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Discrete- and continuous-time approaches are frequently used to model the role of heterogeneity on dynamical
interacting agents on the top of complex networks. While, on the one hand, one does not expect drastic
differences between these approaches, and the choice is usually based on one’s expertise or methodological
convenience, on the other hand, a detailed analysis of the differences is necessary to guide the proper choice of
one or another approach. We tackle this problem by investigating both discrete- and continuous-time mean-field
theories for the susceptible-infected-susceptible (SIS) epidemic model on random networks with power-law
degree distributions. We compare the discrete epidemic link equations (ELE) and continuous pair quenched
mean-field (PQMF) theories with the corresponding stochastic simulations, both theories that reckon pairwise
interactions explicitly. We show that ELE converges to the PQMF theory when the time step goes to zero.
We performed an epidemic localization analysis considering the inverse participation ratio (IPR). Both theories
present the same localization dependence on network degree exponent y: for y < 5/2 the epidemics are localized
on the maximum k-core of networks with a vanishing IPR in the infinite-size limit while, for y > 5/2, the
localization happens on hubs that do not form a densely connected set and leads to a finite value of the IPR.
However, the IPR and epidemic threshold of ELE depend on the time-step discretization such that a larger
time step leads to more localized epidemics. A remarkable difference between discrete- and continuous-time
approaches is revealed in the epidemic prevalence near the epidemic threshold, in which the discrete-time
stochastic simulations indicate a mean-field critical exponent 6 = 1 instead of the value 8 = 1/(3 — y) obtained

rigorously and verified numerically for the continuous-time SIS on the same networks.

DOI: 10.1103/PhysRevE.110.014302

I. INTRODUCTION

The broad diversity of spreading processes [1,2] and the
role that they have assumed in our contemporary society
call for the development of theoretical tools [3] to predict
outbreaks and ways to mitigate their consequences [4]. For ex-
ample, the recent epidemic outbreaks of Zika virus [5], Ebola
[6], and COVID-19 pandemics [7,8] enhanced the develop-
ment of compartmental models [1,9] for epidemic processes
on populations.

The heterogeneity of contacts among individuals influ-
ences the spreading process [1,2] and these connection
patterns can be tackled using complex networks theory
[10,11]. Theoretical frameworks for epidemic models running
on the top of complex networks allow one to investigate the
coupling between the dynamic and structural features of the
system. In continuous-time approaches, different mean-field
theories are widely applied to address these features. The
whole network structure is considered in the quenched mean-
field (QMF) [2,3] theory that neglects dynamical correlations
of the epidemic states of connected vertices. This theory is
improved by considering correlations in a pairwise level in the
pair quenched mean-field (PQMF) [12,13] theory. These theo-
ries have been applied to investigate the limit of low epidemic
prevalence (average fraction of infected nodes) [12—16], while
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the PQMF theory also presents an excellent concordance with
stochastic simulations in the regime of high prevalence [17].

Some aspects of actual epidemic processes, such as the
daily update of reported cases by surveillance systems [4]
and computational facilities [7,18-22], lead to the wide use
of discrete-time versions of epidemic dynamics. Note that
a straightforward discretization of continuous-time theoreti-
cal approaches presents limitations [20] as, for example, the
epidemic prevalence in the supercritical regime converging
to nontrivial fixed points [23]—the more striking for longer
time steps [24]. Pitfalls of the discrete-time framework can be
fixed using the nonlinear dynamical system (NDLS) approach
[25,26], which explores the representation of the dynamics
as Markov chains. This approach was generalized in the so-
called microscopic Markov-chain approach (MMCA) [19],
which was adapted and applied to different problems, such
as propagation of information and epidemics on multiplex
networks [21,27,28] and metapopulation [29,30] modeling
of spatiotemporal epidemic spreading [7,31]. In particular, a
discrete-time counterpart of the PQMF theory [12], adding
dynamical correlations to the MMCA, called epidemic link-
ing equations (ELE) [22], was applied to investigate optimal
immunization strategies in complex networks.

Epidemic or, more generally, dynamical processes on net-
works are featured by localization phenomena where the
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activity can be highly concentrated on a finite [16,32] or
subextensive [32,33] part of the network. Localization in
epidemic processes was formerly associated with the lead-
ing eigenvector of the adjacency matrix that rules the local
epidemic prevalence of the QMF theory [16]. The idea was
extended to PQMF [13] and, later, to generic epidemic pro-
cesses on networks [32], including stochastic simulations. The
accuracy of mean-field approaches is correlated with the level
of localization of the activity near the epidemic threshold
in each theory [13,34]. The more localized the outcome of
a mean-field theory, the less accurate its prediction of the
epidemic threshold [13].

Two types of localization have been associated with the
SIS epidemic activation on random power-law networks de-
pending on the degree exponent y [1]. One is related to
the activation of isolated and another to a set of densely
connected hubs of networks given by the maximum k-core
decomposition [32,33,35,36]. In the former case, nodes of
degree K ~ kmax and their nearest neighbors are activated at
a threshold A; ~ 1/+/kmax, Which corresponds to a star graph
epidemic threshold [12], while in the latter the activation hap-
pens on a densely connected core of size N ore at the threshold
Ac ~ 1/Neore, Which corresponds to complete graph thresh-
old. Since Neore ~ (k2)/ (k) ~ ki;ﬁ’ for uncorrelated networks
[16,37], one has that the hub activation rules the threshold
when kgl < +/kmax, which means y > 5/2.

In this paper, we develop a numerical study of the ac-
curacy of discrete-time theoretical approaches represented
by MMCA and ELE in comparison with synchronous-
update stochastic simulations. We focus on determining
the epidemic threshold and prevalence of the susceptible-
infected-susceptible model (SIS) [1] in uncorrelated networks
with power-law degree distributions, where an infected in-
dividual heals spontaneously with rate p© and transmits the
disease to its susceptible neighbors with rate g (continuous-
time version) per contact. This simple model presents far from
trivial features. For example, the epidemic threshold is null
in the thermodynamic limit, where the system size goes to
infinity, in the case of power-law degree distribution regard-
less of the degree exponent y [38,39]. In the discrete-time
SIS model, the healing and infection probabilities are given
by g = nAt and r = BAt, respectively. When these proba-
bilities assume large values, the discrete-time SIS deviates
substantially from its continuous-time version [40]. Indeed, in
the limit of high infection probability and prevalence, Chang
and Cai [41] claimed that there is no linear mapping from
discrete- to continuous-time dynamics, while Zhang et al. [42]
proposed a nonlinear relation between rates and probabilities
to circumvent this drawback.

Different theoretical approaches are compared with ei-
ther optimized Gillespie (OGA) [43] or synchronous update
(SUA) [40] algorithms for continuous- and discrete-time
simulations, respectively. We report that, as in the continuous-
time limit [12,13,17], the introduction of dynamical correla-
tion in ELE improves the accuracy of the MMCA approach
in describing the epidemic threshold and epidemic prevalence
obtained in SUA. We also performed an epidemic localization
analysis [32] and a nonperturbative (high prevalence regime)
numerical integration, showing that ELE presents the same
characteristics of the continuous-time limit obtained with

PQMEF theory [13]: localization on the maximum k-core [36]
for y < 5/2 and on a finite set of nodes (hubs) for y > 5/2
near to the epidemic threshold (low-prevalence regime) con-
comitant with a very good accuracy in the high-prevalence
regime. Finally, discrete-time (no small time steps) stochastic
simulations are consistent with a mean-field critical exponent
6 = 1 associated to vanishing of the epidemic prevalence near
to the epidemic threshold instead of the value 6 = 1/(3 — y)
obtained rigorously [39] and verified numerically [13] in the
continuous-time simulations of the SIS model on the same set
of power-law networks.

The remainder of this paper is organized as follows. In
Sec. II, we present the continuous- and discrete-time theo-
ries and demonstrate that ELE (MMCA) converges to PQMF
(QMF) in the limit At — 0. Section III starts with a discus-
sion about the accuracy of continuous and discrete theories in
predicting the epidemic threshold. This analysis is extended
to localization and epidemic prevalence. Finally, in Sec. IV,
we draw our conclusions and prospects.

II. ANALYTICAL AND SIMULATION APPROACHES

A. Continuous-time mean-field theories

In the QMF theory, the whole network structure is consid-
ered by the introduction of the adjacency matrix, defined as
A;; = lif nodes i and j are connected and A;; = 0 otherwise,
while dynamical correlations are neglected assuming that the
probability p; that a node i is infected does not depend on
the states of its contacts. Thus the dynamical equation for
evolution of p; is [1-3]

dpi

N
o = e+ B0 - pi) Y _Aijpj. M

i=1

where the first term on the right-hand side corresponds to
spontaneous healing, while the second one is the infection. If
dynamical correlations are taken into account in a pair level in
the named PQMF theory [12,13], the dynamical equation be-
comes

dpi
prie —Hpi+,3;Aij¢ij, ()

in which ¢;; = [S;, I;] is the probability that nodes i and j are
in the states susceptible and infected, respectively. Note that
¢ij ~ (1 — p;)p; leads to the QMF theory, Eq. (1). Following
Ref. [12], the evolution of ¢;; is given by

deij B Y wiii
dt = (2M+ﬁ)¢11+/¢bp1+/31=1 (1—p])(A]l 811)
®ijbu
— B> PP 4y — 1)), 3
B 2. _)Oi)( 1 —81j) 3)

in which w;; = [S;,S;]1 =1 — p; — ¢;;. Close enough to the
epidemic threshold, the QMF and PQMF theories can be
described by the spectral properties of the adjacency matrix
in the former [14,16] and a weighted adjacency matrix in the
latter [13].
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B. Discrete-time mean-field theories

The general form for the temporal evolution of the prob-
ability that a node i is infected, i.e., p;, in the MMCA [19]
assumes the form

pit + Ar) =(1 — pAn)pi(t) + [1 — qi(OI[L — pi(1)]
+ nAr[l — gi(1)]pi(), “4)

in which ¢;(¢) is the probability that node i was not infected in
the corresponding time step

N
qi(t) = [ J11 = BAtAi;p;(0)). ®)
j=1
In Eq. (4), the first term stands for the probability that node i
remains infected, while in the second term is the probability
that a susceptible node i is infected by any of its contacts.
Finally, the last term reckons the probability that an infected
node recovers and is reinfected by one of its neighbors during
the time step Af. We compare both MMCA and ELE with the
same synchronous discrete-time simulations (see Sec. IIC).
So, the MMCA equation investigated is [44]

pit + Ar) = (1 — pAn)pi(r) + [1 — g:(OI[1 — pi(@)]. (6)

Note that an oscillating (period 2) epidemic prevalence is
observed in both MMCA [44] and ELE [22] theories without
reinfections and the steady-state prevalence is calculated as
the arithmetic average of the values.

In the pairwise ELE approach [22], the system is described
in terms of the joint probabilities ¢;; = [S;, I;], w;; = [Si, S;1,
and ;; = [I;, I;] given the states of connected pairs of nodes
i and j. In particular, the evolution of ¢;; is derived in
Ref. [22] and given by

@it + At) =w;j()g;; ([l — q;i(t)] + wAr(1—p At );(t)
+ uAt[l — (1 — BAt)g;i(t)]g;i(t)
+ (1 = pA)(1 — BAL)g;j(t)ij(t), (7

is the probability that a susceptible node i is not infected
by any of its neighbors (excluding node j) in the step ¢.
Similar equations can be built for other joint probabilities; see
Ref. [22]. The epidemic prevalence in the whole system is
expressed as [22]

ey
=N Z T ZAji(¢ji + wij), ©))

i=1 "' j=1

where k; is the degree of node i.
The effects of dynamical correlations in ELE theory be-
come clearer for the variable p; = ¥;; + ¢; that evolves as

pit + At) = (1 — uAt)pi(t) + [1 — qi;O][1 — pi(®)]
+ BAtq;j(t)p;;(t). (10)

The first and second terms have the similar form and interpre-
tation of Eq. (4). The last term stands for the probability that
nodes i and j are susceptible and infected, respectively, and
node i is infected by node j.

The continuous- and discrete-time mean-field theories are
equivalent in the regime of At — 0. We now show the
equivalence between ELE and PQMF, while one can easily
demonstrate the equivalence between MMCA and QMF fol-
lowing similar steps. To leading order in At, Eq. (8) becomes

Pir(t)

qij(t) = 1 — BAL Z e

—8,)+ OBAN, (1)

where O(x) represent terms negligible if compared with x.
Substituting Eq. (11) in Egs. (7) and (10) leads to

pi(t + At) — pi(t)
where Ar = —upi(t) +,3;Ari¢ir + O(BAt)
r (12)
@i (1)
qij(t) = (1 - ﬂAtAli—) ®) and
! ,J;L, 1= pilt) ‘
ij A —Yij L r i ir
Pult+AD =5 _ (ﬂw)%(,)wzm( 8r,)—/32¢’(t)¢ O a5, 1 0BAD,
At p;(t) ot
(13)

Finally, considering the relations p; = ¥;; + ¢;; and 1 — p; =
w;j + ¢ij, in the limit of At — 0, Egs. (12) and (13) converge
to Egs. (2) and (3).

C. Stochastic simulations

QMF and PQMF approaches are compared with
continuous-time stochastic simulations implemented using
the optimized Gillespie algorithm (OGA) [43]. In this
algorithm, the probabilities of healing and infection are
determined by the number of infected nodes Ni,s and the total

(

number of edges emanating from them Ng;. In each time step,
with probability

N;
g=—t-m (14)
WNing + BNs;

an infected node is chosen at random and healed. With prob-
ability 1 — ¢ an infected node i is chosen with probability
proportional to its degree k;. If the randomly chosen neighbor
J 1is susceptible, it becomes infected; otherwise, no change of
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state is implemented. The time is incremented by

—Inu

ot = ————,
UNine + BNst

5)

where u is a pseudorandom number uniformly distributed in
the interval (0,1).

The discrete-time simulations are performed using the syn-
chronous updating algorithm (SUA) [40,41,45], in which all
nodes of the network have their states simultaneously up-
dated in a discrete time step, Af. For the SIS dynamics, each
susceptible node becomes infected with probability 1 — (1 —
BAt)"t in which n;, is the number of infected contacts while
an infected node becomes susceptible with probability uAz.
Finally, the time is incremented by Af.

In both, continuous and discrete simulations, when the
system falls into the absorbing state, the dynamics returns to
a previously visited active configuration using the standard
quasistationary (QS) method [46,47]. In this method, a list of
M configurations is built and constantly updated by replacing
a randomly chosen configuration by the current one with a
probability P, per unit of time. In both cases, we adopted
M =50 and P, = 0.01. The QS averages were performed
considering the averaging time varying from t,, = 10° to 10°
time units after a relaxation time #;, = 10° time units, the
longer averaging times for the lower densities where fluctu-
ations are more relevant. To compare the mean-field theories
with QS simulations, we estimate the epidemic threshold
using the peak of dynamical susceptibility defined as x =
N((p?) = (p)*)/(p) [48].

III. RESULTS

We investigate both mean-field theories and stochastic
simulations on synthetic networks with power-law degree
distributions for different degree exponents generated by the
uncorrelated configuration model (UCM) [49]. This model
has upper cutoff k. < /N that guarantees the absence of
degree correlations for very large networks. In principle,
dynamics very localized around hubs can produce multiple
peaks in y(X) curves [48]. Here, we used networks with
cutoffs in the degree distribution that avoid the multiplicity
of peaks; see Ref. [13] for more details.

A. Epidemic threshold

The MMCA and QMF predict the same epidemic threshold
for the SIS dynamics, given by [1,19]

g1
A=t =— 16
PRy (16)

in which A is the largest eigenvalue of the adjacency matrix.
The epidemic threshold of the ELE approach is given by [22]

1
he = b _ —, (17)
no 2

where 2, is the largest eigenvalue of the matrix B;; given by

Bij =1 —"1)A;; — Tkd;; (18)
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FIG. 1. Comparison of stochastic simulations and mean-field
theories for SIS dynamics on uncorrelated PL networks with y =
2.8, N=10° and k. = 2V/N. (a) Epidemic threshold and (b) IPR
are shown as functions of g = wAr with © = 1. Symbols and lines
represent discrete- and continuous-time versions of stochastic sim-
ulations and theoretical frameworks, respectively. In (b), the IPR
of both OGA and SUA stochastic simulations correspond to NAV
multiplied by 10, for the sake of visibility. Averages were computed
over 10 network-independent realizations.

in which §;; is the Kronecker delta symbol and
_ A —g)
pn2—g +2p(1—g)

For the PQMF theory, the epidemic threshold is obtained
when the largest eigenvalue of the matrix [12]

19)

2k; 2u +
Lij = —<,U« + ﬂ—)&_; + MAU (20)
2u+2p 2u+2p
is null. When g = uAt — O wehave Y = B8/(u + 28) and
Lij = néij — BBij, 2D

where we confirm that the epidemic threshold of ELE con-
verges to the PQMF theory. Moreover, for g — 1 we have
that B;; — A;; and ELE threshold goes to the same value of
the QMF theory. Figure 1(a) presents the ELE and MMCA
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epidemic thresholds as functions of g for fixed u = 1 as well
as the results of PQMF theory with © = 1, where one can
see the ELE’s threshold decreases monotonically from the
PQMF to the QMF theory result as g increases from O to 1.
Figure 1(a) compares simulations and mean-field theories on
a power-law network with y = 2.8, N = 10° nodes, and k. =
2+/N. Discrete- and continuous-time simulations depart from
each other as the time increment increases. The discrete case
threshold decays with g = wAt, showing a dependence on the
method as already discussed in Ref. [40]. Observe that ELE
reproduces qualitatively the decays of the threshold observed
on discrete-time stochastic simulations (SUA), which does
not happen with MMCA that provides a constant threshold.
The ELE approximation deviates more from the discrete-time
simulations as the time step increases; the highest precision
happens in the limit g < 1 when it converges to the PQMF
theory. These results hold for other values of y (data not
shown), presenting a greater accuracy when y < 2.5.

B. Localization

To determine the localization pattern of both simulations
and mean-field theories, we use the normalized activity vector
(NAV) defined as [32]

Pi
Y = ————= (22)

N 9
2. Zj:l Lj

where the local prevalence {p;} is computed at the epidemic
threshold for different approaches (continuous, discrete, mean
field, and simulations). The localization of the NAV is quanti-
fied using the inverse partition ratio (IPR) [16] defined as

N
Yi@) =) ¢} (23)
i=1

The IPR converges to a finite value in the infinite-size limit if
the localization happens on a finite set of nodes and scales
as ¥, ~ N~! for a delocalized state involving an extensive
component of the network [16]. For MMCA [19] and QMF
mean-field [16] approaches the local prevalence at the epi-
demic threshold is asymptotically proportional to the principal
eigenvector (PVE), corresponding to the largest eigenvalue
of the adjacency matrix. In the PQMF theory, the epidemic
prevalence is proportional to the PVE of the Jacobian matrix
L;j, Eq. (20), evaluated at A = A, as shown in Ref. [13]. These
relations are easily obtained within each theoretical approach
as illustrated for ELE in the sequence of the paper.

Very close to the epidemic threshold, the local prevalence
is given by [see Eq. (17) of Ref. [22]]

=L By, 24)
a

Let Q) > Q, >, ..., Qy be the eigenvalues corresponding to
the eigenvectors bV, b®, ... b™ of B;;. Expanding p; =

>, ¢Db" in the basis {b"}, one obtains

B B
I LIRS SR
i i [

i~ Eszlbﬁ.”[l + (9(%)} (25)
% Q

If B;; has a spectral gap €; > 0, that is usually the case
investigated in the present paper, we find p; ~ bgl). For sim-
ulations, we consider the QS local prevalence evaluated at
the epidemic threshold [32]. Figure 1(b) shows the IPR as a
function of g for different approaches. Corresponding values
for the continuous-time are shown for the sake of comparison.
While MMCA has a localization that does not depend on the
time-step size, the epidemics become more localized as the
time step increases for both ELE and SUA simulations, being
minimal when g — 0 and maximal when g — 1. Note that
the PVE of B;; converges to that of L;; when g — 0 and to
that of A;; when g — 1; see Eq. (18). Therefore, we have seen
that discrete approaches, both simulation and ELE, present
stronger localization when compared with their continuous-
time counterparts.

A detailed finite-size analysis of the epidemic threshold
and localization in ELE and discrete-time simulations are
presented in Fig. 2. For y = 2.3 shown Figs. 2(a) and 2(d),
we have an agreement between simulations and theory and
an independence with the time-step size. This behavior is in-
deed expected for y = 2.3 since the ELE epidemic threshold
and PVE interpolate between QMF and PQMF theories as g
varies in the range (0,1), while the continuous-time mean-field
theories match each other for y < 5/2 [12,13]. The IPR is
consistent with a subextensive localization characterized by
sublinear scaling ¥, ~ N~G3~7)/2 that depicts an activity lo-
calized in the maximum k-core [32,35], which is a densely
connected subgraph accessed by a k-core decomposition [37].
For y > 5/2, however, the localization increases with size in
ELE and saturates for stochastic simulations. Concomitantly,
we observed a worse performance of ELE to predict the
epidemic threshold as the network size increases, with the
worse for larger y where localization is stronger, as previously
reported for PQMF theory [13]. We also see that the finite time
steps raise the localization effects, reducing ELE accuracy
as also shown in Fig. 1. This aspect should be taken into
account in the choice of the theoretical approach to model
the epidemics.

C. Epidemic prevalence

We analyzed the epidemic prevalence for both discrete-
time simulations and ELE mean-field theory. The infection
rate was scaled according to the ELE prediction p ~ A2 — 1.
To analyze the critical exponent 6, defined by p ~ (A — A.)?,
of the discrete-time SIS dynamics and ELE, we consider the
case in which y < 2.5, where the theory presents a great
accuracy in predicting the epidemic threshold. We analyze
the region in which AQF"F — 1 < 1 and observed an almost
perfect agreement between ELE and simulations, in which
P~ ()»QIELE — 1) with @ =1, if A is not too close to the
epidemic threshold, as shown in Fig. 3. As previously re-
ported in the continuous case [13,17], the mean-field scaling
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(b) y=2.8

(c) y=3.5
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FIG. 2. Finite-size analysis of epidemic threshold (top) and IPR (bottom) for ELE and discrete-time simulations (SUA). Power-law
networks with degree exponents (a), (d) y = 2.3, (b), (e) y = 2.8, and (c), (f) y = 3.5 and three values of g = 0.1, 0.5, and 1 are presented.
The magenta dashed line represents Y4 ~ N=G=7/2 We adopted k. = 2+/N and k. ~ N'/¥ for y < 3 and y > 3, respectively.

with 6 =1 is confirmed if one is not too close to the epi-
demic threshold. The scaling & = 1 remains valid for g €
[0.1, 1], while deviations are expected for g << 1 where the
continuous-time limit occurs. The deviation of the linear scal-
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FIG. 3. Comparison of epidemic prevalence for SUA simula-
tions (symbols) and ELE (dashed lines) mean-field theory with g =
At = 0.5. We consider power-law networks with degree exponent
y = 2.3 and sizes N = 10°, 10%, and 107. We adopted k. = 2+/N.

ing observed for finite g (finite Ar) shrinks as the network
size increases indicating that it is a finite-size effect due to
falling onto the absorbing state. Here, a crucial difference
between discrete- and continuous-time analyses is observed:
the scaling region with exponent 6 = 1/(3 — y), rigorously
obtained in a continuous-time version [38] and reproduced
in extensive numerical continuous simulations [13], is not
observed in the discrete-time simulations discussed in Fig. 3.
In principle, both continuous- or discrete-time approaches are
dealing with the same phenomena: epidemic processes with
recurrent infections, no immunity, on the top of power-law
networks. Universality states that no relevant differences are
expected once overall aspects, such as symmetries and un-
derlying structure, are preserved. So, it is surprising that the
approaches sharing essentially the same properties, except
the discrete nature of the time, lead to a contrasting criti-
cal exponent. This result represents an important issue when
choosing the theoretical approach to model epidemic spread-
ing on networks. Considering the regime of high prevalence,
we observe that MMCA and ELE present a dependence with g
and there is a convergence to their respective theoretical con-
tinuous limit prevalence when g — 0, as shown in Figs. 4(a)
and 4(b), respectively. Such as in the continuous-time limit,
the introduction of dynamical correlation leads to an almost
perfect match between ELE and SUA simulations. For not too
high prevalence, ELE theory performs better for smaller time
steps, reaching the maximum performance in the continuous-
time limit as shown in the inset of Fig. 4(b). Interestingly, the
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FIG. 4. Prevalence as a function of the ratio A = 8/u for
discrete-time theory and simulations considering u = 1.0 and the
uncorrelated power-law degree distribution network with y = 2.8.
We adopted N = 10° and k. = 24/N. The choice of u limits the
allowed values of g = At. Both (a) MMCA and (b) ELE theories
are presented. Inset shows a zoom in the low prevalence regime.
Continuous-time limits of both theories (QMF and PQMF, respec-
tively) are shown for sake of comparison.

discrete-time theories approach the continuous limit (g — 0)
from below in the regime of high prevalence [Fig. 4(b), main
plot] while, near to the critical point, it converges from above
[Fig. 4(b), inset].

IV. CONCLUSIONS

The art of modeling epidemic processes on networks has
been improved continuously with the implementation of elab-
orated aspects of the dynamical rules such as the precise role
of absorbing states [43,50], localization phenomena [16,32],

and non-Markovian nature [51-53]. Mean-field approaches
are primordial allies in the understanding of epidemic pro-
cesses on networks and their accuracy must be probed
using extensive and statistically exact stochastic simulations
[12,43,48]. Computer simulations are implemented using dis-
crete time: the continuous version considers asynchronous
updates with variable time steps, while the discrete one is
performed with synchronous updates with fixed time steps.
So, despite continuous-time approaches seeming more natural
for actual epidemic processes, discrete-time versions are very
popular [19,22,31] due to their easier computer implemen-
tation and also their flexibility to build models with more
complex aspects in a simpler way in terms of probabilities
instead of rates. However, epidemic processes on networks
can be puzzling [36,54] and dependent on the slightly different
model details [55]. Therefore, the role of synchronous and
asynchronous approaches is worthy of investigation.

In the present work, we scrutinized the effects of discrete-
and continuous-time versions of the SIS epidemic model
considering stochastic simulations as well as one-node and
pairwise mean-field theories. Analyzing the epidemic thresh-
old and the localization of the epidemic prevalence near
the transition, we report that discrete-time approaches are
dependent on the time-step size, while differences between
discrete and continuous cases disappear as the time step goes
to zero. While the previous findings are not surprising, we
report a crucial difference between continuous- and discrete-
time simulations: the epidemic prevalence near the epidemic
threshold goes to zero following different scaling exponents
0 ~ (A — Ac)?, where the former is given by the exact expo-
nent 6 = 1/(3 — y) reported by Chatterjee and Durret [39],
while the latter still provide the mean-field exponent 6 = 1
[13,16,22]. While determining which approach describes a
better real-world spreading process is beyond the scope of
the present work, our results raise important concerns on
the choice of the theoretical and simulation approaches that
can be present in other epidemic models or, more generally,
dynamical processes on complex networks rather than the SIS
model investigated in the present work.
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