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Integrate-and-fire model of disease transmission
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We create an epidemiological susceptible-infected-susceptible model of disease transmission using integrate-
and-fire nodes on a network, allowing memory of previous interactions and infections. Agents in the network
sum infectious matter from their nearest neighbors at every time step, until they exceed their infection threshold,
at which point they “fire” and become infected for as long as the recovery time. The model has memory of
previous interactions by tracking the amount of infectious matter carried by agents as well as just binary infected
or susceptible states, and the model has memory of previous infections by modeling immunity as increasing
the infection threshold after recovery. Creating a simulation of the model on networks with a power-law degree
distribution and homogeneous agent parameters, we find a single strain version of the model matches well with
the England COVID-19 case data, with a root-mean-squared error of 0.014%. A simulation of a multistrain
version of the model (where there is cross-strain immunity) matches well with the influenza strain A and strain B
case numbers in Canada, with a root-mean-squared error of 0.002% and 0.0012%, respectively, though due to the
coupling in the model, both strains peak in phase. Since the dynamics of the model successfully capture real-life
transmission dynamics, we test interventions to study their effect on case numbers, with both quarantining and
social gathering restrictions lowering the peak. Since the model has memory, the stricter the intervention, the
higher the secondary peak when the restriction is removed, showing that interventions change only the shape of

the curves and not the overall number infected in the population.
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I. INTRODUCTION

The importance of epidemiological modeling has been
rekindled following the SARS-CoV-2 (COVID-19) pan-
demic. Accurate models of epidemiological transmission
are powerful forecasting tools that mimic how diseases are
transmitted across populations and help to inform govern-
mental policies [1]. A simple epidemiological model is the
susceptible-infected-recovered (SIR) model, where the in-
fection transmission rate between susceptible and infected
individuals (agents), and the rate at which they recover, is
constant and uniform across the population. For a large pop-
ulation, we can assume meetings between agents are random
and equally likely, i.e., the population is “fully mixed,” which
allows differential equations to be solved for the number of
infected individuals over time [2]. However, these models do
not account for social structure. For example, agents are more
likely to come into contact with certain groups, such as family
members.

The social structure of a population can be modeled by
a network [3]. A network is a collection of nodes that are
connected to each other by edges. The nearest neighbors of
a node are the set of nodes that are connected to that node
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by exactly one edge. The number of edges a node has (i.e.,
the number of nearest neighbors) is called the degree of the
node. Utilized in epidemiological models, nodes represent
individuals, edges represent social connections, and the edges
become “occupied” if infection has been transmitted between
the two agents [4]. Weights can be assigned to the nodes
in spiking networks, such that if the threshold is exceeded,
secondary transmission can occur between individuals [5],
though this fails to integrate over multiple interactions over
time, i.e., there is no memory of previous interactions.

There are several variations of the SIR model. Modi-
fications include additional states [6,7], complex networks
[8-10], and the effects of memory [11-16]. In the SIR-re-
susceptible (SIRS) model, recovered agents lose immunity
at a given rate to return to being susceptible [6]. Once an
agent is immune to one strain of a virus, the transmission
rate for contracting other strains is given by the corresponding
entry in a cross-immunity matrix [7]. Due to the biological
competition exclusion principle, more infectious strains will
overcome weaker strains with time [17]. However, these mod-
els do not have memory of previous infections—a susceptible
individual who has never been infected is treated identically
to a susceptible individual who has been infected multiple
times. Studies of complex networks have included the effect
of network topology, such as degree and connectedness, on
the spread and extinction of a virus [9], and the movement
of random walkers on complex networks as a measure of
effective distance, linking diffusion with disease spreading
[8], and with independent random walkers modeling survival
and mortality [10].
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Memory is essential for modeling the spread of a disease,
especially over short timescales [18] and through expo-
sure history, perhaps involving multiple diseases, over all
timescales [19]. In the SIR model, memory effects can be
included in the dynamics of the individual susceptible, in-
fected, and recovered populations by convolution integrals
[11]. There are several other ways in which memory has been
included in epidemiological models, including the network on
which agents reside [12], past exposures to multiple sources
of infection [13], random immunity time after recovery [14],
and distributions of exposure and recovery times [15,16]. The
various approaches to the modeling of the spread of diseases
have been reviewed from several points of view [19-22].

The integrate-and-fire model is a neurological transmission
model first developed to capture the traversal of electrical
signals across neurons [23]. Incoming currents from neigh-
boring neurons are summed until the threshold is reached, at
which point the neuron fires and the signal is transmitted. The
neuron then becomes inactive, i.e., stops receiving signals,
for the length of time known as the refractory time, before
becoming active again. The activity of a population of neurons
can be defined by the number of spiking neurons over a time
interval divided by the time interval and the total number of
neurons [24].

Integrate-and-fire neurons have been used to model the
spread of social contagions on a scale-free online social
network [25], where the summation of current represents
receiving information from different sources, the firing thresh-
old represents the point where agents publish a message
online, and the refractory period where the agent is insensitive
to new information and is inactive. The parameters in the
simulated network were tuned to match empirical results from
Twitter for varying. internal and external input current sources
[25], highlighting the potential future predictive power of such
a model.

Here, we create a model of disease transmission which
uses (i) a network to model social structure, (ii) integrate-and-
fire nodes to sum infectious matter from neighbors to give
memory of previous interactions, and (iii) changing of the
infection threshold on recovery, so susceptible agents are no
longer identical and have memory of previous infections. This
better capture features observed in real-life case numbers,
such as secondary waves of infection. A more representative
model can be used to reliably test different interventions, such
as different levels of quarantines and gathering restrictions,
helping better inform policies and responses to epidemics.

The outline of our paper is as follows. We formulate our
model and investigate its parametrization using simulations
in Sec. II. The effectiveness of a single-strain version of
the model in capturing real-life dynamics is evaluated in
Sec. III. The model has memory of previous interactions by
tracking the amount of infectious matter carried by agents,
and memory of previous infections by modeling immunity
as increasing the infection threshold after recovery. Various
types of intervention are simulated in Sec. IV to evaluate
their effectiveness in reducing the spread of infection. Sec-
tion V extends the model to account for multiple strains. The
main conclusions of this paper are summarized in Sec. VI,
which includes directions for further work. The Supplemental
Material (SM) [26] contains the mathematical formulation of

TABLE I. Identification between the elements of a neurologi-
cal integrate-and-fire model and the agents in our epidemiological
model.

Integrate-and-fire Epidemiology

Amount of infectious matter
Infection threshold
Recovery time

Voltage
Spiking threshold
Refractory time

our model, the parameters that are used, the effect of varying
the parameters, and the corresponding plots.

II. THE MODEL

Social structure is an important factor governing how infec-
tions that transmit through close-contact interactions spread
through a society. Therefore, we use a network where nodes
are agents and unweighted edges between them are connec-
tions. Nodes follow a power-law degree distribution with an
exponent of 3, which replicates social networks observed in
nature [27]. Its scale-free nature [28] means that simulations
can be run on smaller system sizes, while retaining the social
structure observed in much larger populations. We consider
a fixed population size (i.e., no births or deaths) and, thus, a
fixed number of nodes within the network.

We use integrate-and-fire nodes, where we sum the amount
of infectious matter between agents instead of current [23].
The spiking threshold becomes the infection threshold, i.e.,
the amount of infectious matter required in the body of an
agent to be declared infected, and the refractory time (where
the neuron is inactive and stops receiving further inputs)
corresponds to the recovery time. These identifications are
summarized in Table I. Agents can be either susceptible or
infected.

A. Integrate

Each agent begins with a given amount of infectious mat-
ter: either zero or nonzero from random initial injection. At
every time step, all agents transmit their amount of infectious
matter to their nearest neighbors (without depleting their own
amount), dividing it equally among all their connections to
avoid bias on any neighbor. Transmissions are scaled inversely
proportional to the degree, as it is unreasonable for high
degree agents to transfer equally to all their connections, so
this indirectly takes into account spatial distances. The outgo-
ing infections from infected and susceptible agents also have
transmission probabilities, which is the fraction of infectious
matter that is transmitted, to take into account that not all
matter is transmitted.

The receiving agents, if in the susceptible state, add the
incoming infection to their current infection amount, such
that meeting someone carrying a higher amount of infec-
tious matter increases the amount in their body proportionally.
This gives agents memory of previous interactions. Infected
agents no longer sum infectious matter from their neighbors,
but still transmit, as they are now actively ill and no longer
need to contract more infectious matter. The amount of infec-
tious matter carried by infected and susceptible agents decays
exponentially with the respective characteristic time constants
to represent the body naturally fighting against the disease.
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TABLE II. The model parameters, their interpretation, and their effects on new cases over time deduced from simulations in the SM [26].

Parameter

Interpretation

Effect on new cases over time

Number of agents

Spiking threshold

Refractory time
Transmission rate

Threshold factor
Immunity decay constant

Infectious matter decay
constant

Initial percentage of
agents with infectious
matter

Percentage of threshold
initially injected into
given agents

Number of nodes,
population

Infection threshold

Recovery time

Fraction of infectious
matter transmitted from
agent at each time step

Immunity upon recovery

Natural loss of immunity
over time

Body fighting against
infection

Fraction of population
with initially nonzero
infectious matter

How close agents who are
injected with infectious
matter are to infection

All collapse onto same shape in plot of new cases as percentage
of total population. Power-law network is scale free [28], so
same transmission dynamics leads to same results.

Effect of changing the threshold is the same as infecting 100%
of the population with a given infectious matter amount.

Increasing refractory time increases the time between peaks.

Decreasing transmission rate of susceptible agents delays time
to first peak. Decreasing transmission rate of infected agents
increases time between peaks and decreases heights of all peaks.

Increasing this factor reduces the number of peaks, increases
time between peaks, and lowers heights of subsequent peaks.

Decreasing the time constant (i.e., stronger loss of immunity)
makes subsequent peaks occur sooner.

Decreasing the time constant delays time to first peak and
decreases the heights of peaks.

Increasing the percentage initially infected shifts peaks in cases
to earlier times.

Increasing the amount by which agents are infected shifts
peaks earlier and lowers heights of all peaks. The more total
infection in the system, the more substantially the peaks shift.

B. Fire

An agent becomes infected when the amount of infec-
tious matter exceeds their infection threshold, analogous to a
neuron “firing.” The time at which this happens is registered
as a new case. Agents remain in the infected state for as long
as the recovery time. Once recovered, the agent’s infection
amount is reset to zero to symbolize successfully having
fought off the virus, at which point they return to the sus-
ceptible state (and begin acquiring infectious matter again).
However, we assume the agent now has some immunity to the
infection, so we increase their infection threshold by a fixed
factor, called the immunity threshold factor, to represent how
more infection will be needed for them to become infected
again. This gives agents in the model memory of previous
infections.

This may mean that there is an unnaturally higher average
amount of infectious matter in the system, as previously in-
fected agents can withstand a much larger infection amount
and thus transmit their larger amount to their neighbors which
have lower thresholds. To counteract this, outgoing transmis-
sion is also scaled by an output factor, which is equal to
the reciprocal of the product of all of the threshold factor
increases so far for the given agent, i.e., the inverse to the
changes in threshold. To represent the loss of immunity over
time, the infection threshold exponentially decays with a char-
acteristic time constant, though not lower than the initial base
value.

C. Parameters

We simulate the model in PYTHON [29] to test and uncover
the features described here. We consider perturbations of each
parameter in a simple version of the model to discern their
effect on case numbers, summarized in Table II, with explana-
tions uncovering features of the dynamics of the model. The

base parameters that are used and the corresponding graphs
are listed in the SM [26]. Agent parameters are homogeneous,
with agents differing only by their degree and amount of initial
infectious matter.

D. Features of N = 2 observed for N > 2

Figure 1(a) shows the maximum number of new cases
following the base parameters in Table I of the SM [26],
against the infectious matter decay constant (Table II) with
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FIG. 1. (a) Average maximum number of new cases and (b) aver-
age time to first peak in new cases, both against the infectious matter
decay constant. Blue points indicate simulations in (a) and (b) using
parameters in Table I of the SM [26], with the error obtained by the
standard deviation from 100 runs. Where no error bar is indicated,
the circle is larger than the error. In (a), when the time constant is
less than 1/1n 2, there are no new cases. In (b), the blue dotted line
is obtained from theory from (5) of the SM [26], with I(0) adjusted
for 2500 agents (as in the simulation).
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parameter 7. We notice that despite the simulation having
2500 agents and immunity, it remarkably matches the analyt-
ical result obtained for the two-agent case in Sec. [ A in the
SM [26], where a clear cutoff is observed in the number of
cases for T < 1/1n2 (for initial conditions where no agent is
at the threshold). Since outgoing transmissions are scaled by
degree, the maximum possible transmission occurs in a two-
agent system, where all agents in the system have a minimum
number of connections (degree 1). Therefore, it follows that if
T < 1/1n 2 suppresses infection in the maximum transmission
case, it also suppresses transmission for larger populations.
Note that this is the only condition in the model that leads to
no epidemic. Otherwise, given enough time, the infection will
eventually spread through the network.

Figure 1(b) shows the time to first peak in new cases
against the infectious matter decay constant, for simulation
results obtained for 2500 agents, and the analytical result for
two agents from (5) of the SM [26] [adjusting the quantity 1(0)
for 2500 agents]. It is remarkable that the result derived for the
time to first infection in the system for two agents is consistent
with the time to first peak in new cases for larger system
sizes. This means the time to peak infection is independent
of system size, consistent with the network being scale free
[28], and with the results in Table II, where only the infectious
matter decay constant and initial conditions change the time to
the first peak. This also means that we can use the analytical
result in (5) from the SM [26] to calculate the time to peak new
cases for any system size, without having to use a simulation.

III. SINGLE STRAIN

A. Real-life data set

We study the spread of COVID-19 due to close-contact
human interactions, i.e., the main mode of transmission [30].
We use case data from England [31], where we take weekly
averages of the number of received positive test specimens
to account for fluctuations in individuals taking tests, thereby
alleviating the drop towards the end of the week. We consider
data from February 24, 2022 onwards, when legal restric-
tions officially ended [32], to see if the model can replicate
the natural spread of infection without human intervention.
During this period, only the Omicron variant of COVID-19
predominantly remained [31], allowing us to use a single-
strain version of the model.

B. Tuning the model

Since the exact distribution of infection throughout the
population is unknown at the time of ending restrictions, we
let the infection organically spread in the simulation by inject-
ing only a small amount of infectious matter into the initial
system. Using the studies of the effect of parameters on case
numbers from Table II, we manually test a range of informed
parameter choices to replicate features from the real-life data.
We start with the simplest combination of compulsory agent
parameters (infection threshold, recovery time; the transmis-
sion rates and threshold increase factor are set to unity, with no
decay in the model). We then vary the optional parameters that
cause the greatest perturbation to cases such that fewer param-
eter selections are required to represent real-life dynamics.

TABLE III. Model parameters used to match to COVID-19 data
in England. Agent parameters are the same for every agent in the
population.

Network parameters

Number of agents 2500

Power-law degree distribution exponent 3
Agent parameters

Infection threshold 100

Recovery time 3

Transmission rate 1

Infectious matter decay constant (infected agents) 6

Threshold factor (immunity) 1.6

Immunity decay constant 35
Initial conditions

Initial percentage of agents with infectious matter 5

Percentage of threshold initially injected into

given agents 0.01

Once results from a given set of parameters match well
with the data, we perform a grid search on each parameter to
choose a value which minimizes the root-mean-squared error
between the simulation and real-life data to justify the choice
of parameters (Table III).

Due to the scale-free nature of the network, we simulate
2500 agents as a balance between a large numbers of cases
(and thus smaller errors) and excessive computational time.
We choose a large infection threshold to reduce the computa-
tional rounding errors when summing infection amounts. We
averaged 100 runs of the simulation, to account for bias in
which nodes are initially chosen to be infected, as well as
errors from a finite-size, scale-free power-law network gen-
erated stochastically [28].

C. Results and discussion
1. New cases over time

Figure 2 shows that new cases over time from the simula-
tion match well with the England COVID-19 data [31], with a
root-mean-squared error of 0.014%, a remarkable result given
all agents in the model have the same parameters. The sec-
ondary and tertiary peaks are captured well in the simulation,
highlighting how the model has memory of previous interac-
tions and immunity, in contrast to existing epidemiological
models which peak only once.

The initial peak is wider for the England data than in the
simulation, as the effects of coming out of restrictions and thus
a weaker connected network may be delayed and hence the
wider peak. The fourth and fifth peaks are less well captured
in the simulation, which may be due to the simulation having
a fixed population and so may not capture the new cases
over time that arise due to a nonzero birth rate, as well as
no additional infectious matter arising from travel between
countries.

We also note that the fraction of new cases in the pop-
ulation for the simulation is approximately 100 times larger
than in England. This suggests that the spread of infection in
the model is much greater compared to real-life transmission,
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FIG. 2. Comparison of COVID-19 cases in England with new
cases from simulations as a percentage of the population. The popu-
lation of England is assumed to be constant at 56 490 048 [33]. The
simulation has 2500 agents, with parameters detailed in Table III.
The y axis has been shifted and the x axis scaled to match the England
case data. The black curve is the England COVID-19 data [31] and
the light-gray shading is the standard deviation from a seven-day
average of cases. The dark-gray shading highlights the period where
government restrictions were active in England, ending on February
24,2022 [32]. The blue curve shows the simulation results and blue
shading shows the standard deviation from 100 runs.

making measures, such as the number of times agents are re-
infected, unrepresentative of real-life dynamics, even though
the model captures general features observed in real-life trans-
mission when scaled.

2. Parameters

We scale the simulation time steps by 10.33 to align peaks
to the real-life data because time in the simulation is arbitrary.
Since agent parameters are homogeneous and independent of
the specific population structure of England (e.g., young or el-
derly, and individuals with different health conditions, which
differ only by their degree and amount of initial infectious
matter), the model parameters can be regarded as averages for
the entire population, as in Table IV. This can help inform
interventions (e.g., consider vaccinating individuals after 362
days when their natural immunity has decreased).

Biological studies of COVID-19 report recovery times be-
tween 5 and 30 days [34-38], with loss of immunity reported
as more uncertain, with protection against reinfection decreas-
ing by 1/e in 275 days if we assume exponential decay [39].
Our parameters fall close to this range, suggesting that the
model could be tuned and used in reverse as well by using
biological parameters to predict the resulting case numbers.

TABLE IV. Time parameters in the COVID-19 simulation after
being scaled to match England’s case data, using one time step equal
to 10.33 days.

Susceptible Infected
Recovery time 31.00 days
Infectious matter decay constant 62.00 days
Immunity decay constant 361.67 days 361.67 days
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FIG. 3. Semilogarithmic plot of time to first infection against
degree. Blue points are the mean and standard deviation from 100
simulation runs using parameters as in Table III. Dashed black line
shows a linear fit, with gradient of —1.5323 = 0.0005 and y intercept
of 21.104 £ 0.009.

3. Time to first infection

Figure 3 shows how the time to first infection of an agent
in the simulation varies with degree. The time to infection
decreases with degree, where the next to become infected are
those with smaller degrees. Note that there are bands of infec-
tion times for given sized groups of degrees, with each time
to infection band differing by 1 time step due to the discrete
definition of time in the model. The bands become less defined
for smaller degrees due to the finite-size power-law network.

Applying a linear regression fit on the semilogarithmic
plot, we obtain that for a node with a given degree k, the time
to first infection is approximately e>%%82k=%09% allowing us
to predict when agents with a given number of connections
will be infected once scaling the result by one time step equals
10.33 days. Recall that we can also calculate the time to first
peak in new cases using (5) from the SM [26], as discussed in
Sec. IIC.

High-degree nodes are infected first, which is consis-
tent with our expectations that well-connected individuals
may be infected sooner, illustrated further in a visualization
of the network [40] in Fig. 4 where they are among the
first to become infected, confirming that high-degree nodes
(i.e., well-connected individuals) are indeed propagators of
infection.

IV. INTERVENTIONS
A. Method

We test interventions on the England COVID-19 model
with the parameters from Table III, as they were shown to
capture the observed dynamics of transmission. We study the
effect on new cases over time after implementing interven-
tions after 16 time steps, to represent policies put into place
as a response to the spread of infection. We assume all agents
follow the interventions. Since our model has memory of both
previous interactions and immunity, we can also study the
effect of removing the intervention. All interventions end after
65 time steps, as it is unlikely that policies will be effective
indefinitely.
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(c)yr=17

FIG. 4. Snapshots of infection spreading through a network, over
time ¢, on simulations with COVID-19 parameters as in Table III.
Nodes (agents) are represented by circles, which are connected by
lines (edges). The size of the node is proportional to the degree of
the agent. Blue nodes are susceptible, and dark red nodes have just
been infected, fading to lighter shades of red as they progress through
the recovery time.

1. Quarantine intervention

When agents become infected, we isolate them imme-
diately. In the model, we change their transmission status
to inactive and perform transmissions only between active
nodes. This is, in effect, temporarily removing infected nodes
from the network, representing isolation from their social
connections. After the recovery time, the node becomes active
and susceptible again.

We can extend this level of quarantine to include isolating
the nearest neighbors of an agent for the same length of time,
to represent how, by using initiatives such as “test and trace”
[41], nations can track who have been in contact with infected
agents and instruct them to isolate as well. This is effectively
temporarily removing a cluster containing the infected agent
and their connections from the network. Both types of isola-
tion are shown in Fig. 5.

2. Gathering restrictions

We study the effect of restricting social gatherings by lim-
iting the number of individuals that can meet in a group, e.g.,
“rule of 6” restrictions that were observed in England [42].
This is implemented by limiting the number of nearest neigh-
bors an agent meets at every time step, ensuring the number
of interactions does not exceed the restricted value; otherwise,
we try the next-nearest neighbor in the list. We randomize the
order of looping through the list to avoid any bias in choosing

. . .
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FIG. 5. An extract of a network, where the circles are nodes
(agents) and the lines between them are edges (connections). The
darker the shade of red, the more infectious matter present in the
agent. (a) No intervention, (b) isolate infected, and (c) isolate in-
fected and their nearest neighbors.
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FIG. 6. An extract of a network, where circles are nodes (agents)
and connected by gray edges if made inactive by gathering restric-
tions. Letters are the order in which nodes are visited in the algorithm
to implement the restriction. Different orders result in different net-
work configurations. The numbers indicate the degree of the nodes.
(a) No intervention; (b) and (c) gathering restriction of 2, where
nodes are red if their degree has temporarily changed in the given
time step due to the restriction.

which agents meet (Fig. 6). Restrictions cause the network to
become more sparsely connected. Clusters of nodes may even
become disconnected from the network.

B. Results and discussion

Figure 7 shows new cases over time for each intervention.
The stronger the intervention, the lower the initial peak, with
the interventions flattening the curve for new cases. However,
as our model has memory of previous interactions and immu-
nity, the stronger the intervention, the higher the secondary
peak when the intervention is stopped, suggesting that the
intervention has delayed the time to herd immunity. Indeed,
the cumulative number of cases for each scenario reach the
same value (to within error), highlighting how interventions
change only the distribution of the occurrence of new cases.
We also note that social gathering restrictions delay the time
for new cases to peak, as more interactions are required to
transmit the infection around the sparser susceptible network.

V. MULTISTRAIN

A. Implementation

The single-strain model can be extended to multiple strains
by studying their interplay and competition in a popula-
tion. We consider two strains X (X = A,B), each with its
own parameters (i.e., infection thresholds, recovery times,
transmission rates, and decay constants). The strains transmit
independently of each other through the network, with agents
adding the transmitted infection for each strain separately.
However, when infectious matter exceeds the threshold for a
given strain, the agent stops receiving for both strains, repre-
senting how unlikely it is for an individual to simultaneously
become infected with both strains [43]. If the threshold for
both strains is exceeded at the same time, although rare [43],
we declare the node as infected with both strains (to avoid
bias), for the longer recovery time. On recovery, the amount
of infectious matter is reset to zero for both strains.

We introduce cross immunity, representing how individ-
uals gain immunity to other strains on recovery [44]. The
threshold increase factors are, in matrix form,

F, F,

F= ( - AB), (1)
Fpa  Fpp

where F;; is the infection threshold increase of strain j af-

ter being infected with strain i. For example, for an agent
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FIG. 7. New cases over time, averaged over 100 simulation runs, with various interventions in place with COVID-19 model parameters
(Table III). Black curves indicate no intervention; blue curves indicate interventions starting at time step 16 and ending at time step 65. Shaded
regions show standard deviation. (a) Case isolation and (b) case and nearest-neighbor isolation. Gatherings restricted to (c) no larger than 9,

(d) no larger 6, and (e) no larger than 3.

recovered from strain A, their strain A threshold increases
by a factor Fy4 and their strain B threshold by a factor Fjyp.
There is one epidemiological state of susceptibility, but now
two states for infection (with strain A or B), returning to the
susceptible state in different ways as their thresholds change
differently.

B. Influenza
1. Real-life data set
We compare our multistrain model against the Canada

influenza case data [45] since it spreads through close-contact
human interaction [46], and there are two strains, with strain

A being more commonly found than strain B [47]. We track
positive influenza specimens received as new cases, and do not
consider data from 2020 onwards due to the COVID-19 pan-
demic and government restrictions affecting case numbers.

2. Tuning the model

We begin tuning the simulation parameters by keeping
parameters for both strains the same so we can use the results
from the studies in Sec. IIC. The only agent parameter we
vary between the strains is the transmission rate, with strain A
being more contagious and having a longer recovery time. We
choose a symmetric matrix for the threshold increase factor
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TABLE V. Model parameters used to match influenza strain-A
and strain-B data in Canada. Agent parameters are the same for every
agent in the population, and the transmission rate and infectious
matter decay constant are the same for both susceptible and infected
agents.

Network parameters

Number of agents 2500
Power-law degree distribution exponent 3
Agent parameters Strain A Strain B
Infection threshold 100 100
Recovery time 40 20
Transmission rate 1 0.965
Infectious matter decay constant 4 4
Threshold factor (immunity) <§ g)
Immunity decay constant 52 52
Initial conditions Strain A Strain B
Initial percentage of agents with 0.5 0.5
infectious matter
Percentage of threshold initially injected 1 10

into given agents

for simplicity. We initially inject more of strain B into the
system to test if the model dynamics correctly lead to strain
A overtaking to become the dominant strain. We also remove
the output factor (which previously scaled with immunity) to
introduce periodic peaking in the model and to encapsulate
the fast-mutating strain A and strain B subtypes (leading to
typical annual infection rounds) [48].

After visually comparing the shape of simulation results
to real-life data, followed by a refinement with a grid search
and by minimizing the root-mean-squared error, the resulting
model parameters are listed in Table V. We scale the simula-
tion time steps by 10.60 to align to the real-life data. Note that
the recovery time is much larger than the 3—7 days expected in
real life [49]. In this case, the infectious matter decay constant
is much less than the recovery time. Thus, the agent will have
infectious matter close to zero, analogous to “recovering,” but
will not receive infectious matter due to still being in the
“infected” state. This allows us to reinterpret the recovery time
to include the time the agent can no longer get reinfected and
become susceptible again.

3. Results and discussion

Figure 8 compares the number of cases over time observed
in Canada with simulations, which well capture the alteration
between strains, with a root-mean-squared error of 0.002%
and 0.0012% for strain A and B, respectively. We did not take
weekly averages of cases as no dip in the received specimens
was seen towards the end of the week. There is no error shown
in the simulation results, as the extract of simulation results
matching the real-life data set changes each simulation run,
highlighting the sensitivity of the multistrain model to which
nodes are randomly initially injected with infectious matter.
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FIG. 8. (a) Canada influenza data [45], for strain A (black) and
strain B (gray). (b) Blue curve is simulation results using the parame-
ters in Table V, against Canada’s strain A case data in the black curve
in the top graph, and strain B in the gray curve in the bottom graph.
There is no error since this is an extract of one run lined up to match
the real-life data.

However, the width of the peaks in the simulation is
narrower than observed in Canada. This suggests that the
simulation network is more strongly connected than in real
life, so the infection spreads faster. This is consistent with
Sec. IV, where we saw sparser networks due to gathering
restrictions widening peaks in new cases. Furthermore, the
population by region in Canada varies drastically [50] and
has a much lower population density compared to England
that previously matched well (~4 people per square kilometer
[51] vs ~400 people per square kilometer [52]), so a different
power-law degree distribution exponent may be required, or a
different network may be more suitable to capture the scale of
transmission, for example, a random-partition graph.

Second, there is an offset observed in the real-life data,
with strain B peaking after strain A, though in the model they
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FIG. 9. Ratio of infectious matter to threshold over time for a
cluster containing a randomly selected node (black curve) and its
nearest neighbors (red, blue, and green curves). A node is infected
when the value exceeds unity.

peak at the same time. We suspect this is due to both of the
strains following the same dynamics. We saw in Sec. III C that
the first to become infected and thus the main propagators of
infection are high-degree nodes. Since both strains spread in
the same way and reach the high-degree nodes in the same
way, the two strains that are peaking may become synchro-
nized. Furthermore, since an agent stops receiving infectious
matter for both strains when infected with one, and the infec-
tious matter is reset to zero for both on recovery, unwanted
coupling between the two strains may have been introduced.
To alleviate this, the multistrain dynamics could be adjusted
such that on recovery, a given fraction of the infectious matter
from the other strain remains.

We zoom into a randomly selected agent, plotting the ratio
of infectious matter to threshold of that agent (to normalize
it to account for the changing threshold due to immunity)
over time, alongside its nearest neighbors, in Fig. 9. The rise
and fall for both strains look similar since the dynamics of
transmission are the same, though with the slope of strain A
appearing steeper, illustrating the faster accretion of infectious
matter due to the higher transmission rate. However, we note
that the randomly selected node always becomes infected first
for strain A in relation to its nearest neighbors, illustrating that
itis a driver of infection within this cluster and such drivers of
infection exist throughout the network.

We average the ratio of infectious matter to threshold over
all agents in the system for each time step, as shown in Fig. 10.
We note that this is the quantity I(¢) in (3) of the SM [26]
(adjusted for our system size). This can be reinterpreted as
the probability that a randomly selected node is infected at a
given time. Nodes, on average, are initially more likely to be
infected with strain B due to more of this strain in the system
initially, but strain A quickly dominates, with the probability
of being infected with strain A always higher than with strain
B, consistent with strain A being more commonly found in
real life [47]. We again notice the synchronicity in peaking for
both strains, suggesting that injecting strain A into the system
after strain B has already peaked may help introduce the offset
observed in real life.
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FIG. 10. Amount of infectious matter over threshold, averaged
over all the agents in the population, over time. There is initially
more of strain B in the system, but strain A quickly dominates. There
is no error since it corresponds to a single simulation run. Strain A is
indicated by the blue curve; strain B by the red curve.

VI. CONCLUSION AND FURTHER WORK

We have created a model of disease transmission on a
network with integrate-and-fire nodes, giving memory of pre-
vious interactions and infections. We have demonstrated its
feasibility in terms of accurately modeling disease trans-
mission of COVID-19 in England and multiple strains of
influenza in Canada, capturing the secondary peaks in new
cases compared to existing models, and allowing interventions
to be tested to inform policymaking.

Agents in a power-law network sum infectious matter from
their nearest neighbors (social connections) at every time step
until they exceed their infection threshold, at which point they
become infected for as long as the recovery time. Immunity is
modeled by increasing their infection threshold on recovery.
Studying the dynamics of the model with a simulation reveals
the effect of each parameter on case numbers, with there being
no new cases when the infectious matter decay constant is
less than 1/1In2. The time to first peak in new cases for any
system size is the same as the analytical expression for time
to first infection for two agents. Visualizations further reveal
that agents with a higher number of connections are the main
drivers of infection.

We found the single-strain version of the model to match
well with the dynamics of real-life disease transmission when
compared against COVID-19 case numbers in England, giv-
ing a root-mean-squared error of 0.014%. Extending the
model to multiple strains by introducing cross immunity, we
show the model can replicate features of the spread of in-
fluenza in Canada to a root-mean-squared error of 0.002%
and 0.0012% for strain A and B, respectively. These are
remarkable results, given the model has homogeneous agent
parameters, with distributions of agent parameters (e.g., re-
covery time) not required to match to the specific population
and demographic structure of the country. Further investi-
gation is required into removing the synchronicity seen in
the peaking of multiple strains (which is not observed in
nature) by performing a full study of the effect of each
model parameter in the multistrain version, as conducted with
the single-strain version. Finally, we find quarantining and
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social-gathering restrictions to lower peaks in new cases in the
model. Importantly, we find that the stricter the intervention,
the larger the secondary wave of peaks when the intervention
is removed due to the model having memory.

Further work includes adding an intermediate stage to
the susceptible-infected-susceptible integrate-and-fire model,
where infected agents can enter a hospitalization state with a
given probability. The hospitalization state can have different
parameters (e.g., longer recovery time) and can mean that we
can study the impact on hospital capacity. Furthermore, the
model can be extended for variable populations by introduc-
ing birth rates (by adding more nodes through preferential
attachment to the existing network) and death rates (by having
a probability for each state of removing the node from the
network). The model can also be extended to an open system,
where infectious matter is injected into the system not just

initially, but also at later time steps, to simulate the effects of
travel between countries.

We can also study the impact of vaccinations by randomly
selecting nodes to increase their threshold, instead of just
modeling natural immunity. Different vaccination strategies
can be investigated, e.g., randomly vaccinating some percent-
age of the population at each time step, selecting nodes with
a given degree or with less than a given number of previous
infections.

Our existing multistrain version of the model can be ex-
tended to any number of “strains” to study how different
infections interact in the same population. For example, an
agent infected with tuberculosis may increase their probabil-
ity of being infected with COVID-19 [53], implemented by
lowering their threshold. This will give memory of previous
health conditions in the model.
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