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The emergence of collective cooperation in competitive environments is a well-known phenomenon in biology,
economics, and social systems. While most evolutionary game models focus on the evolution of strategies for
a fixed game, how strategic decisions coevolve with the environment has so far mostly been overlooked. Here,
we consider a game selection model where not only the strategies but also the game can change over time
following evolutionary principles. Our results show that coevolutionary dynamics of games and strategies can
induce novel collective phenomena, fostering the emergence of cooperative environments. When the model is
taken on structured populations the architecture of the interaction network can significantly amplify pro-social
behavior, with a critical role played by network heterogeneity and the presence of clustered groups of similar
players, distinctive features observed in real-world populations. By unveiling the link between the evolution
of strategies and games for different structured populations, our model sheds new light on the origin of social
dilemmas ubiquitously observed in real-world social systems.
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I. INTRODUCTION

Evolutionary game theory (EGT) combines game theory
with Darwinian principles of natural selection and has made
substantial contributions to diverse fields such as behavioral
economics, social science, and biology [1-5]. Traditionally,
EGT focuses on a population of players involved in a fixed
game, evolving strategies over time, based on individual fit-
ness [6-9]. Fitness is generally considered a growing function
of the player’s payoff, and it depends on the game and strate-
gies of interacting players. This approach has yielded valuable
insights into social and biological interactions, particularly in
the context of social dilemmas—a widely recognized frame-
work for investigating cooperation. In a social dilemma, each
member of a group faces a choice: to cooperate or defect.
Cooperation benefits the group but comes at an individual
cost, while defectors enjoy the collective benefits without
incurring any personal sacrifice. Classic examples of social
dilemmas include the Prisoner’s Dilemma and the Snowdrift
Game [2,4].

When applied to understanding human behavior and
puzzling aspects of social interactions, the simplified well-
mixed approach of classical evolutionary game theory often
leads to unrealistic predictions, and therefore, complex net-
works are used to describe patterns of interactions among
players [6-10]. This approach has proven instrumental in ex-
amining dynamical processes on real social networks, where
players interact with their neighbors in a network struc-
ture [11-14]. The concept of “centrality” of a player in a
network, quantifying its importance or influence, has been
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explored to understand the spread of information, the diffu-
sion of innovations, and the formation of social norms [15].
Moreover, traditional EGT models commonly rely on static,
globally defined payoff matrices [16,17]. This simplification
fails to account for the reality that individual players engage
in multiple social contexts and scenarios—each contributing
to their overall fitness and subject to change over time.

In the past few years, these ideas have begun to emerge
in the literature of evolutionary game theory. For instance,
models based on stochastic games have been proposed to
describe situations where players are in heterogeneous or
periodically switching game environments [18—-26]. However,
many of these studies consider only a limited number of avail-
able environments, lack a generalized approach to defining
the different environments and deal with game changes as a
random process only, thus neglecting mechanisms leading to
the selection of these environments [24,27-37]. Thus, funda-
mental questions regarding how players’ strategies and game
environments mutually affect each other and coevolve remain
unanswered. In particular, the complex codependence be-
tween evolutionary strategy selection and evolutionary game
selection dynamics itself, has not been studied previously.

In this work, we propose a new framework in which
evolutionary dynamics acts both on strategies and game en-
vironments. This holistic perspective allows us to analyze
how strategies and environments mutually coevolve over time
leading to the emergence of cooperative environments. Fur-
thermore, we identify that the topological properties of social
interaction networks play a crucial role in shaping individual
behavior. Thus, our framework encompasses a comprehensive

©2024 American Physical Society
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exploration of both intrinsic (behavioral) and extrinsic (con-
textual) factors that contribute to the emergence of prosocial
behavior and social dilemmas.

The outline of the paper is the following. In Sec. II we
introduce the evolutionary model and explore its application
to social dilemma games. We then look at the results of our
model in a well-mixed population and networked structures
in Sec. III. Finally, we summarize our main findings and give
some future directions in Sec. IV.

II. MODEL
A. Individual payoff matrices

Let us consider two-player games where each agent
can choose between two strategies. Traditionally, symmetric
games, in the context of social dilemmas have been described
by the following payoff matrix:

c D
c R S
S 0
where, C and D represent the two available strategies: cooper-
ation and defection, respectively.

In particular, when facing another cooperator, a cooperator
receives a payoff of R (namely, “reward”), while against a
defector, the payoff is S (referred to as “sucker’s payoff”).
Conversely, a defector earns a payoff of T (“temptation™)
when facing a cooperator, and P (“penalty”’) when facing
another defector.

The ordering of the entries of the payoff matrix defines four
different types of games, namely:

Prisoner’s Dilemma (PD): T > R > P > S,
Snowdrift (SD): T > R > S > P,

Stag-hunt (SH): R > T > P > S,

Harmony Game (HG): R > T > S > P. 2)

In particular, we notice that for each game, either T > R or
T <Rand S > PorS < P, leading to four distinct quadrants
in the T-S phase space. In our framework, different from the
classical approach where just one game (i.e., a single payoff
matrix) is taken into account, we consider a distribution of
games. To do so we associate to each player i a randomly
generated game-payoff matrix. We note that the games can
alternatively be represented in terms of “dilemma strengths”
Dy(=T —R) and D,(= P — §) instead of T and S [38-40].
The two representations are equivalent under translational and
rotational symmetry in the phase space. If we define different
games by generating the entries of the payoff matrix com-
pletely at random, the total payoff (i.e., the sum of the payoff
matrix entries) for each game will, in general, be different.
This introduces a bias, where the players associated with
the games with a larger total payoff are favored. Since in
our model not only the strategies but also the games evolve,
this bias will lead the evolutionary dynamics toward a trivial
outcome where the whole population plays the game with the
largest total payoff (as we verified numerically). In our model,
we remove this bias by considering games described by payoff
matrices where the matrix entries (i.e., the payoffs) are drawn
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FIG. 1. Games classification. Each player is assigned one pair
of values (7;, S;) from the game diamond. The equations for the
boundaries of each game are derived from the inequalities between
the payoffs. Here we set« = 4 and 8 = 2.

from symmetric distributions, and their sum (total payoff) is
fixed. This is achieved by using the following payoff matrix
to define the game associated with player i:

C D

C o — T; S,’
b [ L B-S } )
where T; € [B/2,0 — B/2] and S; € [B — «/2, «/2] are con-
tinuously distributed as shown in Fig. 1. In this way, the sum
of the elements in each column of the payoff matrix (Eq. 3) is
equal to R + T = « for the first column, and to S + P =  for
the second column. As a consequence, for fixed values of «
and B the total payoff (sum of all matrix entries) is a constant
equal to o + B. By varying the values of 7; and S; we can
define all four types of games. In particular, we can verify this
by substituting the expressions R=a —7T and P=8—S§
into the payoff inequalities given by Eqgs. 2. This allows us to
derive the conditions for the different social dilemmas, while
adhering to the constraint of a constant total payoff:

(1) Prisoner’s Dilemma (PD): T > «/2, S < /2, and
S>T+B -«

(2) Snowdrift (SD): T > «/2,S > B/2,and S <o —T

(3) Stag-hunt (SH): T < «/2,S < f/2,andS > B —T

(4) Harmony Game (HG): T < «/2,S > 8/2,and S < T

We notice that o > B is a necessary condition for the
existence of 7' and S, solutions of the system of inequalities
defining each game. By representing these conditions in the
T-S space we obtain a “games diamond” as shown in Fig. 1.

B. Coevolutionary game dynamics

We represent the state of player i as Q; = (g;, s;). Each
player i within the population is distinctly identified by the
game g; linked to it and its chosen strategy s;, which can
be either cooperation C or defection D. As we saw in the
previous section, given fixed values of « and B, the game g; is
completely determined by the payoffs 7; and S; and the payoff
matrix Eq. 3. Henceforth, we will denote both the game and
its corresponding payoff matrix by g;.

The system evolves by agents replicating strategies s; and
games g; from one another through an asynchronous update
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process [41]. At each time step we randomly select a focal
player f and a model player m. We studied the evolutionary
dynamics both for well-mixed populations, where each player
can interact with all the other players, and for structured
populations, where the players are represented as the nodes
of a network and they interact if an edge connects them. In
particular, while in a well-mixed scenario the model player is
randomly chosen from the entire population, in a structured
population the model player is randomly drawn from the
neighbors of the focal one.

The focal (respectively, model) player collects total payoff
7 ¢ (respectively, m,,) by playing with each of its opponents. In
structured populations, the focal player and the model player
interact with their k¢ and k,, neighbors, respectively. In well-
mixed populations, they engage with k£ randomly selected
agents. Each player participates in two games against every
opponent j: one using their own payoff matrix gr (g, for
the model), and another using the opponent’s payoff matrix
gj- The focal player updates its strategy through a two-phase
stochastic pairwise comparison process, through which he or
she can adopt the strategy and the game of the model player.

The state update consists of two steps. First, we determine
whether the game, the strategy, or both will be updated: the
game is selected for an update with probability p,, and the
strategy is selected with an independent probability of p;.
Note that the case p, =0, p, = 1 recovers the usual evo-
lutionary game dynamics where only the strategies evolve.
Given that environments usually change at a slower rate than
the individual behaviors [32,42,43], we restrict ourselves to
scenarios where p, < p,. Then, the adoption of the model
game and/or strategy occurs with a probability that increases
with 7, — 7y, the payoff difference between the model and
focal players. In particular, the probability of adoption is de-
scribed by the so-called Fermi function [11,44—46]:

1

= , 4)
I +exp[—w(m, —my)]

where w governs the strength of selection. Note that the Fermi
update rule is not deterministic and (especially for low values
of w) the focal player can adopt games and strategies from the
model player even when 7,, < y. Thus, at each step of the
evolutionary dynamics, there are 4 possible transitions from
the original state of the focal player £2,(gy, s/), to a new state
where both the strategy and the game can be those of the
model player, each occurring with the following probabilities:

Qf(gma Sm) with  pg- Pe- 12

Qf(gmasf) with  p, - TI(1 — Ip;)
Qr(gr, sp) = : 3 )

Qf(gf, Sm) with Ds ]_[(1 _ Hpg)

Qr(gr,sp)  with (1 —Tlps)(1 —Ip,)
We repeat the simulation step until the system reaches
a quasistationary state in which we compute the relevant
macroscopic order parameters. In stochastic processes featur-
ing absorbing states, quasistationary methods are employed
to identify the system’s stable states [47-49]. If the sys-
tem transitions into an absorbing state, the quasistationary
methodology reverts it to a prior state, with a probability pro-
portional to the time spent in that state. This approach yields

a distribution (namely, quasistationary distribution) where the
probability of each state is proportional to the time spent by
the system in that state. Previous research has shown that the
local maxima of the quasistationary distribution asymptoti-
cally approaches the stable fixed point inherent to the system’s
stochastic dynamics with growing system size [5S0-52].

III. RESULTS

We analyze the outcome of the coevolutionary dynamics
of games and strategies on different population structures.
We first consider a well-mixed population of players, show-
ing how the propensity to change the game, p,, affects the
system’s steady state. In particular, we look at the fraction of
cooperators p in the quasistationary state as a function of time.
Next, we consider the case of structured populations, where
the interactions among players are represented as a network.
In this way, we explore the impact on the model dynamics
of fixed neighborhoods (namely network reciprocity effects),
spatial homophily of games, and the correlations between the
states of the agents and their placement in the network.

A. Well-mixed population

We consider well-mixed populations where we assign a
game chosen uniformly at random from the game’s diamond
in Fig. 1 to each player. We start our analysis of the model
dynamics with the case p; = 0 and p; = 1. In the rest of the
paper we always choose p; = 1 unless stated otherwise. In
Fig. 2(a) we observe that for p, = 0, independently of the
initial fraction of cooperators, the trajectories converge to a
quasistationary state where the population cooperates roughly
half of the time. Thus, independently from the initial number
of cooperators in the system, when p, = 0 we always find
players cooperating roughly half of the time. The error bars
of the plot denote the standard error over 64 runs for each py.

In contrast to the scenario where p, = 0, a slight increase
of p, breaks down the symmetry of the evolutionary outcome
under changes in the initial configuration. For instance, even
for a very small value of p, = 0.01 in Fig. 2(b), we observe a
variety of quasistationary states in which the final density of
cooperators strongly depends on the initial levels of prosocial
behavior (i.e., the initial fraction of cooperators). When py is
further increased the former effect becomes more pronounced
and [see Fig. 2(c) for p, = 0.1] trajectories seem to bifurcate
in two sets based on the number of initial cooperators. In
particular, when the initial fraction of cooperators py = 0.5,
we observe that the cooperation level remains the same. How-
ever, if cooperators are in the minority, the system tends to
eliminate cooperators while, when we start with a majority of
cooperators, cooperation prevails in the long run.

To have a better understanding of this effect we define
Poo = lim,_, oo (0 (?)) as the time-averaged cooperators’ den-
sity in the long time limit and explore the dependence of
Pso as a function of po for various p, values. In Fig. 3(a)
we illustrate the symmetry-breaking phenomenon that occurs
when p, > 0. In particular, as soon as p, > 0 we observe that
a critical initial fraction of cooperators of py ~ 0.5 is needed
to have a majority of cooperators in the steady state of the
system. Moreover, as p, increases the curves p,, depend more
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FIG. 2. Fraction of cooperators p(t) over time in a well-mixed population for (a) p, = 0, (b) p, = 0.01, and (¢) p, = 0.1. The solid lines
denote the averages while the shaded region is the standard error over 64 independent runs of the coevolutionary game dynamics. Here we set

ps =1, N =2500, and k = 4.

and more nonlinearly on py, resembling a step function when
pg — 1. In this limit of strong game selection, the form of the
curves po, pinpoint a reinforcement effect in which a slight
bias toward cooperation (defection) in the initial configuration
leads to a dynamical reinforcement of cooperators (defectors).

Figure 3(b) shows the dependence of system size N on
the cooperators’ density in the quasistationary state, p., for
pe = 0.01. We notice that the transition becomes sharper as
the system approaches the thermodynamic limit N — oo. The
finite size effects become significantly less relevant beyond
N ~ 1000. Subsequently, we fix N = 2500 for the rest of the
manuscript. Figure 3(b) (inset) shows the effect that the aver-
age number of interactions has on the degree of cooperation
for N = 2500 and p, = 0.01. We see that there is no effect
on the quasistationary state density for different values of the
average degree. Consequently, we fix (k) = 4 for the rest of
the manuscript unless stated otherwise.

Now we analyze the effects of the coevolutionary dynamics
in game selection when p, > 0. In particular, in Fig. 4(a), we
show the distribution in the 7'-S plane of the surviving games,
where the colors denote the number of initial cooperators,
po, of the corresponding realization. First, we observe that
the quasistationary state consists primarily of players playing
the SH, and also PD or HG depending on py. Moreover, it
is interesting to notice that the surviving games are densely
distributed near the corners of the phase space. In particular,
we observe a transition of surviving games from PD-SH to
HG-SH as a function of py. Fewer initial cooperators lead to
games closer to PD, which has full defection as the Nash equi-
librium. However, an initial majority of cooperators brings the

a q ¢ pg=0.0
(@10 ° pZ=0.01 o
A p;=0.1
pg=1.0
g 0.5- :
) //
0.0 |4 T T T
0.2 0.4 0.6 0.8
Po

(b); o4

system closer to HG, which has full cooperation as the Nash
equilibrium.

Finally, we analyze in depth the dependence of the selected
games as a function of p, and pg. The game g; played by
each individual i is defined by the values of 7; and S; and can
be classified as cooperative or noncooperative. To this aim,
we classify a game g; as cooperative if the associated Nash
equilibrium (mixed or pure) has a majority of cooperators,
otherwise g; is regarded as noncooperative. In particular, a
cooperative game holds when S > T — 1. Figure 4(b) shows
the fraction of cooperative games (environments) ®°° among
the surviving games as a function of p, for different values of
Dg > 0.Itis interesting to see that the curves are quantitatively
very similar to the trend of p, shown in Fig. 3(a), implying a
strong correlation between the selected games and strategies
for all values of p,.

In conclusion, the presence of coevolutionary dynamics in
well-mixed populations provides a way out for the survival
of cooperation. However, this effect requires that py =~ 0.5,
which is an unrealistic critical mass of initial cooperators to
achieve prosocial behavior. In the next section, we show how
the presence of structured populations can enhance prosocial
behavior at a lower cost (i.e., initial cost of cooperation).

B. Structured populations

Well-mixed populations are not the best representation
of real-world systems, since individuals do not interact at
random, but according to well-defined structural patterns.
Networks constitute a natural framework for analyzing these

g 0.5-
Q

0.0-°

0.8

FIG. 3. (a) Quasistationary state fraction of cooperators p,, as a function of the initial cooperators’ density py for various values of p,,
the probability of selection of game update. The parameters are p, = 1, N = 2500, and k = 4. (b) Effect of size and degree (inset) on the
quasistationary fraction of cooperators p., for p, = 0.01. All the results are for a well-mixed population and averaged over 64 runs.
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FIG. 4. Game selection in well-mixed populations. (a) Surviving
games in a well-mixed population for various values of initial cooper-
ators. Violet points denote initial conditions with fewer cooperators
than defectors, while yellow dots denote more initial cooperators.
(b) Surviving cooperative games fraction ®* as a function of p, for
the same values of p,. The parameters are p, = 1, N = 2500, and
k=4.

interaction paradigms. Here, we study the impact of different
network topologies and features found in real-world systems
on the model dynamics.

As explained above, the use of well-mixed populations
prevents repeated interactions between players since model
players are chosen at random by each focal agent at each
time step. Moreover, the opponents of the focal and model
players are also drawn randomly from the population at each
time step. However, when networks are used to represent
the population structure, the neighbors of each agent are
fixed. This implies that the set of possible model players
for each focal player, and the set of possible opponents of
each node, do not change in time. We will show that this
can greatly impact the update of both strategies and games.
In the context of evolutionary game dynamics it is widely
known that networked interactions provide a structural way
to sustain cooperation through various mechanisms such as
punishing those who defect, clustering the cooperators to-
gether, reinforcement of prosocial behavior [8,9,12,13,28,53—
55]. This effect, also known as “network reciprocity,” can
lead to prosocial behavior even in situations where, without
network structure, cooperation cannot be sustained.

Inspired by this phenomenon, we look at how a structured
population can result in an enhancement of cooperative behav-
ior in the context of evolutionary game selection. Specifically,
we are interested in how interacting with fixed neighbors
and the structure of different network topologies change the
quasistationary state compared to a well-mixed population. In
the next part, we will explore how clusters of similar types
of players (in our case having identical strategies and games)

oo (b)
® p,=0.0

g 0.5 ® p,=0.001
Q pr=0.01
¥ p=0.1
¢ p=1.0
WM

FIG. 5. Fraction of cooperators in the quasistationary state p., as
a function of py for (a) p, = 0.1 and (b) p, = 1 for different rewiring
values p, in a lattice along with well-mixed populations for compar-
ison. Simulations are for populations of N = 2500 individuals and
ps = 1 averaged over 64 runs.

can emerge and how the targeted placement of cooperators on
heterogeneous networks can amplify prosocial behavior.

1. Effect of network structures

We start by examining coevolutionary dynamics on 2D
lattices, a topology that was first investigated in the context
of evolutionary games by Nowak and May [4], as these struc-
tures can be easily represented as players on top of a surface,
allowing us to easily visualize and investigate how spatial cor-
relations affect the emergence of collective behavior [31,56—
59]. Initially proposed by Watts and Strogatz [60], the link-
rewiring mechanism systematically alters network structure
going from a well-ordered periodic structure (lattice) to a
disordered random structure displaying the so-called “small-
world” phenomenon, where all agents in the system are at
most few steps far apart from one another. By using a variation
of the Watts-Strogatz model where we tune the probability of
rewiring the edges p, in such a way that the degree of each
node remains fixed, we change the local (clustering) as well
as the global (shortest path length) structural properties, thus
breaking the locally homogeneous patterns inherent to simple
lattices.

As we have shown previously, cooperators’ density in
the quasistationary state is highly correlated to the surviving
game. Hence, from now on we only show the fraction of
cooperators in the quasistationary state, pg, since the trend for
the fraction of surviving cooperative games is practically the
same. Figure 5 shows the the fraction of cooperators in the
steady state p., for various values of p, and two values of
Dg- We also report the results for well-mixed populations for
comparison.

For the smallest value of p, [Fig. 5(a)], well-mixed
populations showcase a sigmoidal curve with the onset of
cooperation around py =~ 0.4. However, for rewired lattices,
Poo 18 consistently higher than that of well-mixed populations
when we start from a minority of initial cooperators. In par-
ticular, we notice that for very small values of p, we always
get a full cooperative state independent of the initial density
of cooperators. Interestingly for intermediate values of p,,
we can get a majority of cooperators with around 20% or
fewer players starting as cooperators. However, the difference
between random regular networks (p, = 1) and well-mixed
populations is quite large, pointing to other possible mech-
anisms for the enhancement of prosocial behavior beyond
lattice rewiring.
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FIG. 6. Surviving games on 2D square lattices for initial condi-
tions with clustered or random games and py = 0.2. Initial snapshot
of (a) randomly allocated games and (c) clustered games on a lattice
of size 50 x 50. (b), (d) The fraction of players adopting a particular
game type averaged over 64 runs in lattices. The text denotes the
density of cooperators. Here, p, = p, = 1.

The former picture changes dramatically when game selec-
tion is fully activated, p, = 1, as shown in Fig. 5(b). Different
from the previous case, when p, =1 random regular net-
works (p, = 1) exhibit a very similar trend to well-mixed
populations. However, rewired lattices (intermediate values
of p,) even though sustain cooperation better than random
regular networks in this case, are far from their performance
as boosters of cooperation as for p, = 0.1.

In summary, the former results indicate that networks
boost prosocial behavior, elevating the cooperation level in
the population. Interestingly, smaller but nonzero values of p,
increase the cooperative behavior to a greater extent in locally
ordered homogeneous structures (lattices) than in the case
of large p, values. These results point to a balance between
the propensity of changing game and the heterogeneity of
interaction patterns.

2. Clustering games on a 2D lattice

In the next two subsections, we focus on analyzing the
structural organization of agents on the interaction backbone
provided by the graph, to gain a deeper understanding of
the role of the interaction structure in coevolutionary game
dynamics.

Figure 6 depicts the initial snapshots of a 2D lattice when,
initially, individual games are randomly placed [Fig. 6(a)], or
clustered [Fig. 6(c)], such that the number of neighbors having
the same game type as of a given node is significantly higher.
Since we consider square lattices with periodic boundary con-
ditions, all players are structurally equivalent and there are
no boundary effects. In both cases, 20% of the players are
initially cooperators, located randomly on the lattice.

We quantify the quasistationary state distribution of games
by defining (®game) as the average fraction of sites occupied
by a given game. We calculate the average over 64 indepen-
dent runs and the error bars denote the standard error.

From Figs. 6(b) and 6(d) it becomes clear that SH games
prevail the majority of times. When games are randomly
placed, the Stag-hunt and the Harmony games dominate
the final configuration of the lattice. In this particular sce-
nario, Prisoner’s Dilemma (PD) games also survive. When
the games are initially clustered on the lattice, the small
fraction of PD games disappear, while the proportion of
the Stag-hunt games increases. The density of cooperators
is further increased when games are clustered. Notably, the
Snowdrift game always goes extinct, regardless of the initial
configuration.

In conclusion, clustering games on a lattice seems to
promote the prevalence of cooperative environments. More-
over, while cooperators’ density is generally higher on a
lattice compared to structures without spatial correlations,
game clustering further amplifies the selection of cooperation-
friendly environments. This behavior is important since it
further corroborates the effect of homophily in real-world
systems [61,62].

3. Targeted placement of cooperators

Multiple empirical investigations have revealed the pres-
ence of heterogeneous and power-law degree distributions
in social networks [63,64]. A heterogeneous degree distribu-
tion implies the presence of hubs, nodes with a particularly
high degree respect to the average degree of the network.
Such nodes with high degrees play a central role in the
dynamics taking place on the network by effectively dissem-
inating information, opinions, and behaviors throughout the
network [11,13]. Here, we explore the effect of the strategic
initial placement of a small fraction of cooperators (less than
or equal to 0.005 times the size of the population) on the
evolution of prosocial behavior. In particular, we consider
configurations with cooperators initially placed on the hubs
of the network. In addition, we investigate how changing the
level of degree-heterogeneity of the network affects the coevo-
lutionary dynamics of the system for the placement strategy
mentioned above.

Figures 7(a) p, =0.1 and 7(b) p, =1 show the effect
of strategically placing cooperators in power-law degree
distributed networks as a function of their heterogeneity, cap-
tured by the value of the exponent y of the power law.

For a small probability of game updating, p, = 0.1, placing
cooperators on the hubs ensures a very high level of cooper-
ation across all values of y [Fig. 7(a)]. For example, starting
with just three (0.1%) cooperators among 2500 players leads
to a final count of approximately 2000 cooperators (x80%).
When game updating is always active, p, = 1, and coopera-
tors are placed on the hubs, cooperation levels for a similar
initial cooperative mass decrease as the heterogeneity of the
graph reduces (increasing y), as illustrated in Fig. 7(b).

To gain more insight into the mechanisms for the prosocial
behavior, we plot the degree distribution P(k) for various
values of y in Fig. 7(c). We see that P(k) ~ k™7, since the
degree distribution follows a straight line in a log-log plot.
Note that the slope of the distribution quantifies the hetero-
geneity and it decreases with increasing values of y [64].
However, Fig. 7(d) illustrates the average degree of the initial
cooperators, (k(pp)), as a function of y. We observe that
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FIG. 7. Cooperation levels in scale-free networks for strategic
placements of cooperators. A small fraction of cooperators (0.001—
0.005 times the size of the population N = 2500) is initially placed
on the hubs for (a) p, = 0.1 and (b) p, = 1.0. (c) Degree distribution
of scale free graphs for various values of y in a log-log scale. (d) The
average degree of initial cooperators (k(pp)) as a function of y for
various values of p,. The blue dashed line shows the average degree
(k) of the networks.

(k(pp = 0.001)) ~ 150 for y = 2.5, but it drops to ~20 for
y =3.5.

To summarize, the collective behavior of surviving games
and strategies depends heavily on complex network features
such as small-world behavior, scale-free nature of the degree
distributions, and the presence of strategy-degree correlations.
In addition, increasing p, reinforces the effect of the degree
heterogeneity in determining if cooperation is enhanced or
diminished with respect to the strategic placement of initial
cooperators on the hubs of the network.

IV. CONCLUSIONS

In the past decades, evolutionary game theory has provided
valuable insights into understanding why agents choose coop-
eration despite personal incentives to defect. However, most
existing studies focus on the evolution of strategies for spe-
cific, globally defined, and static payoff matrices, disregarding
changing environments and game conditions. Although some
recent works have considered game heterogeneity through
stochastic formulations, a comprehensive framework explain-
ing the origin and emergence of these games and the dynamic
relationship between games and strategies has remained
elusive.

Our work contributes to bridging this gap by introducing
a coevolutionary framework where both strategies and games
coevolve and undergo evolutionary selection. We propose a
simple model for game competition with various types of
games ensuring an unbiased payoff distribution in all games.

By adjusting the propensity to change the game (p,) while
maintaining a fixed probability of changing strategies (py),
we discover fundamental changes in the system’s evolution in
well-mixed populations. In particular, even a small probability
of switching games leads to a bifurcation of the quasistation-
ary state, depending on the critical initial mass of cooperators.
Additionally, we observe that the system tends to select more
cooperative environments when there are enough initial co-
operators, and the games and strategies influence each other,
leading to a strong correlation between surviving games and
strategies.

Beyond well-mixed scenarios, we find that structured pop-
ulations enhance cooperation levels for small values of p,. In
particular, locally homogeneous graphs such as lattices lead
to a state with a majority of cooperators even with a low
initial mass of cooperators. However, this effect diminishes
with the increase in the game selection propensity p, and the
disruption of the regular lattice structure through a rewiring
process, which creates shortcuts. In the specific case of 2D lat-
tices, we also observed that clustering similar games promotes
cooperation and leads to the survival of cooperative games.

In the case of scale-free networks we have found that
the enhancement of cooperation decreases as the value of
Dg increases. The drastic difference in connection patterns of
high-degree nodes compared to the rest of the nodes reinforces
prosocial behavior.

In summary, our findings shed light on the complex
mechanisms shaping evolutionary processes and the interplay
between strategic decision-making and mutating environ-
ments that define choices. Our work contributes to exploring
the origins of social dilemmas prevalent in social settings. For
the future, considering additional features such as community
structure [65], time-varying [66], and higher-order interac-
tions [67] may offer further insights into coevolutionary
processes of strategies and games in real-world systems [68].
We hope that our work inspires more research on coevolution-
ary dynamics as an avenue to tackle the puzzle of cooperation.
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