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Exact solutions of the simplified March model for organizational learning
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March’s celebrated agent-based simulation model for organizational learning [J. G. March, Org. Sci. 2, 71
(1991)] has been extensively studied in recent decades. Yet the model has not been fully understood due to the
lack of analytical solutions of the model. We simplify the March model to take an analytical approach using
master equations. We then derive exact solutions for some of the simplest yet nontrivial cases, and perform
numerical estimation of master equations for more complicated cases. Both analytical and numerical results
are in good agreement with agent-based simulations. These results are also compared to those of the original
March model. Our approach enables us to rigorously understand the results of the simplified model as well as
the original model, to a large extent.
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I. INTRODUCTION

March introduced an agent-based simulation model for
organizational learning in his seminal paper in 1991 [1].
Since then, the original March model, its variants, and
other similar models have been extensively studied in recent
decades [2–15]. March’s model considers an external reality,
an organizational code (code hereafter), and individual mem-
bers of the organization. The code represents a set of norms,
rules, etc. that is updated using the knowledge of superior
individuals about the reality. Here superior individuals are
those who have more correct knowledge about the reality than
the code. On the other hand, all individuals also learn from
the code about the reality. By doing so, the organizational
knowledge about the reality is collected from individuals and
is disseminated to them at the same time. March studied the
effects of learning rates of individuals and of the code on their
achieved knowledge about the reality. In order to consider
more realistic situations, he took personnel turnover and en-
vironmental turbulence into account in his model to find that
there may exist an optimal turnover rate that maximizes the
achieved knowledge, depending on the learning rates.

We remark that the March model can be considered in the
framework of opinion dynamics in networks [16–24]. That
is, the code plays a hub node in a hub-and-spoke network,
while individuals are dangling nodes [25]. Nodes update their
opinions or beliefs according to their neighbors’ opinions
or beliefs, while the external reality plays an external field
or source affecting all nodes. Asymmetric positions of the
code and individuals in the network as well as partly directed
influence between them make the model comparable to some
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opinion dynamics models considering the hierarchical struc-
ture of individuals [26–28]. In this sense, the March model
can be seen as a hierarchical opinion dynamics model defined
in a hub-and-spoke network. Overall, it implies that various
analytical approaches developed for the opinion dynamics can
be applied to the March model.

The March model and its variants have provided insights
into management and business administration [8], but mostly
by means of computer simulations of models [14]. It is
probably because the computer simulation results are already
enough to draw meaningful conclusions in the mentioned
fields. However, in general, for a rigorous understanding of
models, the derivation of their exact, analytical solutions
is of the utmost importance. Analyzing the models at the
most fundamental level helps us to precisely understand the
mathematical structure of the dynamics. In our work, we
simplify March’s original model to explicitly write master
equations describing the dynamics of the model. Then we
derive exact solutions of the simplified model for some of
the simplest, yet nontrivial cases. Numerical estimation of
master equations is performed for the more complicated cases.
Both analytical and numerical results are shown to be in good
agreement with agent-based simulation results. Thus, our ap-
proach enables us to rigorously understand the results of not
only the simplified model, but also the original model, to a
large extent.

The paper is organized as follows. In Sec. II, we de-
scribe the original March model and our simplified version.
In Sec. III, analytical, numerical, and simulation results of the
simplified model are presented and compared to the results of
the original March model. Finally, we conclude our work in
Sec. IV.

II. MODELS

A. Original March model

As mentioned, the original model by March considers the
external reality, the code, and individual members of the or-
ganization [1]. We remark that in this subsection, we will use
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mathematical symbols originally used in the March paper, and
they are not supposed to be confused with symbols in the next
subsection and throughout the paper. The model is based on
the following assumptions:

(i) The reality is characterized in terms of an m-
dimensional vector, each element of which may have the value
of 1 or −1 with equal probabilities.

(ii) The code and n individuals in the organization have
beliefs about the reality. The belief is also represented by an
m-dimensional vector, each element of which may have the
value of 1, 0, or −1 with equal probabilities. These beliefs
may change over time.

(iii) At each time step, each individual may change ele-
ments of its belief that are different from those of the code
unless the code’s element is 0. Each of such elements of the
individual changes to that of the code with a probability p1,
independently of other elements.

(iv) At the same time, the code updates its belief based on
the beliefs of some individuals. For this, individuals whose
beliefs are closer to the reality than the code is to the reality
are identified, which is called a superior group. Then each
element of the code’s belief changes to the dominant element
within the superior group with a probability p2, independently
of other elements.

So far, the reality has been assumed to be fixed and the
individuals are not replaced by new ones. Thus, it is called a
closed system. March first considered a homogeneous popula-
tion in the closed system, in which all individuals are assigned
the identical learning probability. Then he considered the het-
erogeneous population in the closed system, such that some
individuals have higher learning probability than the others.
Finally, a homogeneous population in the open system is also
considered; in the open system, individuals may be replaced
by new ones (turnover) and/or the reality changes over time
(turbulence). The turnover probability is denoted by p3 and
the turbulence probability is by p4. That is, with a probability
p3, each individual is replaced by a new one having a random
belief vector at each time step. Also, each element of the
reality shifts to the other value, i.e., from 1 to −1 or from
−1 to 1, with a probability p4.

It should be noted that the description of the original March
model may not lead to a unique implementation for agent-
based simulations [14]. For example, it is not clear within a
time step whether the code learns from the superior individ-
uals before the individuals learn from the code, or after the
individuals learn from the code.

B. Simplified March model

Let us simplify the March model. As in the original model,
we consider an external reality, a code, and N agents, as
depicted in Fig. 1. At a time step t , the external reality, denoted
by a variable r(t ), can have a value of 0 or 1. Beliefs of the
code and agents about reality are respectively represented by
variables, namely, c(t ) ∈ {0, 1} for the code and σi(t ) ∈ {0, 1}
for the ith agent with i = 1, . . . , N . For a given initial condi-
tion of r(0), c(0), and {σi(0)}, each time step consists of four
stages as follows:

(i) Every agent of i ∈ {1, . . . , N} independently updates
their belief by learning from the code with a socialization

FIG. 1. Schematic diagram of the simplified March model that is
composed of the reality, the code, and N agents. Blue arrows with
probabilities p(i) for i = 1, . . . , N denote the socialization of agents
by learning from the code [Eq. (1)]. The red arrow with probability q
denotes the codification of the code by learning from superior agents
[Eq. (2)]. Agents can be replaced by new ones with probability u
(green arrow), while the reality can change over time with probability
v.

probability p(i) ∈ [0, 1]:

σi(t + 1) = c(t ). (1)

(ii) Each agent is replaced by a new agent with a turnover
probability u ∈ [0, 1], and the new agent is assigned a belief
randomly drawn from {0, 1}.

(iii) The code learns from agents who are superior to the
code. Here, superior agents indicate those whose beliefs are
closer to the reality than the code’s belief is. For example,
if r(t ) = 1, the code learns from superior agents only when
c(t ) = 0 and there is at least one agent with σi(t ) = 1. De-
noting a superior agent to the code by j, the code updates its
belief with a codification probability q ∈ [0, 1]:

c(t + 1) = σ j (t ) for j ∈ {i|δσi (t ),r(t ) > δc(t ),r(t )}, (2)

where δ·,· is a Kronecker delta.
(iv) With a turbulence probability v ∈ [0, 1], the reality

is assigned a new value randomly drawn from {0, 1}, which
closes the time step.

Since the reality, the code, and the agents update their
value or beliefs synchronously, the order of the four stages
does not affect the result, except for the socialization and
turnover of agents. Note that parameters {p(i)}, q, u, and v in
our simplified model correspond to p1, p2, p3, and p4 in the
original March model [1], respectively.

Our simplified model can be called a closed system if
u = v = 0; otherwise it is an open system. In the open system,
the reality can change over time (turbulence) and/or agents
can be replaced by new agents (turnover). In contrast, in the
closed system, the reality is assumed to have the fixed value
of 1 for the entire period of time, i.e., r(t ) = 1 for all t ,
without loss of generality, and there is no turnover of agents.
We also consider the case with homogeneous agents having
the same socialization probability and the case with heteroge-
neous agents having different socialization probabilities.

In the next section, we will study three cases of (i) homo-
geneous agents in a closed system, (ii) heterogeneous agents
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FIG. 2. (a) Transition structure between states of the system. Each state is denoted by (c, n), where c is the belief of the code and n is the
number of agents whose belief is 1. Each arrow indicates a transition from one state to another, while arrows from a state to itself are omitted
for better visualization. Note that both (0,0) and (1, N ) are absorbing states. (b) Analytic solutions of ρ(∞) in Eq. (15) (lines) with simulation
results (symbols) for the case with N = 40 and an initial condition that Pcn(0) = δc,0δn,1. (c) Numerical estimation of ρ(T ) using the master
equation in Eq. (7) (lines) for the case with N = 40 and an initial condition that Pcn(0) = 1

2 δn,N/2 for each c ∈ {0, 1}. Here, T is the first time
step satisfying |ρ(T ) − ρ(T − 1)| < 10−4. The corresponding simulation results are shown with symbols. In (b) and (c), each symbol was
averaged over 104 different runs. Standard errors are omitted as they are smaller than the symbols.

in a closed system, and (iii) homogeneous agents in an open
system, which are in the same order as in March’s original
paper, whereas the case with heterogeneous agents in an open
system is not considered in our work as in March’s original
paper [1].

III. RESULTS

A. Homogeneous learning in a closed system

We consider the homogeneous learning model in a closed
system. That is, r(t ) = 1 for all t , there is no turnover of
agents, and every agent has the same learning probability p,
i.e.,

p(i) = p for i = 1, . . . , N. (3)

The state of the system at each time step t can be summarized
in terms of the code’s belief c(t ) and the number of agents
whose belief matches the reality, which we denote by n(t ) ∈
{0, . . . , N}. Precisely, n(t ) is defined as

n(t ) ≡
N∑

i=1

δσi (t ),r(t ). (4)

In our case with r(t ) = 1, one simply has n(t ) = ∑
i σi(t ).

Then the expected density of agents with the belief matching
the reality is given by

ρ(t ) ≡
〈

n(t )

N

〉
, (5)

which can be interpreted as the expected belief of a randomly
chosen agent, or average individual knowledge [3].

Depending on the initial belief of the code, two scenarios
are possible. First, if c(0) = 1, the code does not change its
belief because it already coincides with the reality, and the
agents’ beliefs will eventually converge to the value of 1 by
Eq. (1). It implies an absorbing state that the code and all
agents share the same value as the reality, which is denoted by
(c, n) = (1, N ). Second, if c(0) = 0, n(t ) will decrease until
the code’s belief changes to 1 by Eq. (2) as long as there is
at least one agent with belief of 1. Once the code’s belief
becomes 1, n(t ) will increase to reach the absorbing state
(c, n) = (1, N ). However, this is not always the case; n(t ) may

reach 0 before c(t ) changes to 1, implying that both the code
and agents have the belief of 0 without further dynamics. This
indicates another absorbing state (c, n) = (0, 0). Figure 2(a)
shows the transition structure between states with two absorb-
ing states emphasized in red.

For the analysis, let us denote by Pcn(t ) the probability that
at time step t , the code’s belief is c and there are exactly n
agents with belief of 1. These probabilities satisfy the normal-
ization condition as

1∑
c=0

N∑
n=0

Pcn(t ) = 1. (6)

They evolve according to the following master equation in
discrete time:

Pcn(t + 1) =
∑
c′n′

Wc′n′→cnPc′n′ (t ), (7)

where the transition probabilities read (see the Appendix)

W00→cn = δ0,cδ0,n,

W0n′( �=0)→0n =
{(n′

n

)
pn′−n p̄nq̄ if n′ � n

0 if n′ < n,

W0n′( �=0)→1n =
{(n′

n

)
pn′−n p̄nq if n′ � n

0 if n′ < n,

W1n′→0n = 0 ∀n′, n,

W1n′→1n =
{(N−n′

N−n

)
pn−n′

p̄N−n if n′ � n

0 if n′ > n.
(8)

Here we have used p̄ ≡ 1 − p and q̄ ≡ 1 − q. Calculating
Eq. (7) recursively with any initial condition {Pcn(0)}, one can,
in principle, obtain Pcn(t ) for any c, n, and t , and hence ρ(t )
in Eq. (5), i.e.,

ρ(t ) = 1

N

1∑
c=0

N∑
n=0

nPcn(t ). (9)

We focus on steady states of the model. It is obvi-
ous that all initial probabilities eventually end up with two
absorbing states, i.e., (c, n) = (0, 0) and (1, N ), implying
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P00(∞) + P1N (∞) = 1. Thus, the average individual knowl-
edge in Eq. (9) reads

ρ(∞) = P1N (∞) = 1 − P00(∞). (10)

As the simplest yet nontrivial case, let us consider an ini-
tial condition that Pcn(0) = δc,0δn,1, namely, P01(0) = 1 and
Pcn(0) = 0 for all other states (c, n) �= (0, 1). Using

W01→01 = p̄q̄ ≡ α (11)

and

W01→00 = pq̄ ≡ β, (12)

the master equations for P01 and P00 [Eq. (7)] are written as
follows:

P01(t + 1) = αP01(t ),

P00(t + 1) = P00(t ) + βP01(t ). (13)

Master equations for all other states than P01(t ) and P00(t ) are
irrelevant to calculate P00(∞) in Eq. (10). Since P01(t ) = αt ,
one obtains

P00(t ) = β(1 + α + · · · + αt−1), (14)

leading to

ρ(∞) = 1 − β

1 − α
= q

p + q − pq
. (15)

This solution is not a function of N due to the choice of the
initial condition that Pcn(0) = δc,0δn,1.

We observe that ρ(∞) in Eq. (15) is a decreasing function
of p, but an increasing function of q [Fig. 2(b)], already
partly implying the qualitatively similar behavior to the sim-
ulation results of the original March model, i.e., Fig. 1 in
Ref. [1]. The larger q leads to the more correct belief of agents
about the reality, which is easily understood by considering
that q is the learning probability of the code from superior
agents. On the other hand, the effect of p on ρ(∞) is not
straightforward to understand. It is because the large value of
p speeds up not only the probability flow to the state (0,0), but
also to the state (1, N ). It means that the large p always helps
spread the code’s belief to agents, whether or not the code’s
belief is correct. When the code’s belief is incorrect, the large
p increases the amount of flow to the state (0,0) [Fig. 2(a)].
In contrast, when the code’s belief is correct, the large p does
not increase the amount of flow to the state (1, N ), but only
speeds up the flow. As we focus on the steady behavior, such
an asymmetric role of p leads to the decreasing behavior of
ρ(∞) as a function of p. Such a behavior has been interpreted
that slow socialization allows for longer exploration, resulting
in better organizational learning [1].

For general initial conditions, one can estimate ρ(T ) for a
sufficiently large T by iterating the master equation in Eq. (7)
for a given initial condition {Pcn(0)}. For a demonstration with

a system size that is neither too small nor too big, we con-
sider a system of N = 40 agents and the initial condition that
Pcn(0) = 1

2δn,N/2 for each c ∈ {0, 1}. We estimate the value of
ρ(T ) at the first time step T when |ρ(T ) − ρ(T − 1)| < 10−4

is satisfied. From the results shown in Fig. 2(c), we find that
ρ(T ) is a decreasing function of p, but an increasing function
of q, showing the same tendency as the solution of ρ(∞) in
Eq. (15) for the simpler initial condition.

These exact and numerical results are supported by agent-
based simulations. We perform the simulations of the model
using the rules in Eqs. (1) and (2) together with Eq. (3) for
the system with N = 40 agents with the mentioned initial
conditions. First, the initial condition with Pcn(0) = δc,0δn,1

used for the analysis is realized in the simulation such that
only one agent has an initial belief of 1, while all other
agents and the code have the belief of 0. Second, as for the
initial condition with Pcn(0) = 1

2δn,N/2 for each c ∈ {0, 1}, we
set σi(0) = 1 for i = 1, . . . , 20 and σi(0) = 0 for the rest of
the agents, while the value of c(0) is randomly chosen from
{0, 1} with equal probabilities. Eventually, every run ends up
with one of the absorbing states, implying that n(∞) = 0, N .
For each pair of p and q, we take the average of n(∞)/N
over 104 different runs to get the value of ρ(∞) in Eq. (5).
Such averages are shown with symbols in Figs. 2(b) and 2(c),
which are indeed in good agreement with the analytical and
numerical solutions, respectively.

B. Heterogeneous learning in a closed system

Next, we study the heterogeneous version of the model in
a closed system with r = 1 by using two distinct values of
learning probability, i.e., by setting

p(i) =
{

p1 for i = 1, . . . , N1

p2 for i = N1 + 1, . . . , N,
(16)

where 1 � N1 � N − 1. Agents with the larger (smaller)
learning probability among p1 and p2 can be called fast (slow)
learners [1]. The state of the system at each time step t can
be summarized in terms of the code’s belief c(t ), the number
of agents with p1 whose belief is 1, which we denote by
n(t ) ∈ {0, . . . , N1}, and the number of agents with p2 whose
belief is 1, which we denote by m(t ) ∈ {0, . . . , N2}. Here,
N2 ≡ N − N1. Then the expected density of agents with belief
of 1 is given as

ρ(t ) ≡
〈

n(t ) + m(t )

N

〉
, (17)

which can also be interpreted as the expected belief of a
randomly chosen agent.

Similarly to the homogeneous version of the model, the
master equation reads

Pcnm(t + 1) =
∑
c′n′m′

Wc′n′m′→cnmPc′n′m′ (t ), (18)

where the transition probabilities are written as

W000→cnm = δ0,cδ0,nδ0,m,

W0n′m′( �=00)→0nm =
{(n′

n

)
pn′−n

1 p̄n
1

(m′
m

)
pm′−m

2 p̄m
2 q̄ if n′ � n and m′ � m

0 otherwise,
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FIG. 3. (a) Analytic solutions of ρ(∞) in Eq. (23) (lines) for the case with N = 40 (N1 = N2 = 20) and an initial condition that Pcnm(0) =
δc,0δn,1δm,1. (b) Numerical estimation of ρ(T ) using the master equation in Eq. (18) (lines) for the case with N = 40 (N1 = N2 = 20) and
an initial condition that Pcnm(0) = 1

2 δn,N1/2δm,N2/2 for each c ∈ {0, 1}. Here, T is the first time step satisfying |ρ(T ) − ρ(T − 1)| < 10−4.
(c) Numerical estimation of expected beliefs of the code (“code” in the figure), fast-learning agents with p1 = 0.9 (“fast”), slow-learning agents
with p2 = 0.1 (“slow”), and all agents (“avg”) at t = 3 using the master equation in Eq. (18) for the case with N = 40 and N1 = 2, 4, 6, . . . , 38
(lines). We use an initial condition that Pcnm(0) = 1

2 δn,N1/2δm,N2/2 for each c ∈ {0, 1} and for each N1. In all panels, simulation results are shown
with symbols, each symbol was averaged over 2 × 104 different runs, and standard errors are omitted as they are smaller than the symbols.

W0n′m′( �=00)→1nm =
{(n′

n

)
pn′−n

1 p̄n
1

(m′
m

)
pm′−m

2 p̄m
2 q if n′ � n and m′ � m

0 otherwise,

W1n′m′→0nm = 0 ∀n′, m′, n, m,

W1n′m′→1nm =
{(N1−n′

N1−n

)
pn−n′

1 p̄N1−n
1

(N2−m′
N2−m

)
pm−m′

2 p̄N2−m
2 if n′ � n and m′ � m

0 otherwise.
(19)

Here, we have used p̄1 ≡ 1 − p1 and p̄2 ≡ 1 − p2. It is ob-
vious that there are two absorbing states, i.e., (0,0,0) and
(1, N1, N2), implying that P000(∞) + P1N1N2 (∞) = 1. Calcu-
lating Eq. (18) recursively with any initial condition {Pcnm(0)},
one can, in principle, obtain Pcnm(t ) for any c, n, m, and t , and
hence ρ(t ) in Eq. (17).

As the simplest yet nontrivial case, let us consider an initial
condition that Pcnm(0) = δc,0δn,1δm,1. Denoting

αi1i2 ≡ W0i1i2→0i1i2 ,

βi1i2, j1 j2 ≡ W0i1i2→0 j1 j2 [(i1, i2) �= ( j1, j2)], (20)

the master equations for P011, P010, P001, and P000 [Eq. (18)]
are written as follows:

P011(t + 1) = α11P011(t ),

P010(t + 1) = α10P010(t ) + β11,10P011(t ),

P001(t + 1) = α01P001(t ) + β11,01P011(t ),

P000(t + 1) = P000(t ) + β11,00P011(t ) + β10,00P010(t )

+ β01,00P001(t ), (21)

where α11 = p̄1 p̄2q̄, α10 = p̄1q̄, α01 = p̄2q̄, β11,10 = p̄1 p2q̄,
β11,01 = p1 p̄2q̄, β11,00 = p1 p2q̄, β10,00 = p1q̄, and β01,00 =
p2q̄. After some algebra, one obtains

P000(∞) = β11,00

1 − α11
+ β11,10β10,00

(1 − α11)(1 − α10)

+ β11,01β01,00

(1 − α11)(1 − α01)
, (22)

leading to

ρ(∞) = 1 − p1 p2q̄

1 − p̄1 p̄2q̄

(
1 + p̄1q̄

1 − p̄1q̄
+ p̄2q̄

1 − p̄2q̄

)
. (23)

This result is not a function of N1 and N2 due to the choice of
the initial condition that Pcnm(0) = δc,0δn,1δm,1. It is straight-
forward to prove that setting p1 = p2 = p reduces the solution
in Eq. (23) to the solution of the homogeneous model with the
initial condition that Pcn(0) = δc,0δn,2.

To demonstrate the effect of heterogeneous learning on
ρ(∞) in Eq. (23), we parametrize p1 = p + δ and p2 = p − δ

with non-negative δ and p ∈ (δ, 1 − δ]. Here, δ controls the
degree of heterogeneity of the agents. As shown in Fig. 3(a),
the larger δ leads to the higher values of ρ(∞) in Eq. (23)
for the entire range of p, which is consistent with the sim-
ulation results of the original March model, i.e., Fig. 2 in
Ref. [1]. Such behaviors can be essentially understood by
comparing the transition probability W011→000 = p1 p2q̄ in the
heterogeneous model to its counterpart W02→00 = p2q̄ in the
homogeneous model [Eq. (8)] to get

W011→000

W02→00
= 1 − δ2

p2
� 1. (24)

It implies that for positive δ, the probability flow to the absorb-
ing state (0,0,0) in the heterogeneous model is always smaller
than the flow to the absorbing state (0,0) in the homogeneous
model, and hence the larger ρ(∞) for the heterogeneous
model than for the homogeneous model. We also remark that
the ratio in Eq. (24) gets closer to 1 for the larger value of
p, and hence the smaller gap between the heterogeneous and
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homogeneous models. Such an expectation is indeed the case,
as depicted in Fig. 3(a).

For general initial conditions, we numerically estimate
ρ(T ) for a sufficiently large T by iterating the master equa-
tion in Eq. (18) for a given initial condition {Pcnm(0)}. For
a demonstration, we consider a system of N = 40 agents
(N1 = N2 = 20) and the initial condition that Pcnm(0) =
1
2δn,N1/2δm,N2/2 for each c ∈ {0, 1}. We estimate the value of
ρ(T ) at the first time step T when |ρ(T ) − ρ(T − 1)| < 10−4

is satisfied. From the results shown in Fig. 3(b), we find that
ρ(T ) has higher values for more heterogeneous systems.

We also perform the agent-based simulations of the het-
erogeneous model for the system with N = 40 agents (N1 =
N2 = 20) with the mentioned initial conditions. First, the ini-
tial condition with Pcnm(0) = δc,0δn,1δm,1 is realized in the
simulation such that one agent with p1 and one agent with
p2 have an initial belief of 1, while all other agents as well
as the code have the belief of 0. Second, as for the initial
condition with Pcnm(0) = 1

2δn,N1/2δm,N2/2 for each c ∈ {0, 1},
we set σi(0) = 1 for i = 1, . . . , 10, 21, . . . , 30 and σi(0) = 0
for the rest of the agents, while the value of c(0) is randomly
chosen from {0, 1} with equal probabilities. Eventually, every
run ends up with one of the absorbing states, implying that
n(∞) + m(∞) = 0, N . For each combination of p1, p2, and
q, we take the average of [n(∞) + m(∞)]/N over 2 × 104

different runs to get the value of ρ(∞) in Eq. (17). Such
averages are shown with symbols in Figs. 3(a) and 3(b), which
are indeed in good agreement with analytical and numerical
solutions, respectively.

Finally, we note that our setup for heterogeneous agents is
different from that in the original March model [1]. In the orig-
inal paper, the heterogeneity was controlled by the number of
agents having p1, i.e., N1, while learning probabilities were
fixed to be p1 = 0.9 and p2 = 0.1. We test such original setup
using our simplified model both by estimating ρ(3) from the
master equations in Eq. (18) and by performing agent-based
simulations up to t = 3. For a system of N = 40 agents, we
consider N1 = 2, 4, 6, . . . , 38 with the initial condition that
Pcnm(0) = 1

2δn,N1/2δm,N2/2 for each c ∈ {0, 1}. In addition to
the expected belief of all agents in Eq. (17), we measure the
expected belief of fast-learning agents with p1, that of slow-
learning agents with p2, and that of the code. Results from
the numerical estimation of master equations and from agent-
based simulations are in good agreement with each other,
as depicted in Fig. 3(c). These results show the qualitatively
same behaviors as in the original March model, i.e., Fig. 3 in
Ref. [1].

C. Homogeneous learning in an open system

Finally, we study the effects of turnover of agents and
turbulence of the external reality on organizational learning.
For this, we focus on the simplest yet nontrivial case with
N = 1, indicating that there is only one agent in the system.
This agent’s belief is denoted by σ (t ). The case with general
N > 1 can be studied too within our framework.

We first consider the system with turnover of the agent
only, while r(t ) = 1 for all t , namely, u > 0 and v = 0. Let us
denote by Pcσ (t ) the probability that at time step t , the code’s
belief is c and the agent’s belief is σ . These probabilities

satisfy the normalization condition as∑
c,σ∈{0,1}

Pcσ (t ) = 1. (25)

They evolve according to the following master equation in
discrete time:

Pcσ (t + 1) =
∑
c′σ ′

Wc′σ ′→cσ Pc′σ ′ (t ), (26)

where the transition probabilities, using u′ ≡ u/2 and ū′ ≡
1 − u′, are as follows:

W00→00 = ū′, W00→01 = u′,

W01→00 = (pū′ + p̄u′)q̄, W01→01 = ( p̄ū′ + pu′)q̄,

W01→10 = (pū′ + p̄u′)q, W01→11 = ( p̄ū′ + pu′)q,

W10→10 = p̄ū′ + pu′, W10→11 = pū′ + p̄u′,

W11→10 = u′, W11→11 = ū′, (27)

and all other transition probabilities are zero. Note that due to
u > 0, both (c, σ ) = (0, 0) and (1,1) are no longer absorbing
states.

For the steady state, we derive the analytical solution of
ρ(∞) as

ρ(∞) =
∑

c∈{0,1}
Pc1(∞) = p + (

1
2 − p

)
u

p + (1 − p)u
. (28)

This solution is independent of the initial condition and it
is not a function of q because the change of the code’s be-
lief from 0 to 1 is irreversible; as long as q > 0, all initial
probabilities end up with states with c = 1. We also find that
limu→0 ρ(∞) = 1 and ρ(∞) = 1/2 for u = 1, both of which
are irrespective of p. That is, ρ(∞) is a decreasing function of
u for u > 0, whereas for u = 0, it can have the finite value
of less than one, e.g., given in Eq. (15), as long as p > 0.
Thus one can conclude that ρ(∞) shows an “increasing” and
then decreasing behavior in the range of 0 � u � 1. This
argument is important to discuss about the optimal turnover
of the agent that maximizes the effectiveness of organizational
learning.

Next, we focus on the transient dynamics instead of the
steady state. Starting from the initial condition that Pcσ (0) =
δc,0δσ,1, we obtain, e.g., at t = 2,

ρ(2) =(
1
2 − p

)
(1 − p)u2 − (

2p2 + pq − 7
2 p + 1

)
u

+ (1 − p)2 + pq. (29)

It turns out that ρ(2) is a quadratic function of u, meaning
that it can have either a maximum or minimum value for the
range of u ∈ (0, 1), or it may be a monotonically increasing or
decreasing function of u, depending on the choice of p and q.
We also observe that ρ(t ) is, in general, the t th degree poly-
nomial function of u that may show more complex behaviors.
Figure 4(a) summarizes various behaviors of ρ(2) in the plane
of (p, q), and Fig. 4(b) depicts ρ(2) as a function of u for
several cases of p and q. For example, for sufficiently large q,
ρ(2) is a monotonically decreasing function of u, irrespective
of p. It implies that if the code learns fast from the superior
agent, the maximal organizational learning is achieved when
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FIG. 4. (a) Different behaviors of the analytic solution of ρ(2) in Eq. (29) as a function of u depicted in the plane of (p, q). ρ(2) can have
either a maximum value for u ∈ (0, 1) (red shade, denoted by “max”) or a minimum value for u ∈ (0, 1) (blue shade, denoted by “min”), or it
can monotonically increase (“increasing”) or decrease (“decreasing”). Four empty symbols are chosen to demonstrate their different functional
forms of ρ(2) in (b). (b) Analytic solutions of ρ(2) in Eq. (29) as a function of u for several combinations of p and q (lines) with corresponding
simulation results (symbols). We use an initial condition that Pcσ (0) = δc,0δσ,1. (c) Heat maps of the analytic solution of ρ(∞) in Eq. (35)
as a function of u and v for the case with p = q = 0.5. Two empty symbols are chosen to demonstrate different behaviors of ρ(t ) in (d).
(d) Numerical estimation of ρ(t ) using the master equation (solid lines) and simulation results (dotted lines) for u = 0 and 0.1 when p = 0.5,
q = 0.5, and v = 0.02. In (b) and (d), each symbol was averaged over 2 × 105 different runs. Standard errors are omitted as they are smaller
than the symbols.

there is no turnover. This result can be understood by con-
sidering the fact that the turnover introduces randomness or
new information from outside of the system. In contrast, if
the code learns slowly from the superior agent but the agent
learns fast from the code, the maximal organizational learning
is achieved for the largest turnover. In such case, without
turnover, both the code and agent are likely to be stuck in a
suboptimal situation. Thus, the strong turnover may help the
system to evade it. Precisely, we find the increasing and then
decreasing behavior of ρ(2) for p = 0.7 and q = 0.6, and the
monotonically decreasing behavior of ρ(2) for p = 0.4 and
q = 0.6, which are consistent with the results of the original
March model, e.g., Fig. 4 in Ref. [1].

We now consider the effect of turbulence on the organi-
zational learning in the presence of turnover of the agent.
For this, we define an extended system consisting of both
the system and the reality, whose states can be denoted by
(r, c, σ ) ∈ {0, 1}3. Let us denote by Prcσ (t ) the probability

that at time step t the reality is r, the code’s belief is c,
and the agent’s belief is σ . These probabilities satisfy the
normalization condition as∑

r,c,σ∈{0,1}
Prcσ (t ) = 1. (30)

They evolve according to the following master equation in
discrete time:

Prcσ (t + 1) =
∑
r′c′σ ′

Wr′c′σ ′→rcσ Pr′c′σ ′ (t ). (31)

Denoting v′ ≡ v/2 and v̄′ ≡ 1 − v′ and using Eq. (27), we get
the transition probabilities for Eq. (31) as follows:

W0c′σ ′→0cσ = W c′σ ′→cσ v̄′,

W0c′σ ′→1cσ = W c′σ ′→cσv′,

W1c′σ ′→0cσ = Wc′σ ′→cσv′,

W1c′σ ′→1cσ = Wc′σ ′→cσ v̄′, (32)
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where we have used

W c′σ ′→cσ ≡ W1−c′,1−σ ′→1−c,1−σ . (33)

As r(t ) is no longer constant, the average individual knowledge is obtained as

ρ(t ) =
∑

r,c,σ∈{0,1}
δr,σ Prcσ (t ). (34)

After some algebra, we derive an exact solution of ρ(∞) for the steady state as follows:

ρ(∞) = [(
p2q − p2 − 5

2 pq + 2p + q − 1
)
u2v2 − (

p2q + p2 − 7
2 pq + 2p + 3

2 q − 1
)
u2v − (

p − 1
2

)
qu2

− (
2p2q − 2p2 − 9

2 pq + 3p + 3
2 q − 1

)
uv2 + (

2p2q − 2p2 − 9
2 pq + 2p + q

)
uv + pqu

+ (
p2q − p2 − 2pq + p + 1

2 q
)
v2 − p(pq − p − q)v

]/
[2(p2q − p2 − 2pq + 2p + q − 1)u2v2

− (2p2q − 2p2 − 5pq + 4p + 3q − 2)u2v + (1 − p)qu2 − (4p2q − 4p2 − 8pq + 6p + 3q − 2)uv2

+ (4p2q − 4p2 − 7pq + 4p + 2q)uv + pqu + (2p2q − 2p2 − 4pq + 2p + q)v2 − 2p(pq − p − q)v]. (35)

This analytical solution is depicted as a heat map in Fig. 4(c)
for the case with p = q = 0.5. We find that for each value
of turbulence v, there exists an optimal turnover probability
u∗ ∈ (0, 1) that maximizes the effectiveness of organizational
learning. Such an optimal turnover probability for a given v is
obtained as

u∗(v) = v2 + 3v − √
2v(v + 3)(3v + 1)

v2 − 3v − 2
, (36)

which is an increasing function of v. It implies that the system
is required to have the larger turnover to adapt to the more
turbulent external reality. Yet the value of ρ(∞) with the
optimal turnover tends to decrease with v [Fig. 4(c)]. We
remind the reader that smaller ρ(∞) means more incorrect
belief of the agent in the organization, and hence less effective
organizational learning.

Finally, we look at the transient dynamics of ρ(t ) for
different values of u when p, q, and v are given. We numeri-
cally obtain ρ(t ) by iterating the master equation in Eq. (26)
using the initial condition that Prcσ (0) = 1/8 for each state.
Numerical results are depicted as solid lines in Fig. 4(d). The
agent-based simulations are also performed using the initial
condition that each of r(0), c(0), and σ (0) is randomly and in-
dependently drawn from {0, 1}. Simulation results are shown
as dotted lines in Fig. 4(d), which are in good agreement
with the numerical results. These results are also qualitatively
similar to those in the original March model, e.g., Fig. 5 in
Ref. [1].

IV. CONCLUSION

In our work, the celebrated organizational learning model
proposed by March [1] has been simplified, enabling us to
explicitly write the master equation for the dynamics of the
model. We have successfully derived exact solutions for the
simplest yet nontrivial cases and numerically estimated quan-
tities of interest using the master equations; both results are
found to be in good agreement with agent-based simulation
results. Our results help to provide a rigorous understanding
not only of the simplified model, but also of the original March
model, to a large extent.

Our theoretical framework for the simplified March model
can be applied to the original March model, as well as variants
of the March’s model that incorporate other relevant factors
such as forgetting of the beliefs [3,11] and direct interaction
and communication between agents in the organization [4–6].
For modeling the interaction structure between agents, various
network models might be deployed [25,29–31]. In conclusion,
we expect to gain deeper insights into the organizational learn-
ing using our analytical approach.
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APPENDIX: DERIVATION OF TRANSITION
PROBABILITIES IN EQ. (8)

By definition of the model, it is obvious that W00→cn =
δ0,cδ0,n and W1n′→0n = 0 ∀n′, n. Here, we derive other tran-
sition probabilities. The transition from a state (0, n′) with
n′ > 0 to the state (0, n) occurs in the case when c keeps
having the value of 0 and when n′ � n because only agents
with belief 1 may change their beliefs to 0 due to the social-
ization from the code. The probability that c keeps having
the value of 0 is q̄, while the probability that n′ reduces to
n is

(n′
n

)
pn′−n p̄n. Since these two events are independent of

each other, we get W0n′( �=0)→0n as a multiplication of their
corresponding probabilities:

W0n′( �=0)→0n =
{(n′

n

)
pn′−n p̄nq̄ if n′ � n

0 if n′ < n.
(A1)

As mentioned, since n cannot be bigger than n′, we have
W0n′( �=0)→0n = 0 for n′ < n. Similarly, we get W0n′( �=0)→1n by
replacing q̄ by q in W0n′( �=0)→0n because the probability that c
changes its value to 1 is q,

W0n′( �=0)→1n =
{(n′

n

)
pn′−n p̄nq if n′ � n

0 if n′ < n.
(A2)
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Finally, if c = 1 already, it does not change its value. Only
agents with belief 0 may change their beliefs to 1 due to
the socialization from the code, implying that the number of
agents whose belief is 1 cannot decrease, i.e., n′ � n. The
probability that n′ increases to n is

(N−n′
N−n

)
pn−n′

p̄N−n. Thus, one

gets

W1n′→1n =
{(N−n′

N−n

)
pn−n′

p̄N−n if n′ � n

0 if n′ > n.
(A3)
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