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Irreversibility in belief dynamics: Unraveling the link to cognitive effort
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The relationship between time irreversibility in neuronal dynamics and cognitive effort is a subject of growing
interest in the scientific literature. Although correlations between proxies of both concepts have been experimen-
tally observed, the underlying precise linkage between them remains elusive. Here we investigate the case of
learning in decision-making tasks; we do so by introducing a thermodynamically grounded metric—inspired
by Landauer’s principle—which connects time-irreversible information processing to energy consumption.
Equipped with this metric, we investigate the role of macroscopic time-reversal symmetry breaking in belief
dynamics for the case of an agent with finite sensitivity while performing a static two-armed bandit task—a
standard setup in cognitive neuroscience. To gain insights into the belief dynamics, we analogize it to the
dynamics of an active particle subject to state-dependent noise and living in a two-dimensional space. This map-
ping allows an analytical description of learning-induced biases. We deeply explore the case of Q-learning with
forgetting the nonchosen option. In this case, learning-induced risk aversion is formally equivalent to standard
thermophoresis, i.e., the net motion towards low-temperature regions. Finally, we quantify the irreversibility
of belief dynamics in the steady state for different bandit configurations, sensitivity levels, and exploitative
behavior. We found a strong correlation in high-sensitivity learning between heightened irreversibility in belief
dynamics and improved decision-making outcomes. Notably, as the task’s difficulty increases, a greater degree of
irreversibility in belief dynamics becomes necessary for having superior performances; this explicitly unravels a
plausible connection between time irreversibility and cognitive effort. In conclusion, our investigation reveals
that irreversibility in belief dynamics bridges out-of-equilibrium statistical physics concepts and cognitive
neuroscience. In decision-making contexts, this perspective offers insights into the notion of cognitive effort,
suggesting a potential mechanism driving the evolution of living systems toward out-of-equilibrium structures.
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I. INTRODUCTION

Decision-making is a fundamental cognitive process [1,2],
ubiquitous across the spectrum of living systems since
they necessitate a delicate balance between exploring new
opportunities and exploiting existing knowledge to thrive.
Importantly, exploitative behaviors might give rise to time
irreversibility. For instance, an irreversible action significantly
limits future choices for an extended period [3].

A compelling correlation between established proxies of
cognitive effort and time irreversibility in fMRI and MEG
human-brain data across various tasks and conditions [4–9]
has been discovered. In particular, for the first time, in
Ref. [5], researchers estimated model-dependent irreversibil-
ity in fMRI brain data, hinting at it as a signature of
consciousness states. However, the rationale behind their
model-dependent estimates remained unexplained, prompt-
ing our discussion. Our work aims to show that starting
from well-known learning models, it is possible to construct
micro-founded irreversibility metrics in decision-making
scenarios to explain the observed time irreversibility in
fMRI data.

We delve into the realm of time irreversibility in belief
dynamics [10] inspired by recent advancements in the neu-
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ral underpinnings of. decision-making [11], particularly the
brain’s retention of option-specific values [12,13]. We aim to
elucidate the intrinsic computational cost of decision-making
systems, which has garnered increasing attention from the
out-of-equilibrium physics community [14].

To distinguish time irreversibility in action dynamics and
the one in belief dynamics, consider a scenario where an indi-
vidual allocates limited resources between two options, A and
B. Unbeknownst to the individual, both options offer unknown
but statistically equivalent rewards. An initial preference for
A over B paves the way for exploitation. Depending on the
exploitation intensity, belief dynamics might demonstrate a
cycle of self-fulfilling prophecies: A bias towards option A
increases resource allocation, resulting in higher average re-
wards and reinforcing the initial bias. This cycle persists until
negative. fluctuations in the favored option shift preference
to the other. Over time, though belief dynamics are time
irreversible due to resource-limited exploitation, the resultant
resource allocation and acquired rewards could display time-
reversible dynamics. We will formalize this observation using
a stylized decision-making model.

The aforementioned self-fulfilling prophecy mechanism
plays a crucial role in various social contexts, encompassing
financial markets [15–17] and economics [18,19], informa-
tion dissemination in social media [20–23], the dynamics of
politicians and voters in election polls [24,25], up to war
engagements scenarios [26]. This highlights the importance
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of studying single-individual belief dynamics to understand
how collective behaviors emerge.

We take model-free reinforcement learning (RL) [27] as
the framework for our case study. This approach allows us
to capture how each option’s subjective values, or beliefs,
are independently assessed and adapted to novel opportuni-
ties without constructing an environmental model to optimize
actions toward specific goals. In model-free RL, algorithms
directly determine subjective value functions through environ-
mental interactions. One prominent algorithm in model-free
RL is Q-learning, which, in its fundamental form, updates
the subjective value of available options based on pre-
diction errors. This framework finds applications [28–31]
in neuroscience’s dopamine equals reward prediction error
(DA=RPE) hypothesis. According to this hypothesis, reward
expectations are stored in the corticobasal ganglia synapses
and are updated based on reward prediction errors through
synaptic plasticity induced by released dopamine. Notably,
this framework has become the standard also in cognitive
neuroscience: it is used there for modeling cognitive biases,
such as positivity or confirmation bias [32,33].

We investigate the influence of time irreversibility stem-
ming from Q-learning dynamics in belief space in a two-
armed bandit problem. To study macroscopic time-reversal
symmetry breaking, we derive a coarse-grained Q-learning
model formally indistinguishable from standard active particle
models, paving the way for applications of out-of-equilibrium
statistical physics tools. The coarse-grained description of
belief dynamics will also help draw analogies between phe-
nomena observed in two distant research fields, providing
analytical descriptions of phenomena previously discovered
numerically in theoretical cognitive neuroscience. Specifi-
cally, we can provide a generic way to link learning-induced
biases to thermophoretic phenomena.

Finally, we link time irreversibility in belief dynamics to
a thermodynamically sound concept of cognitive effort via
Landauer’s principle [34–36]: time-irreversible information
processing generates heat. We conclude the paper with a
numerical investigation of irreversibility in different decision-
making contexts, suggesting a close link with the concept of
cognitive effort.

This study offers three primary takeaways: (i) A
formal connection between emerging risk-aversion and
thermophoresis—the tendency of solute particles to migrate
towards cooler regions—in forgetting Q-learning; (ii) a con-
nection between time irreversibility of intertwined belief
dynamics and dissipated work; and (iii) we discern that, for
difficult tasks and high enough sensitivity, intermediate ex-
ploitative behavior aligns with peak irreversibility in belief
dynamics and a beneficial balance between exploration and
exploitation.

The following sections are structured as follows for the
reader’s ease: Section II first introduces two instances of
Q-learning applied to a two-arm bandit task; from these, we
construct effective models that focus on the slow dynamics
relevant to macroscopic time-reversal symmetry breaking. We
conclude this section by distinguishing different dynamical
regimes related to exploitation levels and bandit configura-
tions. Section III explains the notion of out-of-equilibrium
steady state and introduces the building blocks of the irre-

versibility metric, i.e., probability currents in belief space.
First, we discuss these objects using a spatially coarse-grained
description. Then, we introduce the valuable toolkit for inves-
tigating the coarse-grained Q-learning models in continuous
time and space. The analytical tractability of the latter de-
scription allows us to link learning-induced risk aversion to
thermophoresis. Section IV presents the irreversibility metric
and delves into the association with cognitive effort. This
section ends by sharing numerical findings related to irre-
versibility in different tasks. Section V concludes with a
discussion of the results and suggests potential avenues for
future research.

II. Q-LEARNING MODELS

First, we introduce two instances of Q-learning applied
to a two-armed bandit game scenario. Then we discuss how
to derive an effective description to quantify the degree of
macroscopic time-reversal symmetry breaking. We conclude
the discussion by highlighting qualitative differences between
macroscopic belief dynamics for various exploitation levels
and bandit configurations.

A. Microscopic description

Consider a two-armed bandit game scenario: At every (dis-
crete) time step t , a decision maker invests a single unit of
endowment in one between two “arms” of a slot machine,
denoted as A and B. at ∈ {1, 0} signifies whether or not the
subject invested at time step t on bandit A, while 1 − at does
so for bandit B. Accordingly, the rewards yielded by the arms
at each time step are RA

t at and RB
t (1 − at ), respectively. Both

RA
t and RB

t are drawn by time-independent Bernoulli distribu-
tions reflecting a stable environment. We indicate the mean
and standard deviation of RA

t respectively as 〈RA〉 and σ A,
with analogous notation for RB

t ; these pieces of information
are unknown to the decision maker.

To model the possibility of exploring suboptimal options
or exploiting existing knowledge, at is usually [33] assumed
to be a Bernoulli variable whose distribution solely depends
on the difference of beliefs at the current time step t , denoted
respectively as R̂A

t and R̂B
t . A convenient parametrization is

given by

P
(
at = 1|R̂A

t − R̂B
t

) = 1 + tanh
[
�

(
R̂A

t − R̂B
t

)]
2

, (1)

where � � 0 is the exploitation parameter: It dictates how
belief disparities affect investments. A positive exploitation
parameter � value enhances the inclination to invest in the
arm perceived as more lucrative. The standard soft-max for-
mulation can be recovered by setting � → �/2.

Let us present the Q-learning model [37,38] in a generic
way that encompasses two special cases:

R̂A
t+1 − R̂A

t = βat
(
RA

t − R̂A
t

) − β f (1 − at )R̂
A
t , (2a)

R̂B
t+1 − R̂B

t = β(1 − at )
(
RB

t − R̂B
t

) − β f at R̂
B
t . (2b)

The learning rates β > 0 and β f � 0 manage two different
facets: β regulates the agent’s sensitivity to new data via the
prediction error while β f represents the agent’s propensity to
forget the value associated with the nonchosen option. We
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FIG. 1. Graphical representation of the model. The investment
decision precedes the observation of the actual outcome.

will say that lower β corresponds to a higher sensitivity of
the decision maker.

A graphical description of the dynamics between time step
t and t + 1 is given in Fig. 1: The action taken by the agent
at time step t is a function only of the current beliefs. Then,
based on the obtained rewards, the agent updates his or her
beliefs with Eq. (2). Note that the updated beliefs depend only
on previous ones, i.e., the beliefs dynamics is Markovian. In
the following, we specialize the model above into two special
cases.

1. Standard Q-learning

This learning rule requires β f = 0, i.e., the decision-maker
remembers the value of the nonchosen option virtually for-
ever. The belief dynamics for � = 0 is at long times in the
neighborhood of their respective averages (see top left plot in
Fig. 2, where the case of symmetric arms is investigated). For

Standard 
Q-learning

Forgetting 
Q-learning

FIG. 2. Example of belief dynamics for standard (β f = 0) and
forgetting (β f = β) Q-learning models, respectively given by left
and right plots. β = 0.1. The two arms are symmetric and 〈RA〉 =
〈RB〉 = 0.5. The exploitation level is increasing from top to bottom.
Left plots are obtained with � = 0, � = 5, and � = 40, while right
plots are obtained with � = 0, � = 2.5, and � = 7.5. Initial condi-
tions are R̂A

0 = R̂B
0 = 0.5 for left plots and R̂A

0 = R̂B
0 = 0.25 for right

plots.

large exploitation parameter � and at long times the behavior
is different: One of the two beliefs, say, B, is pushed to the
lower boundary of the support of the belief distribution and
the other, say, A, is in the neighborhood of 〈R̂A〉, implying
that at = 1 for a long time (see the bottom left plot in Fig. 2).

2. Forgetting Q-learning

Forgetting Q-learning requires β f > 0. In the following,
we refer to the well-known case with β f = β, for simplicity;
in this case, the linear term in the right-hand side of the
equations above is time independent and equal to β for both
arms, i.e.,

R̂A
t+1 − R̂A

t = −βR̂A
t + βat R

A
t , (3a)

R̂B
t+1 − R̂B

t = −βR̂B
t + βat R

B
t . (3b)

Examples of belief dynamics are depicted on right plots
in Fig. 2 which show a certain degree of similarity to the
case without forgetting. We highlight two differences. First,
for � = 0 the belief dynamics oscillates around 〈RA〉/2 =
〈RB〉/2. This is because forgetting modifies the structure of
the subjective value, which is no longer given by the moving
average of prediction errors. Second, for large �s, one of the
two beliefs is pushed to zero.

There are two reasons behind the choice of a zero reference
for the forgetting term: The first one is that forgetting has been
suggested to be implemented as a decay of synaptic strengths
storing learned values in the context of the DA=RPE hypoth-
esis, and the second is that from a normative point of view for-
getting usually wants to model a notion of fast goal-reaching.
The more the reference point is smaller than the average return
of the bandit’s arms, the faster the decision-maker will decide
to invest consistently in one of the two arms. From a purely
qualitative point of view, one can see that the two dynamics
for large �s are consistent; this would not be the case if the
forgetting takes the value 0.5 as a reference, for instance.

In conclusion, by shifting the belief related to the non-
chosen option towards zero, the forgetting Q-learning model
effectively reduces the time needed to reach stationary dy-
namics concerning standard Q-learning. This is particularly
evident in the central plots of Fig. 2, where exploitation allows
us to distinguish more between the two options in the case
of forgetting Q-learning with respect to the case of standard
Q-learning.

Before proceeding, we would like the reader to recognize
that the mathematical structure of the forgetting Q-learning
model is simpler than that of the standard Q-learning model.
The reason is that the deterministic belief-dependent term in
the former dynamics resembles an elastic spring, whereas, in
the standard model, the spring is both belief and arm depen-
dent. While this complication does not qualitatively alter the
main results of the present paper, I decided to thoroughly an-
alyze the simpler forgetting Q-learning model quantitatively
and leave the detailed analysis of more complex learning rules
for future investigations.

B. Effective description at low frequencies

Now we derive an effective forgetting Q-learning model
to understand the belief dynamics behavior at a macroscopic
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FIG. 3. Coarse-graining procedure on forgetting Q-learning and
checks. Top left: Belief dynamics for β = 0.001 and � = 1.5.
Bottom left: Belief dynamics sampled every L = 100 steps, given
by Eq. (4). Bottom right: Coarse-grained dynamics at macroscopic
frequency, given by Eq. (7). Coarse-grained belief dynamics at mi-
croscopic frequency, given by Eq. (8).

level [4]; a completely analogous treatment can be made for
the more general model given by Eq. (2). This approach aligns
with the study of complex systems, where understanding how
microscopic patterns give rise to macroscopic behavior is a
central objective.

Consider the setup where the two arms A and B are very
similar; in this situation, it is difficult to distinguish them and
to play consistently on the most lucrative one. To do that,
one should average over many realizations, meaning that the
sensitivity to new information should be high, i.e., β � 1. In
this scenario, beliefs are slowly varying, and the description
provided by Eq. (2) [as well as Eq. (3)] can be simplified by
looking at the dynamics at a coarser timescale.

The starting point to obtain such a description is the micro-
scopic dynamics introduced in the previous section; in Fig. 3,
in the top left plot, we show the dynamics for β = 0.001 and
� = 1.5.

Then we define the following lagged temporal differences:

�LR̂A
t = R̂A

t+L − R̂A
t , (4a)

�LR̂B
t = R̂B

t+L − R̂B
t , (4b)

where L is greater than one but smaller than β−1; we choose
L = 100, and we plot the resulting time series in the bottom
left plot of Fig. 3, which displays less variability at high
frequency.

By injecting Eq. (3) in the equations above and rearranging
them, one obtains

�LR̂A
t = −β

L−1∑
l=0

R̂A
t+l + β

L−1∑
l=0

at+lR
A
t+l , (5a)

�LR̂B
t = −β

L−1∑
l=0

R̂B
t+l + β

L−1∑
l=0

(1 − at+l )R
B
t+l , (5b)

where the first terms in the right-hand sides of both equa-
tions above can be approximated by L times the arithmetic
mean of the beliefs over the window [t, t + L), which can be
approximated by R̂A

t and R̂B
t , respectively. The second terms

on the right-hand sides of the equations above can be simpli-
fied as follows. Let us focus on Eq. (5a). The product at RA

t is
a time-dependent Bernoulli variable with mean 〈at 〉〈RA〉 since
at and RA

t are independent. The summation of L Bernoulli
variables can be approximated for large L by a Gaussian
variable with mean and variance given by L times the asso-
ciated mean and variance of the Bernoulli variable under the
summation; therefore, this Gaussian random variable can be
written as L times ηA

t |L, where〈
ηA

t

〉 = 〈at 〉〈RA〉, (6a)〈(
ηA

t − 〈
ηA

t

〉)2〉∣∣
L = 〈at 〉〈RA〉(1 − 〈at 〉〈RA)/L. (6b)

Equation (5b) can be treated similarly, giving a Gaussian
variable ηB

t , with mean and variances obtained from the ones
above by the following modifications: 〈at 〉 → (1 − 〈at 〉) and
〈RA〉 → 〈RB〉. After these modifications are taken into ac-
count, we obtain the effective version of Eq. (5), given by

�LR̂A
t = −βLR̂A

t + βLηA
t

∣∣
L, (7a)

�LR̂B
t = −βLR̂B

t + βLηB
t

∣∣
L. (7b)

The resulting time series are shown in the bottom right plot
of Fig. 3.

Let us recap what we have obtained. We showed that the
coarse-grained description of the belief dynamics deviates
from the original one [Eq. (3)] in two respects. The first mod-
ification is that, in the coarse-grained description, rewards are
Gaussian variables instead of Bernoulli variables. The second
modification is that in the coarse-grained model, the noise
(the second term in the right-hand side of equations above)
is generally state dependent.

Interestingly, after these modifications are considered, the
slow learning dynamics makes predictions that align with
recent empirical findings. In particular, in passive learning
scenarios (� = 0), where the investment is split equally on
both arms (〈a〉 ∼ 1/2), the beliefs dynamics given by Eq. (7)
results in two independent first-order autoregressive (AR)
processes with additive Gaussian noises, which are time
reversible in the long run. Therefore, the coarse-grained de-
scription in passive learning scenarios aligns with the time
reversibility observed in Alzheimer’s Disease-related fMRI
brain dynamics [39]. Note that this is not the case in the
microscopic version of the model because Bernoulli rewards
and actions break the time-reversal symmetry of the related
autoregressive process [40].

1. Langevin equation

Finally, to return to the original microscopic timescale,
one can set L → 1 in Eq. (7). The resulting equations can be
formally rewritten as

dR̂A
t

dt
= −βR̂A

t + βηA
t , (8a)

dR̂B
t

dt
= −βR̂B

t + βηB
t , (8b)

where ηA
t has mean and variance given by Eq. (6) with L = 1

and similarly for ηB
t .
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To simulate the above systems of equations in a computer,
one relies on the so-called Euler method: Introducing a scale
h and pushing it to zero allows one to simulate effectively the

dynamics in continuous time. Accordingly, the set of equa-
tions above is implemented for simulations hereafter in the
following way:

R̂A
t+h − R̂A

t = −h
(
βR̂A

t + β〈at 〉〈RA〉) +
√

hβ
√

〈at 〉〈RA〉(1 − 〈at 〉〈RA〉)ξA
t , (9a)

R̂B
t+h − R̂B

t = −h
[
βR̂B

t + β〈(1 − 〈at 〉)〉〈RB〉] +
√

hβ
√

(1 − 〈at 〉)〈RB〉[1 − (1 − 〈at 〉)〈RB〉]ξB
t , (9b)

where ξA
t and ξB

t are two independent Gaussian variables with
zero mean and unit variance. h = 0.1 for the rest of the paper.
For instance, the top right plot shows the effective dynamics
related to the microscopic dynamics in the top left plot in
Fig. 3.

2. Simplified forgetting Q-learning model

In what follows, we will be interested in understanding
quantitatively whether there are net movements in the belief
dynamics at the steady states. These are a signature of the
time irreversibility of belief dynamics. To facilitate this task,

we will consider a simplified forgetting Q-learning model,
where we retain only one noise source, the one coming from
the stochastic rewards. The microscopic model is therefore
given by Eq. (3) with the substitution at → 〈at 〉: The role
played by at is taken by 〈at 〉 which can be considered as
a deterministic variable given the difference R̂A

t,L − R̂B
t,L, in-

stead of being the outcome of a Bernoulli distribution [see
Eq. (1)]. With this modification, we let at,L vary contin-
uously, incorporating a notion of confidence [41] in the
model.

Finally, after performing a time coarse-graining procedure
as in the previous section, the Euler method prescribes the
following discrete-time dynamics:

R̂A
t+h − R̂A

t = −h
(
βR̂A

t + β〈at 〉〈RA〉) +
√

hβ〈at 〉
√

〈RA〉(1 − 〈RA〉)ξA
t , (10a)

R̂B
t+h − R̂B

t = −h
[
βR̂B

t + β〈(1 − 〈at 〉)〉〈RB〉] +
√

hβ(1 − 〈at 〉)
√

〈RB〉(1 − 〈RB〉)ξB
t , (10b)

which deviates from Eq. (9) because of the variance of
the noise term; in particular, in the simplified forgetting
Q-learning model, as expected, the noise variance is always
lower. This will become convenient for determining net move-
ments at the steady states, i.e., irreversibility, in the belief
dynamics. The reason is that the determination of net move-
ments relies on a signal-to-noise ratio; extracting the signal
related to net movements of beliefs in the steady state will
be easier if we reduce the noise. Therefore, changes to the
forgetting Q-learning model are only quantitative, but the
behavior remains the same qualitatively.

To give empirical validity to the present model, experi-
ments must be performed in which the decision maker can
split the investment at each timestep between both arms in-
stead of being restricted to invest solely in one of the two arms
at each timestep.

C. Preliminary analysis

We summarize below the main properties of the coarse-
grained Q-learning models for different exploitation levels
and bandit configurations.

� = 0: The beliefs dynamics is passive because the agent’s
action is decoupled from his or her own beliefs. In particular,
in the modified forgetting Q-learning model, the agent will
always split the investment equally. Another way of formu-
lating this concept is by saying that in the case of passive
learning, there is no feedback between actions and beliefs.
Therefore, the coarse-grained dynamics of the beliefs are
completely decoupled, and they evolve in time as independent

Ornstein-Uhlenbeck processes, implying that, as we stressed
in Sec. II B, the coarse-grained belief dynamics is time re-
versible in the steady state [40].

� ∼ 1/〈RA〉, 1/〈RB〉: Investments influence the belief dy-
namics; this is because the difference in beliefs determines
them. Effectively, this is a state-dependent, i.e., multiplicative,
noise. This region is the most interesting for us; let us mention
here two reasons why: first, it is with a � in this region that
the decision-maker will gain the most on average in realistic
scenarios [32,33] in cases where 〈RA〉 ∼ 〈RB〉. Second, as we
will show later, in this region, the belief dynamics is time
irreversible even in the steady state.

� 	 1/〈RA〉, 1/〈RB〉: In this situation, the decision maker
plays initially in a consistent manner on one of the two arms,
leading the belief of the nonchosen option to go to the lower
boundary of the support of the belief distribution in the case
of standard Q-learning and to zero in the case of (modified)
forgetting Q-learning (see respectively the bottom left and
right panel of Fig. 2). Let us analyze the modified forgetting
Q-learning case in depth. Depending on the ratio between the
fluctuations of the chosen belief and the distance of the belief
from zero, the dynamics might or might not be stable. To be
more precise, let us define the following noise-to-signal ratio:

χA = σ A
max

gapA
max

=
√

β(1 − 〈RA〉)

〈RA〉 , (11)

where gapA
max is the maximum average distance between

the beliefs and the final equality is justified for the modi-
fied forgetting model, for which σ A

max =
√

βRA(1 − RA) and
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FIG. 4. Preliminary analysis of the modified forgetting Q-learning model. β = 0.25. Left: Sketch the belief dynamics’ phase space when
� 	 5/〈RA〉. Right: Steady-state probability distribution on coarse-grained state space P∗[R̂], represented by the blue or white background
color, and stationary probability currents among coarse-grained states J∗ shown by red or white arrows. The scale of the color bars is purely
qualitative. Symbols on the left refer to the combination of 〈RA〉, 〈RB〉 defined in the left plot.

gapA
max = 〈RA〉. Let us consider three different situations, de-

pending on the χA value and the analogous one for arm B. The
discussion will be made by identifying a tipping point where
χX = 1/3, for which Gaussian fluctuations do not allow the
belief to reach zero.

(i) Let us first consider the case χB � 1/3 but χA > 1/3.
In the steady state, the decision maker will invest consistently
in the optimal arm (χX is monotonously decreasing for 〈RX 〉).
This is because the beliefs dynamics with R̂B

t 	 R̂A
t is stable

while the reverse condition is not.
(ii) The situation where χA, χB � 1/3 allows either con-

ditions (R̂A
t 	 R̂B

t and the reverse one) to be stable in the
steady state, meaning that the decision-maker might be stuck
virtually forever on the less lucrative arm.

In these first two cases, the noise can be treated effectively
as an additive one in the steady state since the dynamics is
stable. This means that the dynamics is time reversible (given
by a single Ornstein-Uhlenbeck process, since the nonchosen
belief is frozen at zero).

(iii) Finally, when χA, χB > 1/3, even if for a certain
period one of the two arms is consistently chosen, the fluc-
tuations will inevitably allow the belief to approach zero,
disanchoring the—up to that point—nonchosen arm. In this
case, the noise cannot be treated as additive even in the limit
� → ∞. Therefore, the belief dynamics will always be cou-
pled if � �= 0.

These considerations are resumed in the left panel of Fig. 4.
There, we fix β = 0.25, and we let vary the ratios χA and χB

by moving 〈RA〉 and 〈RB〉 (only the lower triangle of the phase
space is shown, since the beliefs dynamics it’s symmetric be-
tween R̂A and R̂B). The threshold where χA, χB = 1/3 is used
to divide the phase space into three regions, which correspond

approximately to 〈RA〉, 〈RB〉 = 0.5; note that if one lowers
β, then the value of the corresponding threshold in 〈RA〉 and
〈RB〉 would diminish. In other words, increasing the sensitivity
allows the decision-maker to distinguish two similar options.
The region where χA, χB > 1/3 is given by the blue region,
where the average rewards of both bandits are low, while the
opposite red region refers to the case where χA, χB < 1/3 and
corresponds to the case where the average rewards of both
bandits are high. Finally, the “safe” region corresponds to the
case where one average reward is so greater than the other that
no fluctuation can destabilize the belief related to the most
lucrative arm in the long run. Below, we will analyze in depth
one example belonging to each of these regions, identified by
symbols (	,�,
) in the left plot of Fig. 4.

Alongside the visual inspection of the trajectories of
the beliefs, an object worth analyzing is the associated
probability density function (PDF) indicated as Pt = Pt [R̂t ]. A
spatially coarse-grained version of it is shown for the steady
state of the system for different �s in the right panel of Fig. 4
for the three bandit’s configuration given by 	,� and 
 high-
lighted in the left plot; note that in Fig. 4 and in the following
we will identify steady-state properties by the subscript ∗. One
observes the transition to bimodality of P∗ as � increases in
the 	 configuration; the bimodality is related to the emergence
of trapping states. Most importantly for the remainder of the
paper, for moderate � values, P∗ spans the two-dimensional
space maximally, while for large �s the beliefs dynamics is
mostly constrained onto a one-dimensional space. Note that
the bimodality is not present as � increases for the 
 config-
uration, given that here the optimal belief is stable, and the
agent can always recognize it and play consistently on it. On
the other hand, the � configuration shows that even for large
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�, the beliefs are always coupled (the visited belief space is
always connected).

The case of Q-learning without forgetting is more mathe-
matically subtle, given that there is no reference point in the
dynamics (as the zero of the forgetting Q-learning model). In
particular, this implies that the denominator in Eq. (11) is al-
ways of the order of the fluctuation themselves if 〈RA〉 ∼ 〈RB〉.
Given the already rich behavior of the dynamics of forgetting
Q-learning, we will not deal any longer with Q-learning with-
out forgetting in this paper, leaving a detailed analysis of it for
future research.

III. NONEQUILIBRIUM BELIEF DYNAMICS

This section introduces the concept of out-of-equilibrium
dynamics in the steady state, together with key metrics that
quantify the departure from equilibrium and, therefore, time-
reversible dynamics. First, we tackle the case where we divide
the continuous belief space into a finite-size grid because of its
high interpretability. Then, we will introduce the techniques
necessary to tackle the case with continuous state-space.

A. Coarse-grained space

To monitor net movements in the spatially coarse-grained
picture of the model one can compute the transition matrix
T [R̂i → R̂ j] from state R̂i to state R̂ j , where i, j ∈ {0, . . . , N},
N2 is the cardinality of the coarse-grained state space and
T [R̂i → R̂ j] represents the probability of going to the coarse-
grained state R̂ j starting from R̂i. From the transition matrix,
one can define the associated probability current as

Jt [R̂
i → R̂ j] = Pt [R̂i] T [R̂i → R̂ j] − Pt [R̂ j] T [R̂ j → R̂i].

(12)

Note that in doing this spatial coarse-graining, one loses in-
formation about the dynamics at smaller spatial scales.

A useful classification of the system’s dynamical state in
the steady state is contingent on the value of the probability
current:

J∗ = 0 : In equilibrium steady states (ESS) [42] there
are no probability currents. This indicates time-reversal
symmetry (TRS), i.e., in these states, there is a complete
absence of net movements in the system; this condition is
known in the physics literature as detailed balance. In the
dynamics of interest here, ESSs are observed in two distinct
regimes of the exploitation parameter: � = 0 and � large for
the regions where χA, χB � 1/3 or χB � 1/3 and χA > 1/3,
respectively given by the red and green regions in the left plot
of Fig. 4.

J∗ �= 0 : Nonequilibrium steady states (NESS) exhibit
probability currents. In systems with a compact state space,
these flows lead to net circulating movements in the belief
space, a clear signature of time-reversal symmetry breaking
(TRSB). This behavior is notably prevalent in the regime
� ∼ 1/〈RA〉, 1/〈RB〉 for the regions where χA, χB � 1/3, and
the one where χB � 1/3 and χA > 1/3 (red and green region
in the left plot of Fig. 2), and for all � �= 0 for the region where
χA, χB > 1/3 (blue region in the left plot of Fig. 4).

Probability currents among coarse-grained states are de-
picted on top of the plots on the right panel of Fig. 4.

As can be visually appreciated, the NESSs (center-center,
center-bottom, and right-bottom plots) are characterized by
a structure of probability currents similar to dipole currents
[43,44]; the rise and fall of self-fulfilling prophecies antic-
ipated in section I is now evident from these plots. Let us
now comment in detail on the case of forgetting Q-learning:
A small initial bias towards arm A with respect to the equi-
librium condition of passive learning leads to an increase in
the value of R̂A and a decrease of R̂B; eventually, R̂A

t reaches
the bottom right angle of the belief space and from there R̂A

will diminish; when R̂A ∼ R̂B two things can happen: The
initial bias is restored, and the cycle repeats itself, or there
is an inversion such that R̂B > R̂A. In this latter case, R̂t will
follow the cycle in the upper triangle of the plot, completely
analogous to the cycle in the lower triangle of the plot.

B. Continuous space

In the previous section, we estimated probability currents
between coarse-grained states. It is well known that estimating
the probability currents J on a spatially coarse-grained version
of the system’s state space provides only lower bound esti-
mates on these [45]. To properly estimate probability density
currents, and therefore—as we will see in Sec. IV—time irre-
versibility, in a continuous-state system, a useful framework
is given by Fokker-Planck equations; the reason for this is
related to a technical simplification: the Fokker-Planck equa-
tion associated with a stochastic process is the deterministic
dynamic equation for its PDF.

1. Fokker Planck equation

The coupled Langevin equations (8) articulate how beliefs
evolve in time due to drifts—or systematic tendencies—and
diffusions, which refer to random fluctuation; the former is
represented in our system by the forgetting term and the aver-
age noise-related contributions, while the latter relates to the
deviation from the mean of the noise term in our model. The
starting point to discuss Fokker Planck equation is the system
of Langevin equation given by Eq. (8), which can be rewritten
in a more compact form given by

dR̂t

dt
= Ft + ξt , with

〈
ξT

t ξt ′
〉 = 2Dtδt−t ′ , (13)

where Ft is the drift vector and Dt is the diffusion matrix,
both of which depend on the current belief R̂t . These mathe-
matical objects are defined for the case of modified forgetting
Q-learning in Appendix B.

The Fokker Planck equation describes the deterministic
dynamics of Pt = Pt (R̂) as

∂Pt

∂t
= −∇ · Jt , (14)

where the probability density current Jt is given by

Jt = Ft Pt − ∇(Dt Pt ). (15)

Jt represents here the local net flow of probability in the
beliefs space R̂; note that it is the continuous—in time
and space—analog of the probability current introduced in
Eq. (12).
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The detailed balance condition J = 0 in the Fokker-Planck
framework can be rewritten, leading to a condition that can
be easily checked analytically and deeper insights into the
fundamental causes of TRSB in NESSs. It can be rewritten
using the equation above:

∇ × F = 0, (16)

where the so-called thermodynamic force F is given by

F = D−1(F − ∇ · D). (17)

From direct computation of Eq. (16), one sees that the
detailed balance is broken as soon as � �= 0.

Therefore, the curl of the thermodynamic force plays the
role of the electric density current in magnetostatic, where it
induces the magnetic field. Here ∇ × F is the source of the
NESS [46,47]. A succinct way to rephrase the above intuition
is that NESSs are related to a topological symmetry breaking.

Since we cannot easily construct the steady-state distri-
bution due to the absence of detailed balance for � �= 0,
determining P∗(R̂) for generic � values remains a challenge.
In the following, we show how interesting insights can still be
garnered from the steady-state PDF of the beliefs difference
R̂A

t − R̂B
t .

2. Emergent risk aversion as thermophoresis

At first glance, using point estimates in the update equa-
tion for the beliefs given by Eq. (2) appear overly simplistic,
especially when considering its lack of direct reference to
well-documented human behavioral tendencies, such as risk
aversion. If everything else is equal, then risk-averse indi-
viduals demonstrate a preference for less variable options,
reducing the associated risk. However, early numerical anal-
ysis on related models revealed that using point estimates
in the update equation of the beliefs does not neglect these
tendencies; instead, risk aversion is an emerging property of
the beliefs dynamics [48] analyzed in this paper.

Here we show that the Fokker-Planck framework allows
us to derive this result explicitly for the case of forgetting
Q-learning. This is possible because the belief dependency
in the noise term is solely on the difference R̂A

t − R̂B
t [see

Eq. (1)], and the spring is elastic [see Eq. (3) and subsequent
related ones]. To show this explicitly, let us introduce the co-
ordinate transformation (R̂A

t , R̂B
t ) → (R̂A

t + R̂B
t , R̂A

t − R̂B
t ) and

similarly for the rewards (RA
t , RB

t ). Of particular interest is
the observation that the update equation for δR̂t = R̂A

t − R̂B
t in

the case of forgetting Q-learning remains independent of the
coordinate R̂A

t + R̂B
t , thus implying that the detailed balance

for δR̂ holds; note that this is not true in the low-frequency
regime of the standard model because of the extra-non-linear
couplings induced by the belief- and state-dependent spring.
The TRS of δR̂t in the steady state allows for an analysis
of the associated Fokker-Planck equation. In particular, the
thermodynamic force F̃ = F̃ [δR̂] is given by

F̃ ∼ 1

β

−2δR̂ + 〈δR〉 + 〈R〉 tanh[�δR̂]

σ 2
Aa2 + σ 2

B (1 − a)2
, (18)

where for conciseness, we have not reported the second term
(∇ · D/D) because it is of order zero in β and therefore
subleading in the regime β � 1. From the equation above it is

FIG. 5. Comparison of stationary PDF in modified forgetting
Q-learning computed from the analytical prediction (black solid
lines) with the one obtained from numerical simulations (colored
histograms). Left: Symmetric bandits: 〈RA〉 = 〈RB〉 = 0.5. Right:
Bandits with symmetric rewards and asymmetric variances: σ 2

A =
σ 2

B ∗ 0.7. The total simulation time is 104, and we retain only the
second half of the trajectories.

clear that for intermediate �s, the multiplicative noise implies
risk aversion: In fact, the denominator is smaller in the case of
δR̂ > 0 for σ 2

A < σ 2
B ; this implies a stronger thermodynamic

force towards region with δR̂ > 0, i.e., to belief states where
the agent invests mostly on the less variable arm A.

Interestingly, for the present discussion, the form of de-
tailed balance given by Eq. (16) is known as potential
condition [42]. The reason is apparent for the dynamics
of R̂A − R̂B

t we are discussing. In fact, one has P∗[δR̂] ∝
exp[

∫
F̃ ] = exp[−�̃], i.e., since F̃ is curl-free then the

thermodynamic potential �̃ can be constructed by a simple
integration of the thermodynamic force. P∗[δR̂] obtained from
simulations and the one predicted from the theoretical argu-
ment above are shown in Fig. 5. In particular, the right plot
shows visually the learning-induced risk aversion. In fact,
the more � increases, the more the body of the distribution
shifts in favor of the less-varying alternative. Notably, how
we recover emergent risk-aversion is exactly in line with how
standard thermophoresis—the particles’ tendency to move to
cooler regions in a solution with a nonvanishing temperature
gradient—arises in physical systems [44].

Let us remark here that it is possible to compute analyti-
cally not only P∗[δR̂] but also the steady state PDF related to
the average cumulated earned reward, represented by RA

t at +
RB

t (1 − at ). In fact, the earned reward at time t is governed
by the difference in beliefs [see Eq. (1)]. This leads to an
interesting insight, anticipated without proof in Sec. I: An
irreversible sequence of belief updates may—and do in the
present model—generate a time-reversible sequence of ac-
tions; furthermore, in the case of a stable environment like the
one of the present setup, also the sequence of earned rewards
is time reversible in the long run.

IV. TIME IRREVERSIBILITY IN BELIEFS DYNAMICS

This section is divided into two parts. First, we use
Landauer’s principle to define the irreversibility of belief dy-
namics, and then we argue using theoretical arguments that
it is optimized in the steady state. Finally, numerical anal-
ysis relates the time irreversibility in the steady state to the
exploration-exploitation trade-off in the coarse-grained modi-
fied forgetting Q-learning model.
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A. Irreversibility as a measure of cognitive effort

The fundamental discovery encapsulated in Landauer’s
principle is that the average work dissipated by an actual
machine to make the shift from R̂t to R̂t+1 is bounded from
below by the irreversibility rate � in units of kT , where k is
the Boltzmann constant and T is the temperature of the room
in which the system performing this operation is working. Be-
low we detail how this statement can be formally established.
This will lead naturally to the notion of irreversibility of belief
dynamics we use in this discussion.

The irreversibility rate � is defined as the Kullback-Leibler
divergence between the probability of observing a jump and
its time-reversed counterpart [49,50], i.e.,

�t = DKL[Pt [R̂t → R̂t+1]|Pt [R̂t+1 → R̂t ]], (19)

where DKL[P|Q] = ∫
x P(x) log P(x)/Q(x). This divergence is

appropriate for Markovian processes (like those we are con-
sidering in this work) [51]. Let us note that �t is non-negative
by construction and invariant under a homogeneous dilation
of the state space.

The irreversibility rate can be exactly computed in the
continuous-time limit for systems described by Langevin
equations like Eqs. (13) using path integrals techniques
[44,52]. One obtains

�t = 〈vt · Ft 〉, (20)

where vt = Jt/Pt is the net directed velocity of the beliefs in
the two-dimensional space R̂ and 〈·〉 stands for the average
over Pt . Therefore, � is the dissipated power from the ther-
modynamic force F in units of kT . Hence, we identify the
irreversibility rate �t with the fundamental cognitive effort
needed to perform a shift from R̂t to R̂t+1 on average across
all possible transitions.

Let us recover a previous result anticipated in Sec. III B 1,
related to the NESS being generated by ∇ × F . Given the
new quantity � we have introduced, �∗ �= 0 for � �= 0. This
result can be recovered as follows. In the steady state, the
velocity follows circulating lines (see the currents in Fig. 4
again and remember that vt = Jt/Pt ). One can calculate the
average over the whole state space in Eq. (20) as an av-
erage over these closed lines. The dissipated power by the
thermodynamic force on a closed loop is in general positive
in the steady state for � �= 0 because, by applying Stokes’s
theorem, the line integral receives a nonzero contribution from
the surface integral of ∇ × F .

Equation (20) gives another interesting insight: in the
steady state the velocity has to be aligned to the nonconser-
vative part of F since we know that �t is non-negative by
construction. Appendix A will prove that, in the steady state,
the velocity is maximally aligned with the nonconservative
thermodynamic force compatible with a minimal dissipation
along closed lines.

B. Numerical results

We now turn to analyzing the irreversibility rate � in
the steady state of the coarse-grained modified forgetting
Q-learning model.

First, we investigate whether � computed from the model-
dependent formula given by Eq. (20) is compatible with

FIG. 6. Comparison of model-dependent irreversibility metric
with model-independent estimations, for the case of modified for-
getting Q-learning. Left: Symmetric bandits. Center: Asymmetric
bandits in the variance of the rewards. Right: Asymmetric bandits
in the average rewards: 〈RA〉 = 0.51 and 〈RB〉 = 0.49. Displayed
metrics include (from top to bottom) average difference in beliefs,
average earned reward minus the one related to � = 0, and irre-
versibility rate. The red line in the central plot is related to the
theoretical value of this metric. The lower panel’s black, blue, and
green lines represent � calculated from Monte Carlo simulations,
a neural network, and a gradient boosting approach, respectively.
These estimators are based on the same set of trajectories. Initial con-
ditions for larger �s are given by the equilibrium belief distribution
obtained from the previous one. The total simulation time is 104, and
we retain only the second half of the trajectories.

available model-independent estimates. Later, we will inves-
tigate in deep the whole phase space sketched already in the
left panel of Fig. 4. Note that to avoid incurring a degenerate
diffusion matrix for large �s, we add a small exogenous noise
to the update equations (see Appendix B).

1. Consistency checks

We consider three different scenarios belonging to the case
χA, χB � 1 (red region in the left plot of Fig. 4): the case of
completely symmetric arms, the case with asymmetric vari-
ances (respectively shown already in the left and right plots of
Fig. 5), and finally the case of asymmetric average rewards.
For each scenario, three metrics are exhibited in Fig. 6 and
discussed below, from top to bottom. Before proceeding, let
us remark that to have a clear picture of steady states, we used
an iterative numerical scheme to choose the initial condition
of the simulations.

〈R̂A − R̂B〉path : Each point corresponds to the average dif-
ference in beliefs for fixed trajectory.

By looking at this metric, one can see that trapping states
emerge at high exploitation levels. Moreover, this metric
clearly shows the average fraction of time passed in a given
belief state.

�〈gain〉: Each point corresponds to the average earned
reward across the trajectories minus the one obtained with
passive learning (� = 0). The red line is obtained analyti-
cally starting from Eq. (18) (see the discussion at the end of
Sec. III B 2).
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FIG. 7. Analysis of irreversibility rate and average earned reward in the steady state of the modified forgetting Q-learning model, varying
the bandit’s configuration. From left to right, three key metrics are exhibited: the maximal irreversibility �max (divided by β), the excess
normalized gain for the � related to �max, and the one for � = 5/〈RB〉, the normalization being with respect to passive learning. Top and
bottom plots, respectively, refer to different β values. Initial conditions for the beliefs dynamics are uniformly distributed. The total simulation
time is 104, and we retain only the second half of the trajectories.

This metric reflects the agent’s average reward earned
[RA

t at + RB
t (1 − at )], thereby quantifying the system’s oper-

ational efficiency. Note that when the arms have different
average rewards (right plot), a high average earned reward is
obtained for moderate �s.

�: Each point corresponds to the average irreversibility
rate across the trajectories.

To compute the irreversibility rate numerically from Monte
Carlo simulations, we note that Eq. (20) after an integration by
parts, leads to [53]

�t = 〈(Ft − ∇ · Dt )
TD−1

t (Ft − ∇ · Dt )〉
− 〈∇ · (Ft − ∇ · Dt )〉, (21)

where Ft and Dt are derived explictely in Eq. (B2) and
Eq. (B3), respectively.

On top of the black line provided by Eq. (21), two ad-
ditional benchmarks calculated directly from Eq. (19) are
presented: The blue line is based on a recently proposed neural
network approach [54], while the green line is provided by
an algorithm [55] that maps the problem of calculating the
irreversibility rate onto a classification task [56], by leveraging
on gradient boosting techniques. Crucially, these additional
estimators do not need any information about the model ex-
cept the tacitly assumed Markovian property assumed in the
definition of the irreversibility rate given by Eq. (19). The
reason why the Monte Carlo estimator is consistently above
the others is related to the fact that no spatial coarse-graining

is applied in this case since full knowledge of the underlying
model is provided.

Let us now comment on these results. The irreversibility
rate � is null at both exploitation parameter extremities, in
sync with previous analyses done in this paper. However,
the numerical analysis revealed a noteworthy crest at me-
dian exploitation parameters; this indicates a belief dynamics
propitious to humans in asymmetric bandit scenarios, being
comfortably distant from bifurcation-prone zones, as one can
appreciate from the top panels depicting the average distance
in beliefs. A similar conclusion can be reached by looking
at the top and center plots in the asymmetric bandit scenar-
ios, where one can see that the exploitation level related to
the maximal irreversibility rate corresponds to a heightened
average earned reward and lowered average earned reward
variability, respectively.

2. Irreversibility across bandit configurations and sensitivity levels

In order to shed light on the dynamics across the whole
bandit’s configuration space, in Fig. 7, we show the results
of extensive simulations for � ∈ [0, 5/〈RB〉], for the cases
with β = 0.25 (top plots) and β = 0.1 (bottom plots). From
left to right we reported three metrics: the ratio between the
maximal irreversibility rate � and the learning rate β for
the given configuration of average rewards and varying �, the
normalized excessive gain when � is at its maximum, and
when � = 5/〈RB〉. We excluded the top half triangle since it is
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completely symmetric with respect to the diagonal. Moreover,
as we explained in Sec. II C, if χA, χB > 1/3 (bottom left
corner), then the beliefs dynamics never decouples. As a con-
sequence, the more � increases, the more the irreversibility
rate increases. We excluded this region from the one reported
in Fig. 7 for plot visibility reasons.

Interestingly, from the left plots, one can recognize that
lowering the difficulty of the task (i.e., increasing the dis-
tance between 〈RB〉 and 〈RA〉) lowers the associated maximum
irreversibility. From the comparison between the center and
right plots, one can conclude that the region with maximal
irreversibility is more beneficial than the one for larger �s.
The reason for this is that, as we explained earlier, for very
large �s the condition R̂A 	 R̂B and the reverse one are both
stable (i.e., the belief dynamics is nonergodic) and therefore
the chances to end up on the suboptimal arm increase. In
particular, one can compare the center plots with the sketch of
the phase space we draw purely from theoretical consideration
(see left panel in Fig. 4). Finally, the reason why we plotted
the ratio �/β is to have another consistency check: Due to
dimensional analysis considerations, if we let vary β for fixed
�s, then the irreversibility rate will scale as β if one does not
enter in the region where χA, χB > 1/3 (bottom left corner).

V. DISCUSSION

According to Landauer’s principle, we linked the ir-
reversibility rate associated with beliefs dynamics to a
thermodynamically consistent measure of cognitive effort in a
simple but paradigmatic setup: forgetting Q-learning dynam-
ics [37] in two-armed bandit tasks.

First, we provide a general mapping of the decision-
making model onto one with active particles, i.e., particles
able to spend energy to move. A side result is the formal
identification of learning-induced risk-aversion and standard
thermophoresis, providing an analytical description of this
phenomenon already known in the cognitive neuroscience
literature for the first time. The combination of theoretical and
numerical analysis has shown that intermediate exploitative
behavior produces maximum irreversibility in belief dynamics
for sufficiently high sensitivity levels. Moreover, this peak in
irreversibility aligns with a beneficial trade-off between ex-
ploration and exploitation. Despite increasing the sensitivity
might be useful in distinguishing similar bandit configura-
tions, it comes at an intrinsic penalty: it increases the chances
of being stuck on the suboptimal arm. Therefore, irreversibil-
ity acts as a thermometer for belief coupling. If beliefs are
coupled, then the decision maker oscillates stochastically be-
tween the two arms but spends more time playing on the best
option, if available. Moreover, extensive numerical analysis
allowed us to conclude that less irreversibility is required to
excel in the game if the task difficulty is reduced. This finding
fosters the link between irreversibility in belief dynamics and
a plausible proxy of cognitive effort. Interestingly, the higher
the sensitivity, the more crucial it becomes to search for the
exploitation parameter that maximizes the irreversibility rate
to achieve superior gains. Therefore, this stylized model sug-
gests a plausible evolutionary mechanism that underscores the
likelihood of biological entities being optimized to function in
maximally out-of-equilibrium states [57].

As mentioned in the main sections, we do not expect
our findings to be qualitatively modified in the case of stan-
dard Q-learning. However, analyzing belief dynamics with a
belief and arm-dependent spring requires extra care. Subse-
quent analysis will explore this and other interesting learning
rules, such as those affected by confirmation or positivity
bias. Interestingly, these latter models will yield more exotic
thermoporetic effects [33,58,59]: for instance, positivity bias
is known to lead to emergent risk-seeking behavior [32]
which, under the lens of the present paper, could be well
accounted for by negative thermophoresis-like dynamics.
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APPENDIX A: ANALYSIS OF LYAPUNOV FUNCTION

In order to have insights about how � is optimized as the
NESS is reached, it is useful to study a particular Lyapunov
function of the dynamics. A Lyapunov function is such that
its temporal derivative is always nonpositive, meaning that its
fixed point corresponds to the steady state of the dynamics.

Consider the function L given by

L = DKL[Pt |P∗]. (A1)

By following Sireci and Busiello [60], by taking the time
derivative of L and inserting the Fokker-Planck equation one
obtains:

dLt

dt
= −
t + 〈vtD−1v∗〉 (A2)

= −〈
(vt − v∗)D−1

t (vt − v∗)
〉
� 0, (A3)

where 
t = 〈vtD−1vt 〉 in the first equality is the so-called
entropy production in the stochastic thermodynamics litera-
ture [45,49,61,62]. The second equality can be established by
noting that [63] 〈vtD−1v∗〉 = 〈v∗D−1v∗〉. The final inequality
in Eq. (A3), trivially follows since the final term is quadratic
in vt − v∗ and D is semipositive definite by construction. This
proves that Lt is a Lyapunov function of the dynamics.

Let us make an important remark: 
t � 0 by definition
because it is quadratic in the thermodynamic velocities vt

and inversely proportional to the diffusion matrix, which is
semipositive definite by construction. In ESSs, 
 = 0 because
v = 0 by definition; therefore, 
 > 0, i.e., the case where
currents are present, is a clear marker of irreversible dynamics.

Following a similar reasoning, one can see that in Eq. (A2)
the negative time derivative of the Lyapunov function has been
written as the sum of a nonpositive and a non-negative term
(remember that 〈vD−1v∗〉 = 〈v∗D−1v∗〉), suggesting that in
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the vicinity of the steady state, the first is maximized and the
second is minimized.

Interestingly, the second term in Eq. (A2) can be rewritten
by simply using the identity v∗ = J∗/P∗ and the definition of
J given by Eq. (15). One obtains

〈vD−1v∗〉 = �t − 〈v · ∇ log[P∗]〉. (A4)

In the steady state, the second term in the right-hand side of
the equation above can be rewritten after a partial integration
as 〈∇ · v∗〉∗, where 〈·〉∗ indicates an average over the steady
state PDF P∗; this term has to be zero in a NESS with a com-
pact state space since the occupied state space in the steady
state is no longer contracting or expanding. Therefore, along
the dynamics, dLt/dt goes to zero by minimizing the entropy
production 
t = 〈vtD−1vt 〉 while maximizing the dissipation
of the thermodynamic force along the closed lines created in
the vicinity of the steady state by probability currents.

From Eq. (A2) evaluated in the steady state one obtains
the well-known result �∗ = 
∗, i.e., in the steady state the
irreversibility rate, also known as entropy flux, is equal to the
entropy production. The equation �∗ = 
∗ can be interpreted
as a form of energy conservation, echoing the interpretation
in physics. In fact, the entropy flux is the average dissipated
power in units of kT done by the thermodynamic force F , as
previously emphasized. On the other hand, 
 is analogous to
the kinetic energy of the active particle with velocity field vt

and mass D−1; this is tantamount to saying that the inertia of
the particle is lower in a noisier environment.

Let us recapitulate what we have obtained.
The main result of this section is that the combination

of Eq. (A2), (A3), and (A4) implies that the NESS is the
least dissipative state compatible with a velocity that is
maximally aligned with the nonconservative part of thermo-
dynamic force F , therefore suggesting an efficient (thermo-

dynamically speaking) information processing in the steady
state [44].

APPENDIX B: MODEL USED FOR SIMULATIONS

The model for which we are going to investigate quantita-
tively �∗ is given by:

dR̂A
t

dt
= −β

(
R̂A

t + at R
A
t + ηA

t

)
dR̂B

t

dt
= −β

[
R̂A

t + (1 − at )R
B
t + ηB

t

]
, (B1)

where we made one modification with respect to Eq. (8): We
added two small exogenous white noises, ηA

t and ηB
t , which

are needed in order to have a well-defined two-dimensional
diffusion matrix in the large-� region, where, in the absence
of such noises, it would become a singular matrix. I set the
variances of ηA

t and ηB
t so that var[ηA] = var(ηB) = σ 2

η �
σ 2

A , σ 2
B .

The derivation of the Fokker-Planck equation (see
Sec. III B) leads to:

Ft = β

[ −R̂A
t + at 〈RA〉

−R̂B
t + (1 − at )〈RB〉

]
(B2)

and

Dt = (β/2)2

[
σ 2

Aa2
t + σ 2

η , 0

0, σ 2
B (1 − at )2 + σ 2

η

]
. (B3)

These are the expressions of F and D we use to quantify the
irreversibility rate from Monte Carlo simulations by means of
Eq. (21) in Fig. 6.
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