is represented using group average. Black lines represent the theoretical maximum Cmax and minimum Cmin complexity values in
the C-H plane for D = 6. (c) Group data for corresponding plot in panel (b), from primary visual cortex of 7 animals, in 42 local neuronal
populations.
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FIG. 3. Group average of the statistical complexity (left) and
Shannon entropy (right) of LFP versus CV of the spiking activity
for τ = 200 ms, using (a) D = 4 (green), D = 5 (red), D = 6 (blue),
and (b) original data (blue), half of original data (red) and a quarter of
original data (green) for D = 6. Averages (colored circles) and stan-
dard deviations (colored shadings) are taken over 42 local neuronal
populations from primary visual cortex of 7 animals, using bins of
0.02 for the CV axis.

the minimum values achieved of entropy which both occur
for higher spiking variability (CV � 1.5). Overall, the results
suggest that the statistical complexity and Shannon entropy of
the LFP are both sensitive to changes in spiking variability.
This suggests that these measures could be used to assess
changes in the dynamics of cortical circuits.

In the results shown in Fig. 2, we used D = 6 to achieve
a high number of different LFP states. However, analysis
for D = 4 and D = 5 was also performed, yielding results
qualitatively similar to those for D = 6. This can be seen in
Fig. 3(a), where we provide the group average of the statistical
complexity and Shannon entropy of LFP versus CV of the
spiking activity for τ = 200 ms, varying D from 4 to 6. We
see that complexity increases with CV for all D in a simi-
lar sigmoidlike curve, however the maximum value achieved
decreases for smaller D. Similarly, the Shannon entropy de-
creases with CV for all D, reaching its minimum value for
higher D.

Additionally, to ensure the results are robust in terms of
potential biases due to finite samples, we have performed the
analysis using cut sections of the original data. Figure 3(b)
shows the group average of the statistical complexity and
Shannon entropy of LFP versus CV of the spiking activity for
τ = 200 ms, using the original data, half of original data and
a quarter of original data for D = 6. We see that complexity
(entropy) increases (decreases) with CV for all cases. The
main conclusions do hold firm when removing half of the data
in each window, however as 3/4 of the data is removed from
the windows, the results for low CV present fluctuations due to

FIG. 4. Depth profile of complexity and entropy quantifiers
across different levels of spiking variability. (a) Statistical complexity
and entropy of 10-s-long windows of LFP data versus the time delay
τ calculated for different channels (dashed lines) for low (blue) and
medium (red) CV. Average (lines) and standard deviation (shading)
is performed over close by (≈100 µm) channels in the mouse’s
V1. (b) Vertical silicon probe illustration. It contains 64 channels
with 20 µm gaps between each site. (c) Complexity and entropy
of LFP data versus normalized depth (layer 1 is marked as zero for
each mouse) for low (blue) and medium (red) CV for τ = 200 ms.
Quantifier’s average (colored dashed lines) and standard deviation
(shading) is calculated using all 7 mice. Midlayer 5 (black star) is
represented as an average over each mouse.

finite sampling. This happens because in low CV, the entropy
is very high, which means that the LFP-state probabilities are
close to a uniform distribution. Therefore, the 720 different
LFP-states must be well sampled to correctly reproduce this
uniform distribution. The original data, however, has well
sampled LFP-state probabilities. All averages and standard
deviation taken in Fig. 3 are taken over 42 local neuronal
populations from primary visual cortex of 7 animals, using
bins of 0.02 for the CV axis.

B. Statistical complexity in layers

Previous studies have shown that the laminar structure
of spontaneous and sensory-evoked population activity in
mammals primary sensory cortex are related to the local
information processing and the flow of information through
cortical circuits [42,47,48]. Therefore, we also calculated the
statistical quantifiers along the laminar axis (dorsal-ventral
axis) for freely moving mice.

Figure 4 illustrates the depth profile of complexity and en-
tropy quantifiers of the presynaptic activity along the cortical
states in the primary visual cortex of freely moving mice. As
in the previous subsection, the cortical states were character-
ized by the level of spiking variability on the local summed
population activity using the CV. In Fig. 4(a), we examined
the statistical complexity and entropy of 10-s-long windows of
local field potential data as a function of the time delay τ . We
calculated these measures across different channels, denoted
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by dashed lines, for two distinct conditions: low spiking vari-
ability, represented by the blue lines, and intermediate spiking
variability, depicted by the red lines.

To ensure statistical robustness, we average the results
(solid lines) and provide the standard deviation of the mean
(shaded areas) over nearby channels (approximately 100 µm)
within V1. Figure 4(b) provides a visual representation of
the vertical silicon probe used to record the neuronal data
from freely moving mice [42]. The adoption of such a probe
provided us with LFP data at varying depths in the mouse’s
V1, and we analyzed the corresponding complexity and en-
tropy measures along these depths. In Fig. 4(c), we focus
on the relationship between the complexity and entropy of
LFP data and their normalized depth. We adopted D = 6,
and τ = 200 ms and again considered low (blue) and medium
(red) variability conditions. The dashed lines represent the
average quantifier values, while the shaded regions indicate
the standard deviation of the mean. Importantly, our analysis
encompasses data from seven different mice, allowing us to
derive general trends. We particularly highlight the signifi-
cance of midlayer 5 (denoted by the black star), which is
presented as an average across all mice, shedding light on the
neural dynamics at this specific depth.

Our findings indicate that, for larger time delays (τ > 100
ms), there is a clear distinction in the statistical complexity
and entropy of freely moving mice LFP under multiple levels
of spiking variability, as in the case of anesthetized rats. In
addition, a maximization of the statistical complexity is found
in midlayer 5 as we increase CV. The entropy appears to be
the minimum for this depth when the CV is increased.

Note that the maximum values achieved by the CV of
freely moving mice is lower than those of anesthetized rats,
not achieving values higher than C = 1.3. However, if we
analyze Fig. 2(b) in this region of CV, then we see that
the complexity values of anesthetized rats are similar to
those of sleeping mice, being close to C = 0.2. This sug-
gests that, for CV � 1.3 and τ � 100 ms, the results from
anesthetized rats and freely moving mice are qualitatively
similar.

C. Statistical complexity across behavioral states

Sensory responses can be influenced at both neural and
behavioral levels [10]. For example, in recent decades re-
searchers delved into the intricacies of the wake-sleep cycle, a
fundamental phenomenon exhibited by all higher vertebrates.
They aimed to unravel the underlying neuronal mechanisms
governing this cycle, employing intracranial local field poten-
tials recorded from various brain regions, including the cortex,
hippocampus, striatum, and thalamus [49,50]. Therefore, we
also estimate the information quantifiers using behavioral
states of the freely moving mice as parameters for data
segmentation. Figure 5 shows the statistical complexity and
entropy plane C-H of V1’s layer 5 LFP data along different
behavioral states: NREM (nonrapid eye movement), REM
(rapid eye movement), and awake which are represented by
triangle, square, and circle markers, respectively. We have
examined over 1900 NREM, 220 REM, and 1300 awake 10-
s-long episodes using D = 6 and τ = 200 ms, presenting the
results as averages over all seven mice. Figure 5 suggests that

FIG. 5. Entropy-complexity plane C-H of V1’s layer 5 LFP data
along different behavioral states: NREM (triangle), REM (square)
and awake (circle), where the marker indicates the correspond-
ing mean value for each behavioral group in 10-s-long episodes
of NREM, REM, and awake states for all 7 mice; where D = 6
and τ = 200 ms; both complexity and entropy values were signifi-
cantly different among behavioral groups (p � 0.01, Mann-Whitney
test).

the statistical complexity of the LFP achieves higher values in
NREM states and, in contrast, lower values when the mouse
is awake. REM states, however, appear to be associated with
intermediary values of complexity.

Since the LFP of NREM episodes is composed dominantly
by lower frequencies, in contrast to rem and awake states,
results from Fig. 5 corroborates with those segmented by
CV, since LFP of high CV windows are also dominated by
low frequencies. This suggests indirect links between CV of
spiking activity and behavioral states.

It is worth noting that our results shown in Figs. 2(b), 2(c),
4(c), and 5 all use τ = 200 ms. However, these results hold
firm for any time delay larger than τ > 100 ms.

IV. CONCLUSIONS

The current study fills a gap between LFP’s quanti-
fiers (complexity and entropy) versus a proxy of cortical
state (coefficient of variation, CV, of the spiking activity).
We have shown that LFP data can be characterized by
information-theory quantifiers: Shannon entropy [21] and
Martín-Platino-Rosso statistical complexity [43]. We have
employed a symbolic representation, based on Bandt-Pompe
technique [27], to assign a probability distribution function to
the LFP signals generated by urethane-anesthetized rats and
freely moving mice.

The results of this study show that the statistical complexity
and Shannon entropy of LFPs in deep layers of the primary
visual cortex (V1) vary with the level of summed spiking
variability. These results extend previous findings that have
shown that the statistical complexity is a sensitive measure of
cortical dynamics at the spiking level [28]. At low CV, the
LFP is desynchronized, more noisy, and the power spectrum
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is relatively flat. As CV increases, the LFP becomes more
synchronized and the power spectrum shows peaks at specific
frequencies. At high CV, the LFP is highly synchronous and
the power spectrum is dominated by a single low-frequency
peak. We have shown that as CV increases the Shannon
entropy of the LFP decreases and the complexity increases.
Therefore, these quantifiers could be potentially used as mark-
ers of cortical state. We have shown that these results are
qualitatively similar for different numbers of possible LFP
states and are not consequence of finite sampling fluctuations.

Recording LFP by inserting silicon probes in the brain
allows us to not only explore electrical events at deeper layers,
but along all layers. Therefore, the current study took advan-
tage from the recent development regarding recordings from
large neuronal population to quantify statistical complexity
and entropy along the detailed laminar structure in the pri-
mary visual cortex [42,47]. We have shown that statistical
complexity is sensitive to V1’s depth for increasing CV, being
maximized in midlayer 5. This is particularly interesting, as it
highlights the significance of such layer, which contains more
branched neurons [42]. As this maximization only becomes
clear as CV increases, future studies could use this to find
connections between behavior and the visual cortex layers, as
different behaviors should present different levels of CV.

Last, we have also shown that statistical complexity of
mice LFP is significantly different across different behavioral
states: NREM, REM and awake. The complexity is smaller for
awake state, intermediate for REM sleep and larger for NREM
sleep. The distinction between the complexity of awake and
REM states is particularly interesting for these behavioral
states, which have been reported to present similar LFP [51].
Our statistical complexity results of mice LFP are similar
to the ones reported in the analysis of sleep stages of EEG
data recorded from humans [52]. These findings open new
perspectives for using information theory quantifiers applied
to LFP data to study cortical and behavioral states.
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