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Higher-order networks are able to capture the many-body interactions present in complex systems and to
unveil fundamental phenomena revealing the rich interplay between topology, geometry, and dynamics. Simpli-
cial complexes are higher-order networks that encode higher-order topology and dynamics of complex systems.
Specifically, simplicial complexes can sustain topological signals, i.e., dynamical variables not only defined on
nodes of the network but also on their edges, triangles, and so on. Topological signals can undergo collective
phenomena such as synchronization, however, only some higher-order network topologies can sustain global
synchronization of topological signals. Here we consider global topological synchronization of topological
signals on weighted simplicial complexes. We demonstrate that topological signals can globally synchronize
on weighted simplicial complexes, even if they are odd-dimensional, e.g., edge signals, thus overcoming a
limitation of the unweighted case. These results thus demonstrate that weighted simplicial complexes are
more advantageous for observing these collective phenomena than their unweighted counterpart. In particular,
we present two weighted simplicial complexes: the weighted triangulated torus and the weighted waffle. We
completely characterize their higher-order spectral properties and demonstrate that, under suitable conditions on
their weights, they can sustain global synchronization of edge signals. Our results are interpreted geometrically
by showing, among the other results, that in some cases edge weights can be associated with the lengths of the
sides of curved simplices.
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I. INTRODUCTION

Higher-order networks [1–4] encode for the many-body
interactions of complex systems ranging from brain [5,6] to
collaboration networks [7,8] and are transforming our under-
standing of the relation existing between network topology,
geometry, and dynamics [2,9–12]. Until now, in the majority
of the works available in the literature, the description of
the dynamical state of a network has been dominated by the
node-centered point of view in which dynamical variables are
only associated to the nodes of the network. This approach has
also provided relevant results in the context of higher-order
networks on papers involving epidemics and opinion dynam-
ics [13–15], game theory [16], random walks [17], pattern
formation [18], percolation [19–24], synchronization [25–34].
While this approach is certainly relevant in some contexts, for
instance, in epidemic spreading where we consider the state of
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the nodes and individuals as susceptible, infected, and recov-
ered, in general, restricting the focus only to nodes dynamical
states is a limitation. Recently, great attention [9,35–49] has
been addressed to topological signals, i.e., dynamical vari-
ables associated not only to nodes but also to edges, triangles,
and higher-dimensional simplices of simplicial complexes.
Edge signals are ubiquitous and include biological transporta-
tion networks [50–52], synaptic signals, and edge signals
at the level of brain regions [53,54]. Further examples of
edge signals are currents in the ocean [39,55] and speed
of wind which are vector fields that can be projected onto
edges of a tessellation of the surface of the Earth. Exam-
ples of topological signals associated with higher-dimensional
simplices are, for instance, citations gathered by a team of
collaborators.

Topological signals can undergo collective phenomena
such as synchronization transitions captured by the topolog-
ical Kuramoto model [35,36] and its variations on directed
and weighted simplicial complexes [41,56], and also Dirac
synchronization [40,48,57] by coupling topological signals of
different dimensions to each other. These models reveal that
topology shapes dynamics and that the synchronized state is
localized along the harmonic eigenvectors of the simplicial
complex, the latter being localized around higher-dimensional
holes of the simplicial complex and, thus, in general, are not
uniform on the simplices of the higher-order network.
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Having established that higher-order topological signals
can synchronize as described by the topological Kuramoto
model, an important question is whether global topological
synchronization (GTS) can be ever observed, the latter refer-
ring to a state of higher-order topological signals in which
each simplex undergoes the same dynamics. For instance, the
GTS of the edge signal implies that every edge of the simpli-
cial complex exhibits the same dynamics; similarly GTS of
triangle signals implies that the dynamical variable associated
to every triangle of the simplicial complex evolves in unison,
and so on.

In Ref. [37], the conditions for observing GTS of topolog-
ical signals have been derived for unweighted simplicial and
cell complexes. There it has been found that topological sig-
nals can undergo GTS only for specific higher-order network
topologies. This is in contrast to what happens in a connected
network where node signals always admit a global synchro-
nized state and the only remaining problem is whether this
state is dynamically stable, leading to the famous master sta-
bility function (MSF) approach [58,59]. Specific unweighted
higher-order network topologies on which topological signals
can globally synchronize are square and cubic lattices with
periodic boundary conditions forming, respectively a two-
dimensional and three-dimensional cell complex tessellating
a two-dimensional and three-dimensional torus [37]. Other
examples of topologies in which GTS of (d − 1)-topological
signals can always occur are d-dimensional discrete mani-
folds. However, in Ref. [37] it has been also found that, as long
as the simplicial complexes are unweighted, odd topological
signals can never synchronize.

In this paper, we take one step further in the understanding
of GTS by investigating the conditions for the emergence of
GTS on weighted simplicial complexes. We found that under
suitable conditions on the simplices weights, odd-dimensional
signals can also synchronize on some simplicial complexes.
Specifically, we analyze in detail the GTS of edge signals
on weighted simplicial complexes, this being a setting where
GTS can never emerge in the unweighted case. We provide
two examples of weighted simplicial complexes, the weighted
triangulated torus (WTT) and the weighted waffle (WW), and
by performing a comprehensive study of their higher-order
spectral properties, we prove that they can sustain global syn-
chronization of edge signals when their edge weights satisfy
suitable conditions.

Our results demonstrate that varying edge weights of a
given simplicial complex can allow for a transition from a
state capable of sustaining GTS to a state in which the lat-
ter is forbidden. The possibility of achieving or obstructing
synchronization by tuning the weights of the simplices is of
potential interest to the control community, where tools from
network science and complex systems are becoming increas-
ingly popular [60]. In fact, the control of synchronization
is of paramount importance in many natural and engineered
systems, such as the brain [61,62] or power grids [63], rele-
vant results in this direction are already known for pairwise
networks [64,65], and this framework has recently been ex-
tended to systems with higher-order interactions [66]. Given
the higher-order nature of interactions in the brain [5,6], the
possibility of using the weights of the simplices as a control
parameter can be particularly interesting, for instance, in the

design of efficient methods to prevent the synchronization of
certain brain regions during seizures [67].

In this paper, we also analyze the relation existing among
the conditions on the weights required to allow for GTS
and the underlying geometry of the simplicial complexes.
Specifically, we address the important theoretical question
of whether the conditions that guarantee GTS can admit a
geometrical interpretation. We found that the WTT can admit
a geometrical interpretation where all the edge capacitances
are the same and the simplices are curved. Furthermore, we
provide a comprehensive mathematical framework by explor-
ing more general geometrical interpretations of the weights of
the edges.

This paper is structured as follows. In Sec. II, we intro-
duce the basic notions about (weighted) simplicial complexes
needed to describe topological dynamical systems in the fol-
lowing Sec. III. The developed theory will be presented by
using two weighted simplicial complexes defined and char-
acterized in Sec. IV. The dynamical behaviors resulting from
the use of those higher-order structures will be discussed in
Sec. V while their geometrical properties will be analyzed in
Sec. VI. Eventually, in Sec. VII, we summarize our results.

II. FUNDAMENTAL PROPERTIES OF WEIGHTED
SIMPLICIAL COMPLEXES

A. Weighted simplicial complexes

A simplex of dimension n is a set of n + 1 nodes, thus a
0-simplex is a node, a 1-simplex is an edge, a 2-simplex is
a triangle, and so on. The faces of an n-dimensional simplex
α are the n′-dimensional simplices α′ (n′ < n) formed by a
proper subset of the nodes of α. A simplicial complex K is a
set of simplices closed under the inclusion of the faces. The
dimension d of a simplicial complex is the largest dimension
of its simplices.

We consider a generic weighted d-dimensional simplicial
complex formed by Nn simplices of dimension n, i.e., N0

nodes, N1 edges, N2 triangles, and so on. The simplices have
an orientation induced by the node labels. Each simplex α is
assigned a weight wα > 0. We adopt the following notation: If
a n-dimensional simplex α is oriented coherently with one of
its (n − 1)-dimensional face α′ we write α ∼ α′. Conversely,
if the simplex α is incoherently oriented with its face α′, we
write α �∼ α′.

B. Topological signals

The n-dimensional topological signal comprises the set of
dynamical variables associated to each n-dimensional simplex
of the simplicial complex. The n-dimensional topological sig-
nal φ is mathematically defined as n-cochain, i.e., φ ∈ Cn,
and can be represented as a Nn column vector of elements φα

associated to the n-dimensional simplex α with the additional
property that if α → −α, i.e., if the orientation of the simplex
α is flipped, then φα → −φα . To have an intuition of this
property, consider the current defined on the edge [i, j] and
going from node i to node j, this current will be considered to
be positive if the edge is oriented from node i to node j, while
it will be negative if the opposite orientation is adopted.

The notion of a topological signal allows us to completely
describe the dynamics of a simplicial complex going beyond
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the node-centered approach that associates a dynamical state
only to their nodes. Among topological signals, edge sig-
nals are particularly interesting and present in a large variety
of real systems. The latter can describe fluxes and currents
associated with biological transportation networks [50–52].
Additionally, edge signals can be used to capture and pro-
cess the speed of winds and currents of the ocean in climate
research [39,47,55]. Recently, edge signals have raised in-
creasing attention in brain research [53,54] as they do not only
capture synaptic signals at the neuronal level but also edge
signals at the level of brain regions.

C. Weighted Hodge Laplacians

The topology of the simplicial complex is encoded by the
Nn−1 × Nn boundary matrices B[n] of elements

[B[n]]α′,α =
⎧⎨
⎩

1 if α ∼ α′
−1 if α �∼ α′
0 otherwise.

The boundary matrix B[n] maps the Nn simplices of the sim-
plicial complex to the Nn−1 simplices at its boundary. The
boundary matrices B[n] fully characterize the topology of the
simplicial complex and are pivotal in defining the weighted
Hodge Laplacians that determine the higher-order diffusion
properties on the weighted simplicial complex.

The weighted Hodge Laplacian will be defined in terms
of the weighted boundary matrices, which take into account
the metric associated to the simplicial complex. Specifically,
on a weighted simplicial complex, we define the weighted
boundary matrix B[n] given by

B[n] = G1/2
[n−1]B[n]G

−1/2
[n] , (1)

expressed in terms of the Nn × Nn diagonal metric matrices
G[n] whose diagonal elements are given by the inverse of the
weights wα , i.e.,

G[n]([α, α]) = 1

wα

. (2)

The n-order symmetric weighted Hodge Laplacian
L[n] [68,69] is a Nn × Nn matrix that describes the diffusion
from n-simplices to n-simplices either through (n − 1) or
through (n + 1)-dimensional simplices. It is defined as

L[n] = Lup
[n] + Ldown

[n] , (3)

with

Lup
[n] = B[n+1]B�

[n+1],

Ldown
[n] = B�

[n]B[n], (4)

where B[n] is the weighted boundary matrix defined in Eq. (1).
From the definition of Lup

[n] and Ldown
[n] , it is immediate to check

that the nonzero spectrum of Ldown
[n] coincides with the nonzero

spectrum of Lup
[n−1]. Additionally, we note that the symmetric

Hodge Laplacian defined in Eqs. (3) and (4) obeys the Hodge
decomposition. In fact, we have

Lup
[n]L

down
[n] = 0, Ldown

[n] Lup
[n] = 0. (5)

This implies that every signal defined on n-dimensional sim-
plices, (i.e., every n-cochain φ ∈ Cn) can be decomposed in a

unique way as

φ = φharm + B[n+1]φ
[+] + B�

[n]φ
[−], (6)

where φ[+] ∈ Cn+1 and φ[−] ∈ Cn−1. Another important con-
sequence of Hodge decomposition is that any nonzero
eigenvalue �[n] of the nth Hodge Laplacian L[n] is either a
nonzero eigenvalue of Ldown

[n] or a nonzero eigenvalue of Lup
[n].

III. TOPOLOGICAL GLOBAL SYNCHRONIZATION

Can topological signals globally synchronize? This impor-
tant research question requires us to consider the dynamics
of identical topological oscillators. Given the nth order topo-
logical signal φ with elements φα ∈ Rm, the GTS obeys the
dynamics

d φα

dt
= F (φα ) − σ

∑
α′∈Qn

[L[n]]α,α′h(φα′ ), (7)

where the functions F and h are taken elementwise with
F (φα ) ∈ Rm and h(φα ) ∈ Rm, L[n] indicates the Hodge Lapla-
cian, and σ is the coupling constant. Here Qn indicates the set
of all the n-dimensional simplices of the simplicial complex
K. To guarantee the equivariance of this dynamical equa-
tion under changes of orientation of the simplices, we need
F and h to be odd functions, although these functions do not
have other limitations.

If we consider exclusively node signals (n = 0), a globally
synchronized dynamical state of Eq. (7) exists for any arbi-
trary connected network. A global synchronized state refers to
the state in which each oscillator follows the same dynamics,
i.e., φα = ω(t ) with ω̇ = F(ω). This implies that the topolog-
ical signal is given by φ = ω(t ) ⊗ 1Nn . Since on a connected
network the constant eigenvector 1N0 is the unique harmonic
eigenvector of the graph Laplacian L[0], the global synchro-
nized state of node signal exists for any (connected) network.
The key question that needs to be answered is thus whether
this dynamical state is stable. The MSF framework [58,59] is
a powerful framework to assess whether the global synchro-
nization state is stable. However, for higher-order topological
signals with n > 0, the constant eigenvector 1Nn is not guaran-
teed to be in the kernel of L[n], hence φ = ω(t ) ⊗ 1Nn is not a
solution of the GTS.

Note that an additional complexity of the problem arises
from the fact that for topological signals, the synchronized
state is a cochain, i.e., it has a sign depending on the orien-
tation of the simplices. This implies that, strictly speaking, a
global synchronized state is proportional to the eigenvector u
with elements |ui| = 1.

It follows that only simplicial or cell complexes admitting
u in the kernel of the Hodge Laplacian L[n] can display global
synchronization. Specifically, to observe global synchroniza-
tion we must impose

L[n]u = 0, (8)

which due to Hodge decomposition implies

Lup
[n]u = 0, Ldown

[n] u = 0. (9)

On topologies for which the global synchronized state exists,
it is necessary to also check whether this dynamical state

014307-3



WANG, MUOLO, CARLETTI, AND BIANCONI PHYSICAL REVIEW E 110, 014307 (2024)

is stable. This is achieved by extending the realm of the
MSF to topological signals [37]. To derive the higher-order
MSF, we linearize the dynamical equation (7) by writing
φ = ω ⊗ 1Nn + δφ and we project on the eigenbasis of the
Hodge Laplacian L[n], by obtaining

dδφ�

dt
= (JF (ω) − �Jh(ω))δφ�, (10)

where � = �[n] is the generic eigenvalue of L[n], JF and Jh

are the Jacobians of functions F and h, respectively, and δφ�

is the component of δφ along the eigenvector corresponding to
the eigenvalue �. This system of ODEs parametrized by the
eigenvalues �[n] constitutes the MSF for topological signals
and allows us to infer the stability of the synchronized solution
by considering the spectrum of the Hodge Laplacian L[n].

We observe that higher-order topological signals con-
ditions (9) necessary for observing GTS on unweighted
simplicial complexes are very restrictive [37]. There authors
proved that some unweighted topologies allow global syn-
chronization of their topological signals regardless of their
dimensions. These topological spaces include the square lat-
tices (2D torus) and the cubic lattices (3D torus) with periodic
boundary conditions. Other notable examples of simplicial
and cell complexes admitting global synchronization of their
n-order topological signals are arbitrary n-dimensional dis-
crete manifolds.

Moreover, in Ref. [37] it was also proved that odd-
dimensional topological signals can never synchronize on
unweighted simplicial complexes of dimension d > 1.

The aim of this paper is to demonstrate that by con-
sidering weighted simplicial complexes, one can overcome
this limitation and it is thus possible to observe GTS also
for odd-dimensional topological signals on simplicial com-
plexes as well. Specifically, we will provide evidence that two
weighted simplicial complexes, the WTT and the WW can
sustain global synchronization of the edge signal given the
appropriate choice of the edge weights.

IV. THE WEIGHTED TRIANGULATED TORUS
AND THE WEIGHTED WAFFLE

The aim of this section is to discuss two examples of
weighted simplicial complexes that allow global topological
synchronization of the edge topological signals: the WTT and
the WW. The WTT is formed by a square lattice with peri-
odic boundary conditions where each square is triangulated
forming a regular lattice in which each node has degree 6,
and we are thus dealing with a triangulation of a 2D torus. In
Fig. 1, we schematically show the WTT, the convention used
for the orientation of its edges and triangles, and the notation
adopted to indicate the different weights of the three distinct
types of edges of this simplicial complex. According to the
theory hereby presented, the edge signal admits a GTS on the
WTT as long as the following condition is satisfied:

L[n]u = 0, (11)

with u the vector of elements of constant absolute value.
Because of the Hodge decomposition, the latter rewrites

B[n]u = 0, B�
[n+1]u = 0. (12)

FIG. 1. The weighted triangulated torus (WTT) is a two-
dimensional simplicial complex constructed from a square lattice
with periodic boundary conditions. In this lattice, each periodic
(square) unit is triangulated, thus the network skeleton of the sim-
plicial complex is a regular lattice in which each node has degree 6.
(a) Periodic (square) unit indicating the edge weights and their orien-
tations (arrow), together with the two triangles and their orientations
(circular arrows). (b) Three-dimensional view of the WTT.

We assume G[0] = IN0 and G[2] = IN2 , namely, we do not
consider weights on nodes and on faces, and we study the
conditions on the edges weights wα determining a nontrivial
metric matrix G[1] that guarantees GTS of the edge signals,
i.e., it satisfies condition Eq. (11) for n = 1. On a WTT where
each triangle is obtained from an identical triangulation or
a rectangular lattice, the first of the conditions in Eqs. (12)
can be easily satisfied as long as each rectangle is the same.
The second condition in Eqs. (12) implies that the WTT only
admits a global synchronized state of the edge signal if√

1

w1
+

√
1

w2
=

√
1

w3
, (13)

where the edge weights w1,w2,w3 ∈ R+ are defined in Fig. 1
and are independent of the edge direction. We refer the in-
terested reader to Appendix A for the derivation of the latter
condition.

This global synchronized state for the edges will be sta-
ble under appropriate dynamical conditions determined by
the topological MSF. In Appendix B, we show the detailed
derivation of the spectrum of the L[0], L[1], and L[2] Hodge
Laplacians. We note that the constant eigenvector u = 1N0 is
in the kernel of L[0] and the constant eigenvector u = 1N2 is in
the kernel of L[2]. While the constant eigenvector u = 1N1 is
in the kernel of L[1] only the provided Eq. (13) is satisfied. The
spectra of the n-Hodge Laplacian of the WTT can significantly
vary as a function of the chosen weights w1 and w2, even if
we consider exclusively choices of w3 satisfying Eq. (13). To

014307-4



GLOBAL TOPOLOGICAL SYNCHRONIZATION OF … PHYSICAL REVIEW E 110, 014307 (2024)

FIG. 2. The spectra of the weighted Hodge Laplacians
Ldown

[1] , Lup
[1], coinciding with the spectra of L[0] and Ldown

[2] , respectively,
are reported for WTTs. Note that the Ldown

[1] spectrum consists
of one band, while the Lup

[1] spectrum consists of two bands.
These spectra determine the values of the eigenvalues � of
the Ldown

[1] [(a), (c)] and of the Lup
[1] [(b), (d)] Laplacians as a

function of the wave number k = (kx, ky ). (a), (b) WTT with edge
weights w1 = 1, w2 = 4, w3 = 4

9 ; (b), (d) WTT with edge weights
w1 = 3, w2 = 4, w3 = 36

(2
√

3+3)2 .

demonstrate this phenomenon, in Fig. 2 we show the spectrum
of L[0] (coinciding with the nonzero spectrum of Ldown

[1] ) and
the two-band spectrum of Ldown

[2] (coinciding with the nonzero
spectrum of Lup

[1]) for different values of the weights w1 and
w2. For the analytical derivation of these spectra, we refer to
Appendix B 1.

We consider here a second example of weighted simpli-
cial complex that under suitable condition can also sustain
GTS for edge signals: the WW. This is a three-dimensional
simplicial complex whose building blocks (unit cells) are
tetrahedra glued together along well-chosen edges. The edges
joining different tetrahedra form a two-dimensional square
lattice with periodic boundary conditions. In other words,
the WW is a two-dimensional square lattice with periodic
boundary conditions (torus) where each square of the lattice is
substituted by a tetrahedron. In Fig. 3, we schematically show
the WW together with the used convention for the orientation
of its edges, triangular faces, and the notation adopted to indi-
cate the different weights of the four distinct types of edges.
Also, in this case, we assume G[0] = IN0 and G[2] = IN2 and
study the conditions on the edges weights, wα , determining a
nontrivial metric matrix G[1] that guarantees GTS of the edge
signals, i.e., it satisfies condition Eq. (11) for n = 1. For the
case of the WW, these conditions read√

1

w3
=

√
1

w1
+

√
1

w2
,

√
1

w4
=

√
1

w1
−

√
1

w2
, (14)

where the edge weights w1,w2,w3,w4 ∈ R+ are defined in
Fig. 3 and are independent of the edge direction. We refer
to Appendix B for a detailed derivation of the spectrum of

FIG. 3. The weighted waffle (WW) is a three-dimensional sim-
plicial complex that can be constructed from a square lattice with
periodic boundary conditions by substituting each square with a
tetrahedron. In this lattice, each periodic unit is a tetrahedron, sharing
four edges with the neighbor tetrahedra. In (a), we report the periodic
(square) unit indicating the edge weights and their orientation (ar-
row), together with the two triangles and their orientations (circular
arrows). (b) Three-dimensional view of the WW.

the L[0], L[1], and L[2] Hodge Laplacians. We note that the
constant eigenvector u = 1N0 is in the kernel of L[0] and the
constant eigenvector u = 1N2 is in the kernel of L[2]. The
constant eigenvector u = 1N1 is in the kernel of L[1] only
provided conditions (14) are satisfied. The spectra of the
n-Hodge Laplacian of the WWs can vary significantly as a
function of the choice adopted for the weights w1 and w2, also
if we consider exclusively choices of w3 and w4 satisfying
Eqs. (14). To demonstrate this phenomena in Fig. 4, we plot
the spectrum of L[0] (coinciding with the nonzero spectrum
of Ldown

[1] ) and the three nontrivial band spectrum of Ldown
[2]

(coinciding with the nonzero spectrum of Lup
[1]) for different

values of weights w1 and w2 and values of weights w3 and w4

determined by Eqs. (14).

V. GLOBAL TOPOLOGICAL SYNCHRONIZATION
OF EDGE SIGNALS

In this section, we provide evidence that weighted sim-
plicial complexes can sustain GTS of odd-dimensional
signals. Specifically, we consider the Stuart-Landau (SL)
model for global synchronization of topological sig-
nals. The Stuart-Landau (also known as the complex
Ginzburg-Landau equation) is a paradigmatic model for
the study of synchronization because it is the nor-
mal form of the supercritical Hopf-Andronov bifurca-
tion [70]. This means that every oscillatory system

014307-5



WANG, MUOLO, CARLETTI, AND BIANCONI PHYSICAL REVIEW E 110, 014307 (2024)

FIG. 4. The spectra of the weighted Hodge Laplacians Ldown
[1] , Lup

[1], coinciding with the spectra of L[0] and Ldown
[2] , respectively, are reported

for WWs. Note that Ldown
[1] spectrum consists of one band, while the Lup

[1] spectrum consists of three nontrivial bands. These spectra determine
the values of the eigenvalues � of the Ldown

[1] [(a), (c)] and Lup
[1] [(b), (d)] Laplacians as a function of the wave-number k = (kx, ky ). (a), (b) WW

with edge weights w1 = 1, w2 = 4, w3 = 4
9 , w4 = 4; (b), (d) WW with edge weights w1 = 3, w2 = 4, w3 = 36

(2
√

3+3)2 ,w4 = 36
(2

√
3−3)2 .

behaves like a Stuart-Landau oscillator close to such
bifurcation and, in fact, can be reduced to a Stuart-Landau
through the center-manifold reduction [71]. In this model, the
elements of the n-cochain φ are complex valued, i.e., φα =
ω ∈ C. The functions F (ω) and h(ω) are taken to be F (ω) =
δω − μ|ω|2ω, h(ω) = ω|ω|m−1, where δ, μ ∈ C, and m ∈ N
are parameters of the model. Note that these functions are
odd, therefore this choice allows us to define an equivariant
dynamical equation for global topological synchronization.

The uncoupled system φ̇ = F(φ) leads to identical equa-
tions involving each one a single simplex and reads ω̇ =
F (ω). This equation admits a limit cycle solution ωLC (t ) =√

Re(δ)/Re(μ)ei2π f t , where the frequency of the oscilla-
tion obeys 2π f = Im(δ) − Im(μ)Re(δ)/Re(μ); moreover,
the limit cycle is stable provided Re(δ) > 0 and Re(μ) > 0,
conditions that we hereby assume to hold true.

In Figs. 5(a) and 5(c), we report numerical evidence for
the GTS of edge signals associated to SL defined on the WTT
whose weights satisfy Eq. (13); Figs. 5(b) and 5(d) refer to SL
defined on the WW whose weights satisfy Eqs. (14). In both
cases, we have considered parameters δ and μ which ensure
the existence of a stable limit cycle according to the condi-
tions given by the MSF. The achievement of the GTS state
is revealed by the (generalized) Kuramoto order parameter R
given by

R = 1

N1

∑
α∈Q1

ρα (t )eiθα , (15)

where we have rewritten the complex edge signal in polar
coordinates, ωα = ραeiθα , with ρα, θα ∈ R. Let us recall that
Q1 indicates the set of all the one-dimensional simplices of
the simplicial complex under study.

The order parameter R displays a fast convergence to one,
indicating that ρα (t ) → 1 and θα (t ) − θα′ (t ) → 0 for all α,
α′, thus testifying the emergence of GTS [see Fig. 5(a) for
WTT and Fig. 5(b) for WW]. Additional evidence of GTS is
shown in Figs. 5(c) and in 5(d), displaying temporal snapshots

of the real part of the edge topological signals after a transient
interval of time—the presence of vertical stripes is a signature
of GTS, being the values assumed by the variable identical
across all the link for any fixed time.

VI. GEOMETRICAL INTERPRETATION
OF THE WEIGHTS

A. Geometrical interpretation of the weights on flat simplices

Considering theoretical frameworks [51] based on the
HagenPoiseuille’s equation in fluid dynamics and generaliz-
ing them to higher dimension,s the weight wα associated to

FIG. 5. Numerical evidence for GTS on the WTT [(a), (c)] and
on the WW [(b), (d)]. (a), (b) Generalized order parameter R(t )
during the transient evolution showing the fast convergence to 1. (c),
(d) Temporal evolution of the real part of the edge topological signal
after a transient interval, namely, once it has reached its asymptotic
state. The edge weights are w1 = 1, w2 = 4, w3 = 4

9 for the WTT,
and w1 = 1, w2 = 4, w3 = 4

9 , w4 = 4 for the WW. For both simpli-
cial complexes, the SL model parameters are given by δ = 1 + 4.3i,
μ = 1 + 1.1i, σ = 1 − 0.5i, m = 3.
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simplex α can be expressed as

wα = cα

�α

, (16)

where cα ∈ R+ is the capacitance associated to simplex α

and �α is associated to the volume of simplex α. The volume
of simplex �α is given for one-dimensional simplices by the
length of the edges and for two-dimensional simplices by the
area of the polygons, and so on for higher-order simplices.
Here we focus, in particular, on the edges of the simplicial
complex and investigate under which conditions the assump-
tion that guarantees that a simplicial complex can sustain
GTS admits a geometrical interpretation. When there are no
constraints on the capacitance associated to the edges, the
question is trivial, as the capacitances can always be tuned in
such a way as to match the weights of the edges for any arbi-
trary distribution of their lengths. Nevertheless, if we impose
that the capacitances are all equal, i.e., if we set

�α = ϕ

(
1√
wα

)
(17)

for some smooth function ϕ, the problem becomes much
harder. We thus here investigate the geometrical conditions
under which conditions in Eq. (13) are satisfied if the weights
are given by the inverse of the distance of the edges (i.e.,
if all the capacitances are set to one, cα = 1). For the sake
of pedagogy, let us first assume ϕ(x) = x, hence Eq. (13)
rewrites √

�1 +
√

�2 =
√

�3. (18)

Assuming the metric to be Euclidean, for Pythagoras’s theo-
rem we have

�2
3 = �2

1 + �2
2 − 2�1�2 cos γ12, (19)

where γ12 indicates the angle between edge �1 and edge �2.
Equations (18) and (19) can be rewritten as

y1 + y2 = 1,

y4
1 + y4

2 − 2y2
1y2

2 cos γ12 = 1, (20)

where y1 = √
�1/�3, y2 = √

�2/�3. This system of equa-
tions leads to the only real solution given by the trivial
(unphysical ones) (y1, y2) = (1, 0), (y1, y2) = (0, 1). It fol-
lows that if all the capacitances are equal, condition Eq. (13)
is not compatible with a geometrical interpretation of the edge
weights, as long as the simplices are flat Euclidean simplices.

B. Curved simplices

To tackle the above limitation, we investigate in this
section whether curved simplices can allow us to gain a ge-
ometrical interpretation of the edge weights. Specifically, we
will consider the case of the constraint Eq. (13) that guarantees
the existence of a GTS state for the edge signal of the two-
dimensional WTT. We indicate with �1 and �2 the lengths of
the rectangular lattice tessellating the torus and assume that
edges that have been inserted to triangulate the torus, i.e.,
those with weight w3 in Fig. 1, are curved [see Fig. 6(a)] and
form an arc of ellipses parametrized by the curve

x(t ) = �1

2
cos t, y(t ) = �2

2
cos t, z(t ) = A sin t,

FIG. 6. (a) The geometrical realization of the WTT with curved
simplices. Relationships between the length A of the curved edge of
weight w3 as a function of length �1, and �2 of the edges with weight
w1 and w2 (b) in the geometrical realization of the WTT.

with t ∈ [0, π ]. The value of A indicating the maximum height
of the arc of the ellipse is determined by imposing that the
length of the arc is �3 = (

√
�1 + √

�2)2, i.e.,

�3 = (
√

�1 +
√

�2)2 =
∫ π

0

√
�2

1 + �2
2

4
sin2 t + A2 cos2 tdt

= 1

2

√
�2

1 + �2
2E

(
1 − 4A2

�2
1 + �2

2

)
+ AE

(
1 − �2

1 + �2
2

4A2

)
,

where E (m) indicates here the elliptic integral, i.e.,
E (m) = ∫ π/2

0

√
1 − m sin2 θdθ .

This equation can be solved numerically; in Fig. 6(b), we
show the dependence of A on �1 and �2.

Thus, in the case of the two-dimensional WTT, condi-
tion Eq. (13) can be geometrically interpreted by considering
curved simplices. Note, however, that this construction is not
generalizable to the WW.

C. Beyond the case ϕ(x) = x

An interesting question is whether we can gain a ge-
ometrical interpretation of the weights guaranteeing global
topological synchronization of the edge signal if we relax the
preliminary assumption ϕ(x) = x and assume a more general
functional dependence relating the length of the edges �α with
their weights wα . Let us observe that, under the assumption of
flat simplices, the function ϕ is constrained to satisfy the tri-
angular inequality (see Appendix C for details). In the case of
the WTT, we can prove that if ϕ(x) is a subadditive function,
i.e., if

ϕ(x1 + x2) < ϕ(x1) + ϕ(xx ), (21)

then the triangular inequality is satisfied and thus Eq. (13) is
compatible with the triangular inequality (see Theorem 1 in
Appendix C).
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Examples of functions in this class are, for instance,

ϕ(x) = x2β, (22)

with 2β < 1 and

ϕ(x) = 1 − e−x. (23)

In the case of the WW, the problem is more complicated,
as we need to check whether both constraints in Eqs. (14) are
compatible with the triangular inequality once we assume that
the lengths are related to the weights of the edges according
to Eq. (17). As we show in Appendix C 2, this latter problem
has no solution. In other words, there is no function ϕ(x) that
is compatible with the triangular inequality and satisfies both
Eqs. (14).

VII. CONCLUSION

Weighted simplicial complexes can allow for the synchro-
nization of topological signals even when their unweighted
counterpart does not. Indeed, weights can be tuned in such
a way to change the spectral properties of the simplicial
complex and allow a constant eigenvector (or an eigenvec-
tor with constant absolute value of its elements) to lie in
the kernel of the weighted Hodge Laplacians. Specifically,
despite that odd-dimensional topological signals can never
globally synchronize on unweighted simplicial complexes, we
here provided two examples of weighted simplicial complexes
that can sustain global synchronization of odd-dimensional
topological signals (edge signal) provided suitable conditions
on their edge weights are met. We provided an insightful
description of these two weighted simplicial complexes, the
WTT and WW, fully characterizing their higher-order spectral
properties. We have shown that these two weighted simpli-
cial complexes can sustain global synchronization of edge
signals in the framework of the higher-order Stuart-Landau
model. Moreover, we have investigated the possible geometric
interpretation of the constraints necessary to observe global
synchronization. Our findings reveal that global synchroniza-
tion of odd-dimensional signals can be observed on simplicial
complexes, provided suitable constraints of their weights are
met. However, in the general scenario, these constraints on
the weights do not have a simple and direct geometrical
interpretation.
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APPENDIX A: DERIVATION OF NECESSARY
CONDITIONS TO HAVE u ∈ kerL[n]

The aim of this Appendix is to develop the computations
required to determine the conditions on the edges weights to
have u ∈ kerL[n], where u = (1, . . . , 1)�, in the case of the
WTT, i.e., Eq. (13), and the WW, i.e., Eqs. (14).

Let us recall that in the case of unweighted simplicial com-
plexes, the condition B[1]u = 0 amounts to requiring that each

node, i.e., entry in the vector B[1]u, has as many incoming as
outgoing edges by taking into account the orientation of the
latter. Once weights are taken into account, that is, the sum
of incoming and outgoing weights from any node, that should
vanish, where we associate signed weights by using the edge
orientations.

The condition B�
[2]u = 0 is equivalent to require, in the

unweighted case, that for any triangle the sum of the orienta-
tions of the edges forming the boundary of the triangle should
vanish. One can easily realize that this condition is never met;
indeed, any triangle contains three edges whose orientations
can only be +1 or −1 and thus their sum is an odd num-
ber. By introducing weights, the sum of the signed weights
should vanish, where signs are again assigned according to
the orientation of the triangle and the edges. There are thus
choices of weights that satisfy this condition, as we will show
hereafter.

1. Weighted triangulated torus

Let us refer to Fig. 1(a), where one can realize the exis-
tence of two different kinds of nodes: the ones with degree
6, e.g., the one in the bottom left or top right position, and
those with degree 4, e.g., the one in the bottom right or
top left position. By direct inspection of the orientations and
edge weights, we can conclude that for nodes of the first
kind, each row of the matrix B[1]G

−1/2
[1] has only six nonzero

entries given by ±√
w1, ±√

w2, and ±√
w3. On the other

hand, for nodes of the second kind, the matrix will only have
four nonzero entries with values ±√

w1 and ±√
w2. Hence,

B[1]G
−1/2
[1] u = 0.

Still referring to Fig. 1(a), we can consider one oriented
triangle and its three boundary edges, also oriented; then
it is straightforward to realize that each row of the matrix
B�

[2]G
�/2
[1] has only three nonvanishing entries given by 1/

√
w1,

1/
√

w2, and −1/
√

w3. Thus, condition B�
[2]G

�/2
[1] u = 0 can be

satisfied if and only if 1/
√

w1 + 1/
√

w2 = 1/
√

w3, namely,
Eq. (13).

2. Weighted waffle

Let us now consider the WW and use Fig. 3 to help the
reader in the following analysis.

Each node of the WW has degree 8, hence each row of
the matrix B[1]G

−1/2
[1] has only eight nonzero entries, given by

±√
w1, ±√

w2, and ±√
w3 in the case of nodes a or c, and

±√
w1, ±√

w2, and ±√
w4 in the case of nodes b or d [see

Fig. 3(a)]. In any cases, it follows that B[1]G
−1/2
[1] u = 0.

Let us now consider the triangular faces. By looking
at Fig. 8, one can realize that there are essentially two
kinds of faces, A and B or C and D. Hence, each row
of the matrix B�

[2]G
�/2
[1] corresponding to a face of kind

A and B has only three nonvanishing entries given by
1/

√
w1, 1/

√
w2, and −1/

√
w3, while rows associated to

faces of kinds C and D have only three nonvanishing entries
given by −1/

√
w1, 1/

√
w2, and 1/

√
w4. Thus, the condi-

tion B�
[2]G

�/2
[1] u = 0 can be satisfied if and only if 1√

w1
+

1√
w2

= 1√
w3

and 1√
w1

− 1√
w2

= 1√
w4

, namely, Eqs. (14).
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FIG. 7. Schematic representation of the WTT of linear size
L̂ = 3 The unit cell of this simplicial complex is a square formed
by two triangles of different types: type A and type B.

APPENDIX B: SPECTRUM OF THE CONSIDERED
2D-SIMPLICIAL COMPLEXES

The aim of this Appendix is to explicitly determine the
spectra of the simplicial complexes studied in the main text,
namely, the WTT and WW. Given the periodic nature of
these simplicial complexes, we will adopt here an approach
based on Bloch’s theorem. Note that this approach can-
not be adopted to study the spectra of aperiodic simplicial
complexes for which different methods should be adopted
(see, for instance, the renormalization methods used in
Ref. [72]).

In the following, we will assume that the metric on the
nodes and on the triangles are trivial and the only nontrivial
metric matrix is the one associated to the edges. In this case,
we recall that the elements of the L[0] Laplacian are given by

[L[0]]i j =
{∑

r∈Q0
w[ir] if i = j

−w[i j], if i �= j,
(B1)

where here we indicate with i, j ∈ Q0 the generic nodes of the
simplicial complex. Furthermore, the elements of the Ldown

[2]
Laplacian are given by

[
Ldown

[2]

]
i j

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
w[rs]

+ 1
w[rq]

+ 1
w[sq]

if i = j = [rsq]

1
w[rs]

if i = [rsq], j = [rsq′], i ∼ j

− 1
w[rs]

if i = [rsq], j = [rsq′], i �∼ j,

where here we indicate with i, j ∈ Q2 the generic triangles of
the simplicial complex.

1. Spectrum of the weighted triangulated two-dimensional torus

We consider the weighted triangulated two-dimensional
torus, namely, a two-dimensional simplicial complex formed
by a triangulated 2D lattice with periodic boundary condi-
tions and linear size L̂ (for a schematic representation, see
Fig. 7).

a. Spectrum of L[0] and Ldown
[1]

Let us first calculate the spectrum of the 0-Hodge
Laplacian L[0] which coincides with the spectrum of the 1-
down Hodge Laplacian Ldown

[1] . Due to the periodicity of the
lattice, the wave number k = (kx, ky) has elements that take
only the discrete values kx = 2πnx

L̂
, and ky = 2πny

L̂
with nμ inte-

ger for μ ∈ {x, y} with 0 � nx < L̂, 0 � ny < L̂. We indicate
the coordinates of each node j as r j = (x j, y j ) corresponding
to the Cartesian coordinates of point j of the two-dimensional
lattice. We indicate with ex and ey the unit vectors along the
x and the y axis, respectively. Let us define u ∈ CN0 as the
Fourier modes of the lattice; in other words, we take the com-
ponents of u given by [u] j = eik·r j with k · r j = kxx j + kyy j .
Suppose that u is the eigenvector of the 0-Hodge Laplacian
L[0]—here we want to find its corresponding eigenvalue �[0],

i.e., we want to solve the eigenvalue problem:

L[0]u = �[0]u with [u] j = eik·r j . (B2)

The jth entry of L[0]u is

[L[0]u] j

= (2w1 + 2w2 + 2w3)eik·r j − w1[eik·(r j−ex ) + eik·(r j+ex )]

−w2[eik·(r j−ey ) + eik·(r j+ey ] − w3
[
eik·(r j−ex−ey )

+ eik·(r j+ex+ey )
]

= eik·r j

[
4w1 sin2

(kx

2

)
+ 4w2 sin2

(ky

2

)

+ 4w3 sin2
(kx + ky

2

)]
. (B3)

Therefore, the eigenvalues �[0] of the 0-Hodge Laplacian L[0]

associated to the wave-number k are given by

�[0] = 4w1 sin2
(kx

2

)
+ 4w2 sin2

(ky

2

)

+4w3 sin2
(kx + ky

2

)
. (B4)

We note that �[0] = 0 is an eigenvalue consistent with k =
(0, 0) and u = 1N0 . Note that the nonzero eigenvalues �[0] of
the 0-Hodge Laplacian L[0] coincide with the nonzero eigen-
values �[1] of the Hodge Laplacian Ldown

[1] .
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FIG. 8. Notation adopted for the WW. (a) A given tetrahedron
of the WW whose faces are indicated according to their type
(A, B,C, D) is visualized together with its four incident tetrahedra.
We indicate in black the faces A, B pointing outward and in blue the
faces C, D incident to the dashed blue line pointing inward (on the
back). (b) represents the same five tetrahedra distinguishing between
the faces pointing outward A, B and the faces pointing inward C, D.
The orientation of the faces is also indicated, as this is important to
derive the spectrum of the Ldown

[2] Laplacian.

b. Spectrum of Lup
[1] and Ldown

[2]

The spectrum of 2-Hodge Laplacian Ldown
[2] = B�

[2]B[2] of
the WTT coincides with the spectrum of the graph Laplacian

of its dual hexagonal lattice. As indicated in Fig. 7, we dis-
tinguish between two different types of triangles (triangles of
types A and B). The triangulated torus can be seen as a pe-
riodic lattice of cells (squares) j of coordinates rj = (x j, y j ),
indicating the coordinate of their bottom-left node. Due to the
periodicity of the lattice, we can use Bloch’s theorem [73,74]
and indicate the eigenvector u ∈ CN2 of the 2-down Hodge
Laplacian Ldown

[2] as

ui = eik·r j

(
aA

aB

)
, (B5)

where aA, aB ∈ C indicate the component of the eigenvector
on the triangle of type A and type B, respectively. Due to the
periodicity of the underlying square lattice, the wave numbers
k = (kx, ky) have components that take only the discrete val-
ues kx = 2πnx

L̂
, and ky = 2πny

L̂
with nμ integer for μ ∈ {x, y}

with 0 � nx < L̂, 0 � ny < L̂.
Given the choice of the parametrization of the eigenvector

u, we have

[
Ldown

[2] u
]

A, j

=
(

1

w1
+ 1

w2
+ 1

w3

)
aAeik·r j

− aB

[
1

w1
eik·(r j+ey ) + 1

w2
eik·(r j−ex ) + 1

w3
eik·r j

]
,

[
Ldown

[2] u
]

B, j

=
(

1

w1
+ 1

w2
+ 1

w3

)
aBeik·r j

− aA

[
1

w1
eik·(r j−ey ) + 1

w2
eik·(r j+ex ) + 1

w3
eik·r j

]
. (B6)

Thus, the eigenvalues �[2] of Ldown
[2] form two bands, and for

each choice the wave numbers k = (kx, ky) are given by

�[2] = 1

w1
+ 1

w2
+ 1

w3
± | f (k)|, (B7)

where

f (k) = 1

w1
eik·ey + 1

w2
e−ik·ex + 1

w3
, (B8)

and thus

| f (k)| =
√(

1

w2
1

+ 1

w2
2

+ 1

w2
3

)
+ 2

w1w2w3
[w1 cos(kx ) + w2 cos(ky) + w3 cos(kx + ky)]. (B9)

We note that �[2] = 0 is an eigenvalue consistent with k =
(0, 0) and aA = aB = 1 consistent with u = 1N2 . The nonzero
spectrum of the Ldown

[2] given by nonzero eigenvalues �[2]

coincides with the nonzero spectrum of Lup
[1] given by the

eigenvalues �[1].

2. The spectrum of the WW

Here we determine the spectrum of the WW (see Fig. 8)
by generalizing the approach used to derive the spectrum of
the WTT. The WW is a periodic lattice of three-dimensional
cells (tetrahedra) glued to each other along edges. Thus, the
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edges incident to more than one tetrahedron form a regular
square lattice of linear size L̂. For this three-dimensional sim-
plicial complex, we derive here the spectrum of the 0-Hodge
Laplacian and the 1-Hodge Laplacian.

a. Spectrum of L[0] and Ldown
[1]

We will first find the spectrum graph Laplacian of the WW.
Using a similar technique as the one adopted for the WTT (see
Sec. B 1 a), we obtain that the eigenvectors of the 0-Hodge
Laplacian of the WW are given by the Fourier eigenmodes
u ∈ CN0 of elements

[u] j = eik·r j (B10)

associated to the wave numbers k = (kx, ky) with kx = 2πnx

L̂
,

and ky = 2πny

L̂
where 0 � nx < L̂, 0 � ny < L̂. The eigenval-

ues �[0] associated to these generic eigenvectors are

�[0] = 4w1 sin2
(kx

2

)
+ 4w2 sin2

(ky

2

)

+ 4w3 sin2
(kx − ky

2

)
+ 4w4 sin2

(kx + ky

2

)
. (B11)

We note that �[0] = 0 is an eigenvalue consistent with k =
(0, 0) and u = 1N0 . The nonzero spectrum of the 0-Hodge

Laplacian L[0] formed by the eigenvalues �[0] coincides with
the nonzero spectrum of the 1-down Hodge Laplacian Ldown

[1]
formed by the eigenvalues �[1].

b. Spectrum of Lup
[1] and Ldown

[2]

The faces on each tetrahedron of the WW can be classified
in four types: types A,B,C, and D (see Fig. 8). By using
Bloch’s theorem [73,74], the eigenvectors u ∈ CN2 of Ldown

[2]
have elements that for each tetrahedron i of coordinates Ri on
the 2D torus having elements

u j = eik·r j

⎛
⎜⎜⎝

aA

aB

aC

aD

⎞
⎟⎟⎠, (B12)

associated to the wave numbers k = (kx, ky) with kx =
2πnx

L̂
, and ky = 2πny

L̂
where 0 � nx < L̂, 0 � ny < L̂. Here

aA, aB, aC, aD ∈ C indicate the component relative to each
of the four triangles of the tetrahedron forming each cell
j. The Hodge Laplacian Ldown

[2] couples each triangle to the
other seven triangles sharing an edge of which three belong
to the same tetrahedron, and the other four belong to the two
adjacent tetrahedra of the triangular face (see Fig. 8). A direct
calculation performed for the triangular faces of types A, B,C,
and D leads to

[
Ldown

[2] u
]

A, j =
(

1
w1

+ 1
w2

+ 1
w3

)
aAeik·r j + eik·r j

[
1
w3

aB + 1
w2

aC − 1
w1

aD

]
+ eik·(r j−ex )

[
1
w2

(aB + aD)
]

+ eik·(r j+ey )
[

1
w1

(aB − aC )
]
,

[
Ldown

[2] u
]

B, j
=

(
1
w1

+ 1
w2

+ 1
w3

)
aBeik·r j + eik·r j

[
1
w3

aA − 1
w1

aC + 1
w2

aD

]
+ eik·(r j+ex )

[
1

w2
(aA + aC )

]
+ eik·(r j−ey )

[
1
w1

(aA − aD)
]
,

[
Ldown

[2] u
]

C, j
=

(
1
w1

+ 1
w2

+ 1
w4

)
aCeik·r j + eik·r j

[
1
w2

aA − 1
w1

aB + 1
w4

aD

]
+ eik·(r j−ex )

[
1

w2
(aB + aD)

]
+ eik·(r j−ey )

[
1
w1

(−aA + aD)
]
,

[
Ldown

[2] u
]

D, j
=

(
1
w1

+ 1
w2

+ 1
w4

)
aDeik·r j + eik·r j

[
− 1

w1
aA + 1

w2
aB + 1

w4
aC

]
+ eik·(r j+ex )

[
1
w2

(aA + aC )
]

+ eik·(r j+ey )
[

1
w1

(−aB + aC )
]
. (B13)

Thus, the spectrum of the Ldown
[2] Hodge Laplacian comprises four bands having eigenvalues �[2] satisfying the eigenvalue

problem

M

⎛
⎜⎜⎝

aA

aB

aC

aD

⎞
⎟⎟⎠ = �[2]

⎛
⎜⎜⎝

aA

aB

aC

aD

⎞
⎟⎟⎠, (B14)

where for each choice of wave number k, matrix M is a 4 × 4 matrix given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
w1

+ 1
w2

+ 1
w3

eiky

w1
+ e−ikx

w2
+ 1

w3
− eiky

w1
+ 1

w2
− 1

w1
+ e−ikx

w2

e−iky

w1
+ eikx

w2
+ 1

w3

1
w1

+ 1
w2

+ 1
w3

− 1
w1

+ eikx

w2
− e−iky

w1
+ 1

w2

− e−iky

w1
+ 1

w2
− 1

w1
+ e−ikx

w2

1
w1

+ 1
w2

+ 1
w4

e−iky

w1
+ e−ikx

w2
+ 1

w4

− 1
w1

+ eikx

w2
− eiky

w1
+ 1

w2

eiky

w1
+ eikx

w2
+ 1

w4

1
w1

+ 1
w2

+ 1
w4

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B15)
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We note that �[2] = 0 is an eigenvalue consistent with k =
(0, 0) and aA = aB = aC = aD = 1 consistent with u = 1N2 .
The nonzero spectrum of the Ldown

[2] given by nonzero eigenval-
ues �[2] coincides with the nonzero spectrum of Lup

[1] given by
the eigenvalues �[1]. Additionally, we observe that although
the spectrum of Ldown

[2] is given by four bands, only three are
nontrivial, as the eigenvalue corresponding to the fourth band
is always null.

APPENDIX C: GEOMETRIC INTERPRETATION
OF THE WEIGHTS: FURTHER

MATHEMATICAL RESULTS

1. Weighted triangulated torus

The aim of this Appendix is to provide proof of the claim
that using a subadditive function ϕ to relate edge weights and
their lengths allows us to satisfy the triangular inequality.

We can indeed state
Theorem 1. Let ϕ : R+ → R+ be a positive subadditive

function vanishing only at zero. Then for any positive weights,
w1, w2, and w3 such that Eq. (13) holds true, the choice of
lengths given by

� j = ϕ

(
1√
w j

)
(C1)

satisfies the triangular inequality
Proof. By Eq. (13), we have

1√
w3

= 1√
w1

+ 1√
w2

;

hence by using the edge between weights and lengths,
we get

�3 = ϕ

(
1√
w3

)
= ϕ

(
1√
w1

+ 1√
w2

)
. (C2)

By using the subadditivity of ϕ, we have

�3 < ϕ

(
1√
w1

)
+ ϕ

(
1√
w2

)
= �1 + �2. (C3)

�
A necessary and sufficient condition to have a posi-

tive smooth subadditive function is given by the following
proposition:

Proposition 1. Let ϕ : R+ → R+ be a differentiable, posi-
tive function vanishing at zero. Then ϕ is subadditive if and
only if its first derivative is strictly monotone decreasing,
namely, ϕ is strictly concave.

Proof. By using the smoothness of ϕ, for any x > 0 and
y > 0 we can write

ϕ(x + y) − ϕ(y) =
∫ x+y

y
ϕ′(t ) dt =

∫ x

0
ϕ′(t + y) dt,

and, similarly, by recalling the ϕ(0) = 0, we get

ϕ(x) =
∫ x

0
ϕ′(t ) dt .

Hence

ϕ(x + y) − ϕ(y) − ϕ(x) =
∫ x+y

y
ϕ′(t ) dt −

∫ x

0
ϕ′(t ) dt

=
∫ x

0
[ϕ′(t + y) − ϕ′(t )] dt

=
∫ x

0
dt

∫ t+y

t
ϕ′′(s) ds. (C4)

Thus, the conclusion follows by remarking that a smooth
strictly concave function satisfies ϕ′′(s) < 0 for all s. �

Example 1. The function ϕ(t ) = t a is subadditive if and
only if 0 < a < 1. Indeed ϕ is smooth, positive, and vanishing
at 0. Moreover, ϕ′(t ) = ata−1 and ϕ′′(t ) = a(a − 1)t a−2; the
latter is negative (for positive t) if and only if 0 < a < 1.
We can then apply the previous proposition. This shows the
necessity to have β < 1/2.

Example 2. By using Proposition 1, we can obtain other
interesting edges between weights and lengths, for instance,

� j = 1 − e−1/
√

w j

does satisfy the triangular inequality.
Indeed, the smooth function ϕ(t ) = 1 − e−t vanishes at

zero and is positive for positive t . Moreover, its derivative
ϕ′(t ) = e−t is strictly monotone decreasing, hence ϕ(t ) is
subadditive. In conclusion,

�3 = 1 − e−1/
√

w3 = 1 − e−(1/
√

w1+1/
√

w2 )

< 1 − e−1/
√

w1 + 1 − e−1/
√

w2 = �1 + �2. (C5)

2. Weighted waffle

The starting point is the conditions given by Eqs. (14).
Then, assuming again the existence of a relation among
weights and lengths of the form �i = g(1/wi ), the previous
conditions imply that:

(1) �1 is the longest side of the triangle whose sides are �1,
�2, and �4; thus �1 > �2 and �1 > �4;

(2) the previous point implies that �1 must satisfies �1 <

�2 + �4;
(3) �3 is the longest side of the triangle whose sides are �1,

�2 and �3, thus �3 > �1 and �3 > �2. Hence by the first point
we have: �3 > �1 > �2; and

(4) the previous point implies that �3 must satisfies �3 <

�1 + �2.
The aim of this section is to show that the previous con-

ditions are not sufficient to define a tetrahedron, indeed by
assuming to fix �1, �2, and �4, such that points 1 and 2 are
satisfied, then �3 should belong to a well-defined interval,
whose bounds depend on �1, �2, and �4 (and this allows us
to automatically satisfy points 3 and 4).

To determine such bounds, let us consider Fig. 9. In
Fig. 9(a), we show one face of the tetrahedron, i.e., the triangle
with vertexes a, c, and d and sides of length �1 (green one),
�2 (blue one), and �4 (red one). We assume this triangle to
lie on the plane x, y and its vertexes to have coordinates
a = (�4/2, 0), c = (−�4/2, 0), and d (p, q), where one easily
can obtain that

�2
1 =

(
�4

2
+ p

)2

+ q2 and �2
2 =

(
p − �4

2

)2

+ q2,
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(c) (d)

(a) (b)

FIG. 9. Different views of the tetrahedron and its faces. Panel (a) presents one face of the tetrahedron, i.e., a triangle, in the coordinates
plane (x, y) and their link with the sides lengths, � j , j ∈ {1, 2, 3, 4}. Panel (b) shows a 3D view of the tetrahedron, the dihedral angle, θ , formed
by the faces [abc] and [acd], and the associated edges lengths. Panel (c) depicts a special “flat” tetrahedron where the faces [abc] and [acd]
lie on the same plane, i.e., θ = π . Panel (d) depicts a second special “flat” tetrahedron where the faces [abc] and [acd] lie again on the same
plane but θ = 0.

from which it follows:

p = �2
1 − �2

2

2�4
and q2 = �2

1 −
(

�4

2
+ �2

1 − �2
2

2�4

)2

. (C6)

Let us now consider the full tetrahedron [Fig. 9(b)] ob-
tained by gluing two triangles with sides �1, �2, and �4 along
the latter side, and two triangles with sides �1, �2, and �3 again
along the latter side. Let us denote by ϑ the dihedral angle
formed by the planes on which the two triangles with sides �1,
�2, and �4, lie.

The last side, �3, is a function of such an angle. There are,
in particular, two extremal cases corresponding to degenerate
tetrahedra, the latterbeing flat, i.e., with zero volume. These
two cases correspond to ϑ = π [see Fig. 9(c)], in which case
the tetrahedron is completely open and flattened on a plane,
and to ϑ = 0 [see Fig. 9(d)], in which case the tetrahedron is
completely folded and flattened on a plane.

In the former case ϑ = π , we can compute the length of
the edge bd by considering [see again Fig. 9(c)],

�̂2
3 = 4p2 + 4q2 = 2

(
�2

1 + �2
2

) − �2
4, (C7)

where we used Eqs. (C6) to relate p and q in function of �i. Let
us observe that the right-hand side of the previous equation is
positive because �1 > �4.

The remaining case ϑ = 0 can be handled as well to com-
pute the length of the edge bd [we use the configuration shown
in Fig. 9(d)] and thus get

�̌2
3 = 4p2 =

(
�2

1 − �2
2

)2

�2
4

, (C8)

where we again used Eq. (C6) to relate p and q in func-
tion of �i. Let us observe that the right-hand side is trivially
positive.

Let us now prove that �̂3 > �̌3. To achieve this goal, let
us consider Fig. 10, where we juxtaposed the two extremal
cases. Consider the triangle oT d with a right angle at T ,
then aO is its hypotenuse, and thus Od > db. But �̂3 = 2Od
and �̌3 = 2db, hence �̂3 > �̌3. Let us finally observe that by
construction

�̂3 < �1 + �2.
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FIG. 10. Two flatten tetrahedra.

We can summarize our findings as follows. Given four
sides of length �i, i = 1, . . . , 4, such that

�3 > �1 > �2, �1 > �4, �1 < �2 + �4, (C9)

then those sides can be the edges of a tetrahedron if and only
if �3 satisfies

�2
1 − �2

2

�4
= �̌3 < �3 < �̂3 <

√
2
(
�2

1 + �2
2

) − �2
4. (C10)

Remark 1. Let us conclude by observing that the same re-
sult can be obtained by using the Cayley–Menger determinant
formula, allowing us to compute the volume of a simplex
given its sides. In the present case, the formula returns

V 2 = 1

3!23

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1

1 0 �2
1 �2

4 �2
2

1 �2
1 0 �2

2 �2
3

1 �4
1 �2

2 0 �1
3

1 �2
1 �2

3 �1
3 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1

3!23
�2

4

[
�2

3 −
(
�2

1 − �2
2

)2

�2
4

][
2
(
�2

1 + �2
2

) − �2
4 − �2

3

]
,

(C11)

where the last equality has been found by using an algebraic
manipulator.
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