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Simple model for the prediction of seizure durations
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A simple model is used to simulate seizures in a population of spiking excitatory neurons experiencing a
uniform effect from inhibitory neurons. A key feature is introduced into the model, i.e., a mechanism that
weakens the firing thresholds. This weakening mechanism adds memory to the dynamics. We find a seizure-
prone state in a “mode-switching” phase. In this phase, the system can suddenly switch from a “healthy”
state with small scale-free avalanches to a “seizure” state with almost periodic large avalanches (“seizures”).
Simulations of the model predict statistics for the average time spent in the seizure state (the seizure “duration”)
that agree with experiments and theoretical examples of similar behavior in neuronal systems. Our study points
to. different connections between seizures and fracture and also offers an alternative view on the type of critical
point controlling neuronal avalanches.
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I. INTRODUCTION

In the past few decades, simple models from statistical
physics have proven useful for the identification and in-
terpretation of interesting patterns of spiking neurons. In
particular, efforts in the last couple of decades uncovered
“neuronal avalanches” [1], which are cascades of causally
connected spikes in a network of neurons. Tools from statis-
tical physics help identify and interpret the statistics of these
avalanches [1–4].

In this work, we will describe neuronal avalanches and
their relation to seizures using a variation of a model ini-
tially introduced to study large earthquakes. Our results not
only provide testable predictions for future experiments and
evidence for a different candidate critical point controlling
neurodynamics, but also uncover a potential connection be-
tween seizures and fracture.

A spike describes the rapid release of membrane potential
from a neuron that has reached its spiking threshold. After
spiking, the neuron releases membrane potential which is sub-
sequently transferred through synaptic connections to other
neurons in the network. Spiking neurons can trigger other
neurons to spike also, leading to cascades of spiking activity
(neuronal avalanches) [1–5]. Tools from statistical physics,
such as the theory of phase transitions and criticality, pro-
vide simple predictions for the statistical properties of these
avalanches that can be validated by experiments [1–4].

Criticality refers to features of a system smoothly crossing
between two unique states via a “continuous phase transi-
tion.” Spiking neuronal systems have been hypothesized to
be operating near a continuous phase transition between the
“absorbing” state, where the avalanches are small, and the
“active” state, where avalanches proliferate through the entire
system (i.e., grow macroscopically large) [6–11]. The critical

point defines the parameter values where this phase transition
occurs. Near this transition, not only does the network have
computational advantages [12,13], but we expect avalanches
of all sizes—“power-law” distributions—which provide a
testable prediction of the theory (for example, power-law ex-
ponents and scaling functions).

Specifically, the total number of spikes emitted during
an avalanche (or avalanche “size”), S, can be recorded for
many avalanches in an experiment to obtain a histogram, or
the probability distribution of S, called P(S). The statistical
models predict that near criticality, this distribution will look
like a power law over a broad range of sizes. The regime of
avalanche sizes where the distribution can be described by
such simple scaling laws is referred to as the scaling regime.
Indeed, empirically observed distributions of avalanche sizes
and durations resemble power laws, with the power law ex-
tending up to three or more decades in size (S) [1,3–5,12].

“Universality,” a powerful feature of criticality, tells us
that these scaling predictions are equivalent for entire classes
of models that describe distinct microscopic details. This is
likely the reason why many biologically motivated models
predict the same universal scaling of the avalanche statis-
tics [4,6–8,14–18]. These models are said to be in the same
“universality class.” Since earthquake models and neuron
models belong to the same universality class, we expect that
there are many connections between neurons and other sys-
tems such as magnets, earthquakes, nanocrystals, etc. [4]. The
renormalization group (RG) identifies which properties are
relevant for the scaling behavior on large scales and which
ones are irrelevant. It also predicts which biologically mo-
tivated amendments of existing models alter the universality
class [13,19,20]. We will use these tools to inform our model.

Here we model an excitatory population of neurons
that feel an average effect of inhibitory neurons. Inhibitory
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neurons send negative ionic currents when they spike, pre-
venting more excitatory neurons from spiking soon after [21].
At the simplest level, the effect of an inhibitory neuron spike
amounts to a reduction in the potential of the excitatory net-
work.

More importantly, to include memory in an avalanche, we
also introduce a mechanism that once a neuron has spiked,
dynamically reduces the spiking threshold for the remainder
of the avalanche. This threshold reduction (or “weaken-
ing”) changes the avalanche statistics [22,23], and so is a
relevant parameter (in the sense outlined in the previous para-
graph). Specifically, with weakening, periodically occurring
system-spanning (or “runaway”) avalanches occur, which are
composed of a significant amount of recurrent spiking, a fea-
ture that was recently validated by in vitro cortical spiking
data in large avalanches [24]. These results point towards
a memory mechanism such as temporary weakening of the
thresholds (or temporary strengthening of the couplings to
the same neuron) that affects the distribution of the spiking
avalanches. In this work, we hope to draw a comparison
between spiking neuronal systems and weakened elastic in-
terfaces and survey the implications of such a connection on,
e.g., seizure dynamics.

We survey the implications of this model for our un-
derstanding of the epileptic state and neuronal dynamics in
general. First, we find that with the introduction of weakening,
we uncover a different connection between the fracture litera-
ture and seizures [25]. This connection allows us to translate
predictions for large material fracture and earthquakes into
predictions for seizure time statistics. Since these predictions
require no definition of an avalanche, they circumvent all
ongoing controversies about the precise definition of neuronal
avalanches [26]. This study also provides a different approach
to the effective mechanism of seizures.

Along with the testable predictions about seizure statistics
and time series properties, this work provides informa-
tion about the type of critical point that underlies neuronal
dynamics. Here, instead of the more common directed per-
colation universality class [6–11], our model suggests that
the depinning class with weakening may be better suited
for describing neurodynamics, at least as they are related to
seizures. Lastly, an important consequence of our model is
that neuronal networks require tuning to operate at the crit-
ical point, and thus their dynamics are not “self-organized
critical.” This observation stands in contrast to many other
mechanisms in the literature that suggest self-organized criti-
cality [1,5,7,14,16,19,27–29].

II. MODEL

To study the dynamics of a system of N spiking neu-
rons, it is typical to define the state of the network as
�V = Vi where Vi is the potential of neuron i. Next, we de-
fine a neuron-dependent reset potential Vr,i, drawn from a
parabolic distribution (with width w) to capture the inherent
disorder of neuronal systems. We point out that here, the
neuronal potential Vi is in exact analogy to the local stress
τi from the model described in [22]. To evolve the network
state in the simulation, the potential of all neurons is arti-
ficially increased until the first neuron reaches its threshold

potential, Vi,thresh ≡ 1, whence it emits a spike, reducing its
own potential by �Vi = Vi,thresh − Vr,i. The released potential
is dispersed evenly to the rest of the system via the synaptic
connections, increasing the potential of all other neurons by
�Vi,system = �Vi/N . To include realistic neuronal effects, here
we will introduce two features: (1) A separate population
of inhibitory spiking neurons whose effect will be to suck
potential out of the system with strength α. This amounts
to a change in �Vi,system → (1 − α)�Vi,system. This assump-
tion is justified by experiments that show that the number
of inhibitory neurons that spike in each avalanche is propor-
tional to the number of excitatory neurons that spike in the
same avalanche (see Appendix B). (2) A threshold reduction
mechanism, which has been shown to replicate experimentally
resolved recurrent spiking in large neuronal avalanches [24].
After a neuron spikes, the threshold necessary for a sub-
sequent spike is lowered, Vthresh → Vthresh − ε�Vr,i, for the
remainder of the avalanche, where ε ∈ [0, 1] is the strength of
the weakening. The features described above can be captured
by the following equation for neuron potential at time t :

Vi,t = Vi,t−1 +
∑

j∈spiked

�Vj/N − δi,t−1�Vi, (1)

where the sum is over all j neurons that spiked at time t − 1
and δi,t−1 = 1 if the neuron i spiked at time t − 1, and δi,t−1 =
0 otherwise.

One can show that the weakening effect is equivalent to fix-
ing the threshold and instead increasing the gain function (or
strengthening the couplings) of a neuron after it has spiked;
either way, the neuron reaches the threshold faster. Though
the latter may be more biologically motivated, we use the
former for ease of comparison with previous work [22,25].
In the following, we will therefore discuss the behavior of
our system as a function of inhibition and weakening (i.e.,
in {α, ε} space). A graphical representation of the model de-
scribed above is shown in Fig. 1.

III. RESULTS

The model described above produces dynamics in the form
of avalanches. There are two predicted steady states, deter-
mined by the position of the system in {α, ε} space (for the
interested reader, a derivation of the following phase bound-
ary can be found in [22], where the conservation parameter
c ≡ 1 − α is used, in contrast to the inhibition parameter
α introduced in this work). For α > α∗ ≡ ε/(1 + ε), in the
region of Fig. 2(a) labeled “stable,” the system response
consists only of scale-invariant avalanches [Fig. 2(b), ε = 0]
producing a power-law distribution for the avalanche size with
slope −3/2 [25] up to a maximum size that broadens with
increasing α as Sn

max ∼ 2α−2 + O(α2) [22]. We will refer to
this as the normal state. For α < α∗, in the region labeled
“bistable,” a second steady state is possible, consisting of
temporally quasiperiodic system-spanning avalanches, with
smaller scale-free avalanches in the times between them. We
refer to these smaller avalanches happening in between the
system-spanning avalanches as the “background activity.” The
size distribution thus has a power law for small sizes (from the
background activity) with slope −2 [25], up to a cutoff Ss

max =
2(1 − ε)2/(ε − α)2 + O[(ε − α)2] < Sn

max [22], followed by
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FIG. 1. Graphic of main changes to typical neuron models. Left:
When a neuron reaches the threshold, it spikes, sending a portion of
the potential released back into the system. The rest of the potential is
dissipated by inhibition. Right: The threshold is reduced after spiking
until the avalanche is complete.

the system-spanning avalanches, together yielding a bimodal
distribution [Fig. 2(b), ε = 0.4, red]. These large avalanches
are referred to as runaway events and we refer to this state as
the seizure state. Note how, by simply increasing inhibition,
the system-spanning avalanches can be suppressed [Fig. 2(b),
ε = 0.4, green] with the power-law slope returning to −3/2.
For ease of comparison with experiments and simulations, we
show in Fig. 2(b) the complement of the cumulative distri-
bution function (CCDF) which accordingly follows a power
law of −1/2 and −1, in the stable and bistable regions,
respectively. Constructing the CCDF from experimental and
simulation data does not require the definition of bins, and
therefore is preferable to the probability distribution function
(PDF) option.

Since the switching times grow with the system size, for
N → ∞, the initial conditions (within the bistable region) de-
termine whether the system operates in the normal or seizure
steady state. For finite N , however, the probability of spon-
taneously switching between the two states is nonzero, and
switching from one to the other is expected. This switching
from the normal state into the seizure state is facilitated by
a nucleation mechanism, where an avalanche of size larger
than the nucleation size, Scr ∼ (1 − ε)N/(1 − α), grows into
a system-spanning avalanche [22]. The nucleation size for the
seizures reflects the competition between the effect of the
inhibitory neurons (plus disorder effects) and the threshold
weakening effect (or, equivalently, the strengthening of the
coupling). The inhibitory neurons are the brakes of the brain
and their negative coupling to the excitatory neurons breaks
up large avalanches into smaller ones. In contrast, the thresh-
old weakening (or the strengthening of coupling between

neurons) tends to synchronize the firing of neurons, leading
to large avalanches. For a given strength of the inhibitory
neurons, at sufficiently large weakening, a given avalanche
size becomes the nucleation size, i.e., the size that is able
to continue growing into a large runaway avalanche. This
nucleation size has been derived in a different context in [22].
The system can also transition back into the normal state from
the seizure state if there are not enough neurons available to
participate in a runaway event (see [22]).

This switching is visible in a typical time trace of avalanche
sizes from model simulations [shown in Fig. 2(c)]. We will
focus on the mode-switching process from seizure to normal
state (describing the duration of the seizure state) which has
a persistence time �T , depending on α, ε, N and the char-
acteristic time needed to load a neuron to threshold, T0. The
average persistence time is predicted by our model to have the
approximate form [22]

〈�T 〉 ≈ T0
N3/2

Ss
max

2
e(γ+γ 2 )N/Ss

max , (2)

where γ ≡ (α∗ − α)/[(1 − α∗)(1 − α)] [22].
For a portion of {α, ε} space in the unstable region [blue

box, Fig. 2(a)], we extracted the first moment of time spent in
the seizure state 〈�T 〉 from model simulations. In Fig. 3(a),
we plot 〈�T 〉 vs weakening, for varying values of inhibition.
We see that inhibition reduces the average time spent in the
seizure state (i.e., 〈�T 〉 decreases with increasing inhibition).
We also see that this reduction competes with the weakening
which acts to increase 〈�T 〉 [see Fig. 3(a)].

As an initial comparison of the model with data, we have
examined spiking signals from many hundreds of neurons in
a slice culture of mouse cortex [30]. A feature of most in vitro
spiking neuron systems is the presence of slow oscillations
between a state of low activity and one of high activity, a
phenomenon usually referred to as bursting [5]. We extracted
times spent in each of the states (see the Appendices) and
constructed complementary distribution functions to compare
with the model’s switching times [e.g., by identifying the
high activity state with the seizure state and the low activity
state with the normal state; Fig. 3(b)]. This distribution was
predicted in [22] to follow Poissonian statistics, as seen in the
simulation results of Fig. 3(b).

IV. DISCUSSION

Work in the past has used the idea of criticality for un-
derstanding seizures, in some cases suggesting seizures are
analogous to the supercritical state [31–33]. Several experi-
ments [34–37] have also suggested that long-range temporal
correlations (LRTCs) increase before a seizure happens, due
in part to “critical slowing down.” This refers to the timescale
of relaxation in the system becoming very large, potentially
providing a powerful method to predict when seizures might
happen (e.g., by measuring the Hurst exponent). Besides these
preemptive features of seizures, the degree of criticality also
has been shown to vary during seizures, corresponding to shal-
low (supercritical) power laws [31,33,34,38,39] and reduced
avalanche fractal dimension [34]. The link between criticality
and seizures, due to its powerful yet simple nature, has even
leaked into the clinical realm [40].
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FIG. 2. Bistability between normal and seizure states in simulations. (a) Phase diagram for α, ε ∈ [0, 1]. Phase boundary α∗ (black
dashed line) separates the stable and bistable regimes. A teal perimeter highlights the region of phase space sampled for switching statistics.
(b) Avalanche size distribution for weakened (ε > 0) and nonweakened (ε = 0) simulations. Black lines show the two critical exponents
predicted in [25]. System-spanning avalanches are evident by the sharp vertical lines in the weakened case. Simulation parameters are
N = 25 000, w = 0.1, α = 0.005 (green line: α = 0.008). (c) Time trace of avalanche sizes in model simulations. Seizure states are highlighted
in gray and �T marks the seizure duration. Simulation parameters are N = 100, w = 2/19, ε = 0.46, α = 0.25.

In this work, we predict how long seizures might last,
as a function of just two simple parameters: inhibition and
dynamic threshold reduction. Importantly, our work incorpo-
rates the simple dynamic threshold reduction, and so brings
light to a potential memory mechanism that warrants further
experimental investigation.

To understand seizures, which can be thought of as tem-
porary episodes of bursting behavior, we focused on the

bistable phase. There, we saw that the system switches be-
tween the normal state and the seizure state. In the seizure
state, the avalanche size distribution follows a power law with
a bump in the tail (sometimes referred to as a “characteristic-
earthquake distribution;” see [22]) reflecting the runaway
avalanches [9,27]. In the normal state, there are no run-
away events and the avalanches are just distributed according
to a power law with a smaller cutoff. Previous work on

FIG. 3. Switching times in model simulations and experiments. (a) Average seizure time as a function of threshold reduction ε, for varying
values of inhibition α. The error bars show a 95% confidence interval, here being hardly visible because they are so small. (b) Probability
of seizure times being larger than τ shown for varying values of threshold reduction and fixed inhibition α = 0.25. Four different exemplary
spiking data sets are shown as black lines.
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FIG. 4. Extracting seizure times from data. (a) A raster plot is shown for a representative piece of spiking data. A black circular marker
is placed at every time (x axis) for the corresponding neuron (y axis). Blue dots are plotted to represent those spikes that were kept after the
subsampling. (b) Only the blue dots from (a) are shown, with a black line representing the averaged spiking rate, ��t

τ . Green and red vertical
lines mark the beginning and end of an avalanche, respectively. (c) The extracted cumulative distribution function of seizure durations for an
exemplary data set is shown with a red line. (d) The same thing as (c), but with all 15 data sets plotted in varying colors.

neuron systems has found this characteristic-earthquake dis-
tribution [9,19,27,41], and the runaway avalanches in our
model compare closely to dragon king avalanches [27] as well
as giant depolarizing events [42,43].

However, the exciting result of our work is that a simple
model with weakening can not only produce this “character-
istic distribution,” but also gives predictions for the average
time spent in a seizure state (or “up-state” [19]). Importantly,
this means that studying these switching times (rather than
avalanche properties directly) is not vulnerable to the problem
of subsampling in neuron data sets [26]. This means that a
subsampled data set will give the same results for switching
times as the fully sampled set (since we see roughly the same
burst outline even after subsampling; see Appendix A).

We compared the statistics of burst times in the experi-
mental (in vitro) data [30] (e.g., time spent in the high or
low activity states) to see if the trends resemble the predic-
tions of our model. Our simple model has only a few limited
ingredients, but we are still able to capture several features
of the data. In particular, we compare the high activity state
in experiments to our model’s seizure state. We find that the
average time spent in the high activity state roughly follows a
Poissonian distribution, consistent with the prediction of our
model for the seizure state [22]see Fig. 3(b) and Appendix A.
Further, comparing four separate data sets (i.e., from different
brain slices on different chips), we find a possible explanation
for differing burst statistics: that the effective memory from

sample to sample is differing, as exemplified by Fig. 3(b).
We would also point out that the discrepancy between model
and data, particularly for small τ , is likely attributed to the
algorithm’s poor ability to find small seizures—due to its
threshold nature and preprocessing (see Appendix A).

The switching phenomenon also provides a possible mech-
anism that is responsible for excessive brain activity [27,42–
44]. This is because the seizure state nucleates out of the nor-
mal state at random—that just means that if the avalanche size
surpasses a critical value, it turns into a runaway avalanche,
transitioning the network into the seizure state. This random
occurrence might explain why it is difficult to find reliable
precursors to seizures. The nucleation of a seizure state is ul-
timately a consequence of the dynamic threshold weakening.
The nucleation size, i.e., the critical avalanche size needed
to trigger this switching, Scr ∼ (1 − ε)N/(1 − α), depends
on N, α, and ε. By measuring this size, it may be possible
to estimate where a real system lies in {α, ε} space. More
importantly, by changing the various parameters through ap-
propriate drugs, it may be possible to increase the nucleation
size so that seizure episodes are less likely and thus greatly
suppressed.

Our work also encourages a discussion about which critical
point is controlling the system. Inhibition-induced desynchro-
nization is seen in experiments [42,45,46] and indeed many
models suggest that a synchronization transition is control-
ling the system [17,44,47–51]. On the other hand, several
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FIG. 5. Pseudocode describing an algorithm for identifying burst
start and stop times. A flag is set to zero initially, and switches
between zero and one to capture the moments when ��t

τ moves
above and below a threshold, marking the start and end of a burst,
respectively.

other models suggest that the critical point is that of di-
rected percolation, describing the transition between the active
and absorbing states [6–11]. Even combinations of the two
have been suggested [10,17,52]. We are instead suggesting a
close cousin to directed percolation, the weakened-depinning
transition, which resembles the problem of an elastic inter-
face moving in a disordered environment [53] with dynamic
threshold weakening [23]. In analogy, cells of the interface
correspond to neurons, their slipping corresponds to neurons
spiking, the elastic interactions correspond to the synaptic
connections between neurons, and the disorder in slipping
thresholds across the interface corresponds to the heterogene-
ity of spike thresholds among many neurons. The feature that
is not directly reflected in the neural system is the dynamic
weakening, which is the key ingredient out of which the
quasiperiodic runaway events emerge, whose connections to
oscillations in neuronal systems warrant further investigation.

Further, the question of self-organized criticality
(SOC) that arises in much of the neuroscience litera-
ture [1,5,7,14,16,19,28,29] can be studied in the context of
domain wall motion in magnets, where global dipolar effects
called “demagnetization fields” can self-organize the wall to
the center of the system [29,54,55]. These demagnetization
fields are equivalent to inhibition in our system, and an
important prediction of [29] is that SOC is only realized
with infinite-ranged (global) weak demagnetization fields.
This would suggest that real neuronal systems (i.e., those
with an underlying network structure) are not expected to
be self-organized critical, but rather near an ordinary critical

point, and that they can be tuned closer to or farther away
from criticality by tuning parameters such as inhibition
strength and weakening. Future directions include extending
this work beyond mean-field theory models to include, e.g.,
these underlying network structures.

Lastly, we wish to mention that similar recurrent large
avalanches can be obtained by overshoots that may be caused,
for example, by temporary increases in the coupling between
neurons [23]. Here we use the weakening as a representative
of a class of many different mechanisms that can cause such
large avalanches. The results discussed here should apply in
similar ways to other mechanisms, such as overshoots or tem-
porary coupling increases. In either case, the large recurrent
avalanches may be similar to seizures, so it is of great interest
to understand their statistics.

V. CONCLUSION

In this paper, we investigated a simple model for spik-
ing neurons and showed how the addition of a different
feature—dynamical weakening—produces qualitatively sim-
ilar behavior to seizures. Specifically, our results predict a
regular (normal) and epileptic (seizure) state, and the possibil-
ity of switching from one to the other in any finite-size system.
We found a prediction for seizure duration statistics that does
not require the definition of an avalanche, allowing us to com-
pare with empirical data. This prediction may not only help
connect past conflicting research on neuronal avalanches, but
also suggests a different perspective of seizures from the point
of view of material fracture. The work also informs the debate
on which critical point is controlling neuronal avalanches;
namely, the weakened depinning universality class, with tuned
rather than self-organized criticality.
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APPENDIX A: EXTRACTING SEIZURE STATE LIFETIMES
FROM EXPERIMENTAL DATA

We used the data sets openly provided in [30] to make em-
pirical observations of the switching time distributions. The
raw data (n = 15, mouse cortical slices above 512 electrode
array) consist of labeled spike times [i.e., the seventh neuron
fired at time t = 400 → (7, 400)]. We could visualize this,
for instance, as a “raster plot” [see Fig. 4(a)], where a single
dot is shown for each labeled spike-time-tuple in the data set,
located at x = spike time (e.g., 400) and y = neuron ID (e.g.,

FIG. 6. Parameters chosen for the algorithm. For each of the 15 studied data sets, the parameters are used for both the subsampling
algorithm (SpikeMax) and the burst finding algorithm (�t , Tstart and Tend).
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FIG. 7. Inhibitory neurons spike roughly proportional to excitatory neurons on average. (a) Each dot represents an avalanche, with the
y value representing the number of excitatory spikes in the avalanche, normalized by the total number of excitatory species in the sample.
Similarly, the x value represents the number of inhibitory spikes, again normalized by the number of inhibitory species in the sample. Three
example data sets are shown in green, magenta, and light pink. (b) The scatter plot from (a) is represented by a bin-averaged line, shown in
different colors for the 15 different samples studied in this work. The solid and dashed lines show the bound of the linear slope of the data,
lying between 1/2 and 1/6, respectively.

7). In doing so, we observe (in all data sets) synchronous
activity where almost all the neurons in the system are spiking.
These regions of activity are usually referred to as “up-states”
and the regions of relative inactivity between them are referred
to as “down-states.” We will be interested in characterizing
how long the system dwells in this up-state (i.e., “seizure
times”).

To this end, we extract the start and end times of each
labeled up-state in the 1-hour-long recording. Using a method
derived from [56], we will first remove tonically spiking neu-
rons (i.e., neurons that never seem to stop spiking, no matter
what state the rest of the system is in). We perform this by
simply removing neurons that spike more than a prescribed
number of times (“SpikeMax”) in the 1-hour-long recording.
We note that this simply makes our algorithm more robust
while not obstructing the true start vs end times of an up-state
(if we do not remove too many neurons). This is because
the synchronous activity we seek to characterize is relatively
insensitive to the subsampling; by this we just mean that the
synchronous up-state is a global feature of the system that is
still very apparent even after subsampling [see Fig. 4(b)].

With this preprocessing of the data complete, we can cook
up quite a robust algorithm for identifying the start and end
times of the up-states. Starting from the set of tuples, we
can construct a global list of spike times ti (e.g., ignoring
neuron labels for now) and order it ti → {ti|∀i, j > i, ti <

t j}. The next step is to coarse grain this list (in time with
bin width �t) such that we construct the sequence repre-
senting the inverse of the global spiking rate, r−1

τ,�t ≡ ��t
τ =∑i=τ+�t

i=τ δi,ti [Fig. 4(b), black line]. We can use a simple

algorithm (outlined in pseudocode in Fig. 5) that picks out a
start time [Fig. 4(b), vertical green lines] wherever the signal
rises above some threshold, ��t

τ > Tstart , and, equivalently,
picks out the end time [Fig. 4(b), vertical red lines] when
the signal subsequently crosses below a (separate) threshold,
��t

τ < Tend.
We point out that the algorithm is not perfect, for instance,

in the second up-state of Fig. 4(b), we see that the end time is
overestimated. This means the threshold Tend was not perfect.
The parameters SpikeMax, �t , Tstart , and Tend are chosen to
get the most accurate estimation of start and end times. We
catalog the chosen parameters for each data set in Fig. 6.

APPENDIX B: INHIBITORY NEURONS SPIKE
PROPORTIONALLY TO EXCITATORY ONES.

In this Appendix, we briefly discuss the validity of an as-
sumption made in the manuscript—that the averaged spiking
rate of the inhibitory neurons is, at most, a constant away from
that of the excitatory spiking rate. With recently discerned
information about species labels in the data studied above, we
are at will to compare the number of excitatory spikes in an
avalanche to the number of inhibitory spikes in an avalanche
[Fig. 7(a), three data sets used in main paper]. Since there is
a different number of excitatory than inhibitory neurons, we
normalize the spike count in each avalanche by the number
of excitatory neurons and inhibitory neurons in the system,
respectively. We see a striking trend towards linearity and
further confirm this with a bin average over the x axis, for all
n = 15 data sets [Fig. 7(b)], where the slopes range between
1/2 and 1/6.
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