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Diffusion and pattern formation in spatial games
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Diffusion plays an important role in a wide variety of phenomena, from bacterial quorum sensing to the
dynamics of traffic flow. While it generally tends to level out gradients and inhomogeneities, diffusion has
nonetheless been shown to promote pattern formation in certain classes of systems. Formation of stable structures
often serves as a key factor in promoting the emergence and persistence of cooperative behavior in otherwise
competitive environments, however, an in-depth analysis on the impact of diffusion on such systems is lacking.
We therefore investigate the effects of diffusion on cooperative behavior using a cellular automaton (CA) model
of the noisy spatial iterated prisoner’s dilemma (IPD), physical extension, and stochasticity being unavoidable
characteristics of several natural phenomena. We further derive a mean-field (MF) model that captures the
three-species predation dynamics from the CA model and highlight how pattern formation arises in this new
model, then characterize how including diffusion by interchange similarly enables the emergence of large scale
structures in the CA model as well. We investigate how these emerging patterns favors cooperative behavior for
parameter space regions where IPD error rates classically forbid such dynamics. We thus demonstrate how the
coupling of diffusion with nonlinear dynamics can, counterintuitively, promote large-scale structure formation
and in return establish new grounds for cooperation to take hold in stochastic spatial systems.

DOI: 10.1103/PhysRevE.110.014301

I. INTRODUCTION

Cooperative phenomena are ubiquitous in nature. While
biological evolution hinges on the principle of selection,
which also implies competition, instances of cooperation are
widespread both at small [1–5] and larger [6–11] scales.
The evolution of mitochondrial cells is often cited as one
prime example of mutually beneficial behavior [12,13], and
cooperation is believed to have been instrumental both in the
emergence of life on earth [14–16] and, more generally, in
major evolutionary transitions throughout history that would
have necessitated the establishment of new forms of coopera-
tion [17–19].

Game theory is the framework of choice for examining the
emergence of cooperation in nature, a problem that has mo-
tivated extensive analysis across various fields [20–22], from
ecology [23] to computational neuroscience [24]—and more
recently in the fields of physics and biochemistry [25]. One
way to study cooperative phenomena is through the formalism
of the prisoner’s dilemma (PD) [26]: in this game, two players
must decide whether to cooperate or defect, without prior
knowledge of their opponent’s choice. The PD’s formalism
can be defined as a score matrix that highlights the tension
between rational, selfish behaviors and mutual cooperation
that benefits the group as a whole (Table I). A game is clas-
sified as PD when the reward R (both players cooperate),
the punishment P (they both defect), the temptation T (one
exploits its opponent), and the sucker’s payoff S (one is being
exploited) satisfy the constraint T > R > P > S [27].
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Numerous competitive scenarios align with the structure of
the PD. This includes interactions among viruses [1] or fish [6]
to the dynamics of WWI trench warfare [28]. As such, the PD
stands as the model of choice in studying what factors drive,
influence, and favor the emergence of cooperative behavior.

In real-world scenarios, players rarely encounter one an-
other only once. Accordingly, the PD can be extended to
account for repeated interaction between players. The iter-
ated prisoner’s dilemma (IPD) defines a game of length M
wherein two players will repeatedly choose between cooper-
ation and defection, guided by a specific strategy. Strategies
range from straightforward ones such as “always cooperate”
(ALLC) and “always defect” (ALLD) to reactive ones such as
“tit-for-tat” (TFT), which consistently mirrors the opponent’s
last move. Other well-known strategies include “playing at
random,” “win-stay-lose-shift,” “generous tit-for-tat,” among
others [27,29,30].

Despite the abundant literature aiming to identify the op-
timal strategy for the IPD [31,32], TFT consistently emerges
as a successful contender against a wide array of opponents.
The simple act of mirroring the opponent’s last move remains
unparalleled in versatility, even when strategy makers know in
advance that they would be playing against it [33,34]. Just as
the PD is considered the cornerstone for studying cooperative
phenomena, TFT is regarded as its pivot [35]. Therefore, we
explore in what follows the dynamics between the most basic
IPD strategies—ALLC, ALLD, and TFT—as they are more
likely to emerge spontaneously in such a competitive setting.

In the context of the IPD, one important limitation of TFT
is however its susceptibility to the presence of errors. Given
that statistical physics asserts all physical systems experience
fluctuations at nonzero temperatures [36], this parameter can
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TABLE I. Canonical score matrix defining the prisoner’s
dilemma (PD). Two players, without knowing their opponent’s
choice in advance, can either choose to cooperate or defect. While
exploitation (i.e., defecting while the opponent cooperates) leads to
the highest score for one player, the average score between both
players is higher when they simultaneously cooperate. The PD thus
highlights the tension between rational, selfish behavior, and an al-
ternative that benefits the group as a whole.

Cooperation Defection

Cooperation 3 (R) 0 (S)
Defection 5 (T ) 1 (P)

become crucial across a wide variety of systems. If one of
two cooperating TFT players mistakenly defects, they will
both lock onto a sequence of mutual defection. As illus-
trated on Fig. 1, the average score of TFT playing the IPD
against itself will quickly plummet with an increase in the
error rate [27]. Additionally, the absence of an error-correction
mechanism in TFT makes it susceptible to being superseded
by unconditional cooperators such as ALLC. Unlike TFT,
ALLC does not engage in similar mutual defection cycles
at nonzero error rates and can dominate once their predators
are removed.

Extensive research has revealed how several mechanisms
can influence the emergence of cooperation in challenging
environments, such as payoffs [37–39], noise [40–42], or
topology [43–45]. Likewise, the role of mobility as a pheno-
typical characteristic (i.e., under direct control of the agents or
their strategy) has been subjected to comprehensive analyses
[6,46–54]. However, one related but prevalent feature span-
ning a wide variety of physical systems, molecular diffusion,
i.e., the Brownian-like (random) movement that characterizes
the particles of any physical system at nonzero temperature,

FIG. 1. Mean score for two TFT players competing against each
other for M = 1000 moves, averaged over a statistical sample of
1000 IPD simulations. (a) As the error rate increases from a small
value (log10 p = −5, purple bars) towards its maximum (log10 p =
−1, red bars), the score distribution shifts from a narrow distribu-
tion with mean μ ∼ 3.0 to a broader distribution where μ ∼ 2.25,
reflecting the average score across all four move combinations. (b)
Two-dimensional (2D) histogram showing the distribution of error
rates for the same TFT players, with the vertical axis representing
variations in the error rate. The mean score peaks when p is minimal
(lower region) and then shifts towards 2.25 (upper region) as the error
rate approaches the critical value pc ∼ M−1 = 10−3, at which point
players commit at least one error per game.

has been comparatively less explored in this context. Systems
that both rely on cooperative behaviors during their evolu-
tion and simultaneously experience the physical effects of
diffusion are common in nature and across various scientific
domains. Significant examples include many biological sys-
tems, such as that of bacterial colonies engaging in quorum
sensing [55] and where diffusion influences the dynamics
of signaling [56], of ant populations that act in coordinated
actions and also rely on the diffusion of pheromones in the
environment to do so [57], or of bird flocking during the for-
mation of large patterns [58]. Many other instances highlight
the pivotal influence of diffusion, from cooperative chemical
species in catalytic reaction systems [59] to the coordinated
action of vehicles [60] or pedestrians [61,62] in traffic flow
that manifest diffusionlike dynamics. Previous analyses were
performed that included molecular diffusion in the context of
simulations of the IPD [63–71], however, an extensive investi-
gation of how pattern formation characterizing diffusion-like
processes affect the dynamics of the spatial IPD is still
lacking.

In what follows, we aim to address this question about
the influence of diffusion on cooperation by characterizing
its effect on the interplay between cooperators and defectors.
Using both a deterministic cellular automaton (CA) model
(Sec. II) and a mean-field (MF) model (Sec. III) of the spa-
tial iterated prisoner’s dilemma, we investigate how pattern
formation affects the dominance of strategies within the IPD.
While diffusion usually tends to level out gradients and in-
homogeneities, it has long been known that coupling it to
nonlinear dynamics can give rise to pattern formation [59]:
our results indicate that this phenomena further promotes co-
operation (Sec. IV), which could thus explain how cooperative
behavior arises in otherwise adverse environments where dif-
fusion takes place.

II. CELLULAR AUTOMATON MODEL
FOR A 3-STRATEGY SPATIAL GAME

Spatial constraints like topology or dimensionality exert
significant influence on the dynamics of evolutionary games
[72–74]. Given that these are inherent in various biological,
ecological, and social phenomena, we investigate the iterated
prisoner’s dilemma using numerical simulations on a 2D lat-
tice of sufficient size (128 × 128) to reduce finite-size effects
such as stochastic extinction of strategies.

In the deterministic cellular automaton (CA) model, sim-
ulations proceed by distributing equal populations of each
strategy randomly across the lattice. At each iteration ti in
the model, every player on the grid engages in M = 2000
rounds of the prisoner’s dilemma with the eight players
in its Moore neighborhood. After these rounds, the play-
ers will adopt the highest-scoring player’s strategy in this
neighborhood if it outperforms theirs. These replacements
are deterministic and sequential, but they proceed in a ran-
dom order to eliminate any spatial bias. The simulation runs
for T = 500 iterations, ensuring a relaxation of the system’s
dependence on the initial conditions for every realization of
the model.

The repeated interaction between players, whereby they
engage M times in the PD, is a key property of the model.
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These repeated interactions are a reflection of the fact
that systems relying both on cooperative behavior and ex-
periencing diffusion are not well mixed. Hence, in these
systems the characteristic diffusion time scale is typically
longer than the time of interaction between the individu-
als, which increases the likelihood of repeated encounters.
While parasitic strategies like ALLD will inevitably domi-
nate cooperators like ALLC in single interactions, repeated
encounters enable reactive strategies such as TFT to re-
ciprocate any potential cooperative behavior. Furthermore,
selecting a larger value for M allows for the exploration of a
broader range of error rates while maintaining the statistical
significance of the players’ mistakes over the total number
of games.

Integrating game playing errors in the CA model, which
reflects the inevitable stochasticity of natural processes, fur-
ther expands the variety of behaviors the simulation displays.
Specifically, in each of the M rounds of the IPD, players have a
probability p, drawn from a uniform distribution, of taking the
opposite action (i.e., defecting when supposed to cooperate,
or vice versa). The spatial IPD has indeed been demonstrated
to produce diverse spatial patterns the error rate is varied:
even for low values of p (−5 � log10 p � −3), novel be-
havior emerges, as depicted on Fig. 2(a): ALLC gains the
ability to evade ALLD by propagating into areas dominated
by TFT. This sets off a series of wave fronts where ALLC
further replaces TFT, with a second trailing front across which
ALLD replaces ALLC. Regions dominated by TFT finally
expand into ALLD from behind (see Fig. 2(a) and anima-
tions in Ref. [84]). Subsequent panels on Fig. 2 display the
resulting lattices from simulations conducted with varying
error rates. Formed structures thereafter include filaments of
ALLD strategies interspersed within a TFT-dominated lattice,
clusters of ALLC strategies encircled by ALLD or mottled
patterns of defectors. These spatial constraints can foster co-
operation in conditions where it would otherwise be absent
[76–78]. For example, unconditional cooperators (ALLC)
tend to be quickly eliminated by parasites (ALLD) unless
they can form stable clusters ensuring their survival [Fig. 2(c)]
[27].

Examination of many such simulations indeed reveals that,
barring very low or very high error rates, the spatiotempo-
ral evolution of strategies can—to good approximation—be
reduced to three distinct predatory interactions: (i) ALLD
rapidly replacing ALLC; (ii) cooperating groups of TFT grad-
ually replacing ALLD; (iii) ALLC slowly replacing TFT
because of the latter’s inability to correct mistakes when
playing against itself at nonzero error rates. This allows the
design of a mean-field model [43] capturing this three-species
predator-prey dynamics.

III. MEAN-FIELD MODEL

A. A three-species predator-prey model

With the three primary predation interactions identified, we
can construct a model of the spatial IPD in the mean-field
(MF) limit. The time evolution for the population fractions

FIG. 2. Final lattice state for cellular automaton simulations with
varying error rates p. See also Ref. [84] for animated versions of
(a) and (c). Simulations were carried out on a Cartesian lattice of size
128 × 128, with periodic boundaries and random initial conditions,
over T = 500 model iterations. Games of the iterated prisoner’s
dilemma of M = 2000 moves were played. (a) Fractal patterns are
formed, across which strategies propagate through Fisher waves
[75]. (b) Filamentlike structures of defectors (ALLD, red) surviv-
ing among a TFT-filled lattice (blue). (c) Clusters of cooperative
strategies (ALLC, green) surrounded by parasites (ALLD, red), in
a TFT-filled lattice (blue). (d) Mottled patterns interweaving cooper-
ators (TFT, blue) and defectors (ALLD, red). (e)–(f) Close-up view
of stable ALLC clusters surrounded by ALLD strategies. The central
strategies (ALLC) survive through mutual cooperation, yielding the
highest scores in their Moore neighborhood, while the parasites can
persist by defecting against ALLC. The scores shown on (f) are
averages taken over a statistical ensemble of 104 games.

C, T , and D for the three strategies ALLC, TFT, and ALLD
take the form:

dC

dt
= αCT − γCD, (1)

dT

dt
= −αCT + βT D, (2)

dD

dt
= γCD − βT D (3)
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FIG. 3. Representative solutions of Eqs. (4) and (5) in the [C, T ]
plane, for α = 0.1, β = 0.5, and γ = 1 and three different initial
conditions, as color coded. The equilibrium solution is indicated by
the black dot. The trajectories describe temporal oscillations of the
population fractions qualitatively resembling oscillations observed
in classical predator-prey dynamics or autocatalytic sets of chemical
reactions, although both dynamics remain distinct (see text).

with 0 � C, T, D � 1. Here α is the predation rate of TFT by
ALLC, β the predation rate of ALLD by TFT, and γ that of
ALLC by ALLD. This triangular predatory dynamics is in fact
akin to that of the rock-paper-scissors game [79,80].

Given the constraint C + T + D = 1 one of the above
ODEs is redundant and the above system can be reduced to:

dC

dt
= αCT − γC(1 − C − T ), (4)

dT

dt
= −αCT + βT (1 − C − T ). (5)

The equilibrium solution (d/dt ≡ 0) is

Ceq = β

s
, Teq = γ

s
, Deq = α

s
(6)

with s ≡ α + β + γ . Figure 3 shows three representative so-
lutions to Eqs. (4) and (5), plotted as trajectories in the [C, T ]
planes (the corresponding 3D trajectories are restricted to
the wedge defined by the C + T + D = 1 and C = 0, T =
0, and D = 0 planes). The three solutions plotted differ
only in their initial conditions, as color coded. These tra-
jectories described temporal oscillations of the population
fractions, qualitatively resembling oscillations observed in
classical predator-prey (e.g., Lotka-Volterra) dynamics [81] or
in autocatalytic (e.g., Belousov-Zhabotinsky) sets of chemical
reactions [82].

However, the resemblance is only superficial. Here we
have no attractors in the form of fixed points or limit cy-
cles. Instead, for a given set of reaction rates, an infinity
of stable orbits are possible, and entirely determined by the

initial conditions through the invariant CβT γ Dα = constant,
which can be obtained by algebraic manipulations of Eqs. (1)–
(3). The distinction hinges on the fact that predator-prey and
autocatalytic systems are open systems, with external reser-
voirs acting as sources and their magnitude determining the
equilibrium solutions and character of limit cycles; while our
system is closed and strictly conservative in its population
size, and its equilibrium solutions are entirely determined by
the predations rates.

Further insight into these differences can be obtained
through the linearization of Eqs. (4) and (5) about the equi-
librium solutions (6). This yields, to first order:

dC1

dt
=

[
βγ

s

]
C1 +

[
(α + γ )β

s

]
T1, (7)

dT1

dt
= −

[
(α + β )γ

s

]
C1 −

[
βγ

s

]
T1, (8)

with C1(t ) and T1(t ) the first-order perturbations. These two
coupled linear ODEs can be combined in the decoupled har-
monic equations:(

d2

dt2
+ αβγ

s

)(
C1

T1

)
=

(
0
0

)
. (9)

These describe harmonic oscillation about the equilibrium so-
lution, with angular frequency ω = (αβγ /s)1/2, and constant
(small) amplitudes set by the initial condition. Our system is
thus dynamically closer to an undamped nonlinear pendulum
than it is to classical predator-prey systems, or to autocatalytic
chemical reaction systems.

Two of the three trajectories plotted on Fig. 3 spend a
significant fraction of their time running closely along the C +
T = 1 line, implying that D → 0 there. Although stochastic
extinction cannot take place in this model, we do observe it in
the discrete spatial IPD (CA model) described in Sec. II. If we
set D = 0, the system (4) and (5) reduces to the single ODE:

dC

dt
= αC(1 − C), (10)

with T = 1 − C. This describes a slow drift towards the new
equilibrium solution [Ceq, Teq] = [1, 0] on the timescale α−1,
as observed in the IPD cellular automaton simulations when
errors in game playing occur, following stochastic extinction
of ALLD. Likewise, stochastic extinction of ALLC would
lead to a drift towards [Deq, Teq] = [0, 1] on the time scale
β−1.

B. Estimating predation rates from CA simulation

Using the inverse predation rate γ −1 as a time unit, the
equilibrium solutions (6) can be recast as:

α = 1

Teq
(1 − Ceq − Teq ), β = Ceq

Teq
, (11)

allowing us to estimate the dependence of predation rates on
game playing error rates in the cellular automaton IPD simula-
tions. At low error rates (−5 � log10 p � −2), this yields the
hierarchy α, β � 1. This no longer holds for regimes where
the system enters absorbing states (i.e., one or more strategies
goes extinct), for instance regions where error rates approach
zero (log10 p � −5) or where players have a high probability
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FIG. 4. (a) Final population fractions for strategies ALLC
(green), ALLD (red), and TFT (blue) playing spatial IPD games
of varying error rates, which were simulated using the cellular au-
tomaton model. A set of 100 values of the error rate were sampled
in the interval p ∈ [10−6, 0.5]. Error bars represent standard devia-
tions over each statistical ensemble of ten realizations of the model.
Background hues indicate the strategy that dominates for a given
error rate. (b) Predation rates used as parameters for the mean-field
model, derived for each error rate from population fractions shown
in (a) using Eq. (11).

of making mistakes (log10 p � −1). The equivalency between
the error rate p for the CA model and parameters α, β in the
MF model is shown on Fig. 4, calculated for 100 sampled
values of the error rate log10 p ∈ [−6,−1] with statistical
ensembles over ten realizations of the simulation, which were
carried out with random initial conditions for each value of p.

C. Spatial extension and diffusion

To investigate the effects of diffusion, we introduce two-
dimensional spatiality and isotropic linear diffusion in the MF
model; Eqs. (4) and (5) are replaced by:

∂C

∂t
= αCT − γC(1 − C − T ) + DC∇2C, (12)

∂T

∂t
= −αCT + βT (1 − C − T ) + DT ∇2T (13)

with C(x, y, t ) and T (x, y, t ), and the diffusion coefficients
DC, DT need not be identical.

We solve Eqs. (12) and (13) on the unit square with
periodic boundary conditions in x and y, and using the in-
verse rate γ −1 as a time unit. We use an operator splitting
scheme, whereby the nonlinear terms are advanced via fixed-
step fourth-order Runge-Kutta, and the diffusion terms by the
so-called FTCS scheme, namely a time-explicit Euler method
used jointly with a centered finite difference discretization
of the Laplacian terms. Each node of the spatial mesh is

initialized with random values of the two population fractions,
subject to the constraint C + T < 1.

Figure 5 shows a representative set of results, obtained
for predation rates α = 0.2, β = 0.5, and γ = 1.0. The mo-
saic displays solutions for increasing DT (horizontal) and
DC (vertical, and increasing downwards). The thick white
dashed line marks the diagonal DT = DC . All snapshots are
extracted after an elapsed time t = 280 γ −1, and are rendered
as a RGB coding of the population fraction, with blue ≡ T
(strategy TFT], green ≡ C (ALLC), and red ≡ 1 − C − T
(ALLD).

The striking spatial patterns located above the white dot-
ted diagonal are all steady, and set in very early in the
evolution; further examination of the temporal evolution of
solutions on and below the DT = DC diagonal also reveals
global, system-wide oscillations of the population frequen-
cies, with faint spatial patterning damping out on a timescale
decreasing as diffusion becomes more important (moving
towards the bottom right in the mosaic). The solutions on
the first superdiagonal, indicated by the white dotted line,
oscillate in time but with a spatially quasistationary planform.
In all cases the length scale of the spatial patterns, whether
steady or oscillating, decreases as diffusion diminishes (mov-
ing towards the upper left in the mosaic), as one would
intuitively expect.

These pattern-forming characteristics, and their depen-
dence on the diffusion coefficients, are similar for other values
of the predation rates α and β, but with the populations frac-
tions of the three strategies (setting the color in our RGB
coding scheme) varying significantly. Steady patterns only
disappear in the extreme regime α � β � γ , which occurs
only at very high error rates in the IPD simulations (log10 p �
−1, viz. Fig. 4). It is well known from studies of pattern for-
mation in classical nonlinear reaction-diffusion systems in the
mode of Turing that the inhibition variable must diffuse faster
than the excitation variable for steady patterns to form. Our
necessary condition DT > DC for stationary patterns similarly
implies that the strategy TFT acts here as the inhibitor in our
three-species predator-prey-like system.

D. Stability analysis

The striking patterns on Fig. 5 can be understood through
a linear stability analysis. Working in Cartesian coordinates
in two spatial dimensions, the first-order linearized versions
of Eqs. (12) and (13) about the spatially uniform equilibrium
solutions become:

∂C1

∂t
=

[
βγ

s

]
C1 +

[
(α + γ )β

s

]
T1 + DC∇2C1, (14)

∂T1

∂t
= −

[
(α + β )γ

s

]
C1 −

[
βγ

s

]
T1 + DT ∇2T1. (15)

We are seeking solutions describing exponentially growing
but spatially steady planforms:

(
C1(x, t )
T1(x, t )

)
=

(
C∗
T∗

)
exp(ik · x + λt ), (16)

with λ real and positive. Substitution in Eqs. (14) and (15)
yields two coupled nonlinear algebraic equations, whose
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FIG. 5. Top panels: Spatial patterns formed in numerical solutions of Eqs. (12)–(13) in the mean-field model with predation rates α = 0.2,
β = 0.5, and γ = 1, which are equivalent to an error rate of log10 p 	 −5. Solutions are integrated to t = 280 γ −1, starting from a random
initial condition. The diffusion coefficients increases logarithmically moving rightward and downward. Above the upper white diagonal (DT �
4.5DC) spatial patterns remain static after nonlinear saturation. When DT < DC (below the main diagonal), transient spatial patterns are
progressively smoothed by diffusion. Damped oscillatory patterns materialize in the narrow region between the two diagonals, and no patterns
of significant amplitude build up along the main diagonal DT = DC. An example of RGB color-coding scheme is shown below the top panels.
See also Ref. [84] for animated versions of simulations on the main diagonal, and in the steady and damped regimes.

solution yields the dispersion relation:

λ2+ [k2(DC + DT )]λ

+
[

DCDT k4 + βγ

s
(DC − DT )k2 + αβγ

s

]
= 0, (17)

with k2 ≡ k2
x + k2

y . Recalling that α, β, γ , DT , and DC are all
positive quantities, a positive λ demands that the positive root
of this quadratic polynomial be retained, and for the later to
be purely real further requires

DCDT k4 + βγ

s
(DC − DT )k2 + αβγ

s
< 0. (18)

This is a convex quadratic polynomial in k2, with its extremum
at

k2
max = βγ (DT − DC )

2sDCDT
. (19)

This corresponds to the wave number of the most rapidly
growing mode. Note that the requirement that kmax be a
real quantity demands DT > DC . Substituting kmax back into
Eq. (18) leads to the further constraint:

d2 − 2(1 + A)d + 1 > 0, (20)

where we have defined d = DT /DC and A = 2αs/βγ . The
positive root of this quadratic polynomial yields the minimal
diffusion coefficient ratio dm above which the formation of
steady spatial pattern is possible; for the predation rates used
to generate Fig. 5, dm = 4.5 (dotted diagonal).

The dispersion relation (17) also allows oscillations (λ
picking up an imaginary part) provided its discriminant is
negative:

(DC − DT )2k4 − 4βγ

s
(DC − DT )k2 − 4αβγ

s
< 0. (21)
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This is a quadratic in k2, with roots:

k2(±) = 2βγ

s(DC − DT )

[
1 ±

√
1 + αs

βγ

]
. (22)

Either positive k2(+) or k2(−) is possible, according to the
sign of DC − DT . However, these oscillations are always
damped, because the real part of λ is now

Re(λ) = − 1
2 (DC + DT )k2. (23)

Damping is slowest for the largest length scales (small k), and
weak diffusion (small DC + DT ), as expected for a diffusively
damped oscillation.

Note that the k → 0 limit brings us back to uniform os-
cillations of the population fractions, as in Sec. III A. The
oscillation frequency ω ≡ Im(λ) = √

αβγ /s is indeed recov-
ered by setting k = 0 in the dispersion relation (17). Such
global oscillations are not expected to persist in the nonlin-
ear regime when DT /DC > d (+), because they then become
overwhelmed by the exponentially growing spatially station-
ary platform.

Overall, the linear stability analysis thus recovers quite
well the pattern-forming characteristics obtained from numer-
ical solutions of the nonlinear system (12) and (13). We now
turn to the pattern-forming behavior of the spatial IPD model
of Sec. II, upon the introduction of diffusion.

IV. DIFFUSION IN THE CELLULAR AUTOMATON MODEL

A. Pattern formation

Our next step is to investigate whether the structures iden-
tified in the mean-field model (cf. Fig. 5) can also arise at the
microscale. Exploring the effect of diffusion in the CA model
can be carried out using diffusion by interchange: for each it-
eration ti of the model, strategies perform a stochastic random
walk on the lattice, exchanging place with another strategy
in their von Neumann neighborhood (i.e., the four players
in each cardinal direction), which is the lattice-based equiva-
lent process of continuous classical linear diffusion (see, e.g.,
Ref. [83]). While the CA score-based update rules remain
purely deterministic, the model now incorporates stochastic
elements in both game playing errors and through interchange
diffusion.

We analyzed the parameter space of the CA model under
variation of interchange frequency specified for individual
species: Figure 6 shows the final lattice state for CA sim-
ulations where each player on the grid has an interchange
frequency ν. The horizontal axis represents the interchange
frequency defined for TFT (νT ), while the vertical axis dis-
plays the frequency for ALLC (νC). No distinctive behaviors
were observed in the CA model for regions of the parameter
space where the interchange frequency for ALLD (νD) was
independently varied.

The interchange frequencies progress logarithmically in
both cases where the minimum corresponds to negligible dif-
fusion (log10 ν = −4), where each player will be switching
place with one of its neighbor once every 104 iterations. Put
differently, in this regime where diffusion is minimal, one
player will change place every iteration on a 128 × 128 lat-
tice on average. Maximal values shown for the interchange

frequencies approach the limit where the system is well mixed
(log10 ν = 2), as each player will be switching place 102 times
at each iteration.

As both interchange coefficients are increased (i.e., by
moving rightward or downward), larger structures are re-
vealed, whose characteristic length approaches that of the
whole lattice. As interchange frequencies increase further, the
system transitions to an absorbing state where TFT occupies
the whole lattice. Generally, increasing ν results in the forma-
tion of patterns at larger spatial scales, however, moving along
the νT � νC and νT � νC diagonals do not reveal symmetri-
cal structures. Moreover, final population fractions between
these two cases show significant differences (see discussion
in Sec. IV D).

Thus defined, diffusion by interchange necessarily implies
coupled diffusion frequencies, as interchange occurs with fre-
quency νi between a player belonging to the species i and
another random player j whose strategy can be different. This
coupling of the diffusion frequencies between species also
implies that the effective νT and νC depend on population
frequencies for all three species. Since population frequencies
also vary in time, interchange frequencies are also affected
when the system enters absorbing states (e.g., when a strategy
undergoes stochastic extinction).

B. Spatiotemporal variability

Over time, simulations in the CA model can either stabi-
lize or continue to display diverse degrees of spatiotemporal
variability. Letting Gt be the matrix representing strategies on
the lattice at iteration t , and gt

i j its values, then the degree of
nonstationarity n at time t of a CA simulation corresponds to
the number of sites on the lattice where strategy replacement
has taken place since iteration t − 1,

nt = 1

L2

∑
Gt

[
1 − δ

(
gt

i j′ , gt−1
i j

)]
, (24)

with δ(α, α′) being the Kronecker delta and n normalized
by the size of the lattice. Lower nonstationarity thus implies
simulations that become stationary over time while higher
nonstationarity indicates simulations that continue to evolve,
with 0 � nt � 1. The contour lines on Fig. 6 show the degree
of nonstationarity nt , averaged over statistical ensembles of
ten realizations of the simulation with random initial condi-
tions for each set of parameters.

Varying νT and νC defines several regimes across which
system behavior ranges from the formation of small-scale
clusters in static equilibrium (top-left region, Fig. 6) to struc-
tures whose characteristic length scale are of the same order
of magnitude as the whole lattice (regions bordering blue
panels), which are highly dynamic. Increasing further the
interchange frequencies ultimately gives way to a sudden
transition towards absorbing states where TFT fills the whole
lattice (rightmost and bottom panels) after which the simula-
tion becomes trivially stationary.

C. Equivalence of the models

We now examine how pattern formation correlates be-
tween the mean-field model and the cellular automaton model
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FIG. 6. Final lattice state for simulations of the spatial IPD using the cellular automaton model, which includes diffusion and an error
rate set at log10 p = −2. Simulations were carried out over T = 500 iterations on a lattice of size L = 128, with games of M = 2000 moves.
The horizontal axis shows logarithmic variations of TFT’s interchange coefficient while the vertical axis shows that of ALLC players, both
ranging from log10 ν = −4 (negligible diffusion) to log10 ν = 2 (close to the well-mixed limit). The yellow contour lines shows the degree of
nonstationarity, where values approaching zero indicate simulations that become stationary over time whereas higher values those remaining
nonstationary. In the upper-left region, ALLC players form stable cooperative clusters surrounded by ALLD strategies [see, e.g., Fig. 2(c)].
See also Ref. [84] for animated versions of systems on the main (νT = νC), upper (νT � νC), and lower (νT � νC) diagonals.

incorporating diffusion. Inspection of Figs. 5 and 6 sug-
gests that moving along both diagonal axes towards increased
diffusion results in spatial patterns with increasing char-
acteristic scale. Here, we employ 2D Fourier transforms
to formalize this relationship: by calculating the power
spectra of the lattices resulting from the execution of sim-
ulations with both models, we can quantitatively assess
how this increase in wavelength is related to the increase
in diffusion.

Utilizing this methodology, we have analyzed the spectra
for simulations with parameters identical to the first upper di-
agonal of the MF model (Fig. 5) and the main diagonal of the
CA model (Fig. 6). The 2D Fourier transform of these spectra,
averaged over statistical ensembles of ten independent sim-
ulations of the models, and collapsed on a one-dimensional
axis, are displayed in Fig. 7(a), with the horizontal axis indi-
cating the wave number, excluding the simulations where TFT

invades the entire lattice in the CA model (since the Fourier
spectra would be zero). The spectra for both the MF model
(displayed in red) and the dynamic regime of the CA model
where simulations remain nonstationary (displayed in green)
is well fit by a log-normal distribution, while spectra for the
static regime of the CA model are found to align with Gaus-
sian distributions (spectra displayed in blue). Parameters for
the best-fit distribution are represented in Fig. 7(b): the mean
μ of the distributions averaged over the statistical ensemble
are shown, with error bars indicating the standard deviation
over the ensemble.

In Fig. 7(c), we present the nonstationarity, computed using
Eq. (24), at the final iteration of the model. This is aver-
aged over the statistical ensembles of each parameter set,
effectively distinguishing between the static regime (where
simulations eventually become stationary) and the dynamical
regime (where simulations remain nonstationary).
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FIG. 7. Fourier analysis was performed on the lattices for both the MF and CA models, using statistical ensembles of ten simulations
conducted with identical parameters as those used in the simulations on the first super-diagonal (MF model) and the main diagonal (CA
model). (a) The Fourier spectra, averaged over the statistical ensemble and best-fit distributions, are plotted against radial wave number k
(k2 = k2

x + k2
y ) increasing to the right. The spectra for the MF model are depicted in red, while those for the CA model are shown in blue (static

regime) and green (dynamic regime). (b) The mean value of the best-fit distributions, averaged over the statistical ensemble, is displayed,
with error bars representing the standard deviation. The left side (blue curve) represents the static regime, while the right side (red and green
curves) represents the dynamic regime. All three curves demonstrate that for both systems the wave number decreases in every regime as
diffusion increases. (c) The nonstationarity n is displayed in (c). As diffusion increases, the final lattice states gradually transit from static to
nonstationary (n increasing).

This analysis of the underlying trends in pattern formation
across both models demonstrates that the behavior of the MF
model reflects that of both the static and dynamic regimes of
the CA model: an increase in diffusion results in a decrease of
the wave number of the patterns, which mirrors what could
be inferred by examining Figs. 5 and 6 as nonstationarity
increases.

D. Dominance of strategies

Increasing either diffusion frequency (νT or νC), which
corresponds to moving rightward or downward in Fig. 6,
triggers regime changes in the CA model’s behavior. Moving
along both axis induces the formation of large-scale structures
before well-mixed regimes take over (rightmost and bottom
panels in Fig. 6). In these well-mixed regimes, the stochastic
extinction of one strategy can occur: unlike in the MF model,
where populations are continuous values that can come close
to but never actually reach zero, the populations in the CA
model are discrete. Consequently, if a strategy’s population
reaches zero, that species becomes extinct for the remainder of
the simulation, and one of the two remaining strategies will be
further eliminated, as outlined in Sec. III A. Careful inspection
moreover reveals that upon moving rightward or downward
on Fig. 6, the system undergoes configuration changes that
are not symmetrical about the main diagonal: in these panels,
an increase in νT results in a more rapid rise of cooperator
populations (ALLC and TFT), contrasting with increases in
νC where populations of parasites (ALLD) otherwise tend to
dominate.

Investigating further this dissimilarity across error rates,
Fig. 8 displays resulting population fractions represented as
RGB color coding, each value calculated from statistical en-
sembles of ten realizations with random initial conditions,
with the vertical axis showing the error rate and the horizontal
axis representing the diffusion frequency. In Fig. 8(a), the
horizontal axis represents νC , while νT is three orders of mag-
nitude smaller (i.e., νT = νC × 10−3). In contrast, Fig. 8(b)
represents νT on its horizontal axis, with νC three orders
of magnitude smaller. Slicing horizontally across Figs. 8(a)
and 8(b) at log10 p = −2 corresponds to moving along the
lower and upper dotted white diagonals in Fig. 6, respectively.
Contour lines in Fig. 8 again represent the degree of nonsta-
tionarity, as calculated via Eq. (24) and averaged over each
ten-member ensemble.

Figure 8 illustrates the contrasting effects that varying ei-
ther interchange frequency and large-scale structure formation
have on resulting population fractions. Figure 8(a), where
νT � νC , and Fig. 8(b), where νC � νT , show crucial dif-
ferences: while at low interchange frequencies νC-dominated
diffusion favors TFT more explicitly, moving rightward on
both panels reveals that cooperative strategies (ALLC and
TFT) takes hold for much lower values of the interchange
frequency—one exception to this being when the error rate
is very high (log10 p � −1.0). Simply put, the system reaches
an absorbing state where TFT invades the lattice much earlier
when νT is increased, compared to the scenario where νC is
increased. Large-scale pattern formation regions on Fig. 6
yield higher population fractions for cooperating strategies
(ALLC and TFT) in the corresponding regions on Fig. 8(b)
for νT -led diffusion. The implications of TFT-driven diffusion

014301-9



ALEXANDRE CHAMPAGNE-RUEL et al. PHYSICAL REVIEW E 110, 014301 (2024)

FIG. 8. Final population fractions, shown as RGB color coding,
for cellular automaton simulations of the spatial IPD, which includes
diffusion with both varying interchange frequencies and error rates.
Population fractions were averaged over statistical ensembles of ten
realizations of the simulation with random initial conditions for each
set of parameters. Other parameters such as lattice size, IPD game
length and number of iterations are identical to those of simulations
shown previously on Fig. 6. The horizontal axis represents inter-
change frequencies, where (a) shows the one associated with strategy
ALLC (TFT’s interchange frequency being three orders of magnitude
smaller) and vice versa for (b). The vertical axis displays the error
rate, ranging from a few errors per game (p = 10−3) to its maximum
where game dynamics is random (p = 0.5). Contour lines show the
degree of nonstationarity, where values approaching zero indicate
systems that become stationary over time, whereas those with higher
values continue to evolve. Moving along the white dotted lines on
both (a) and (b) amounts to moving across lower and upper diagonals
on Fig. 6, respectively.

(νT � νC) and ALLC-driven diffusion (νT � νC) thus result
in very different simulation outcomes. In the latter scenario,
parasites gain an advantage, whereas in the former scenario,
cooperators are favored at considerably lower interchange
frequencies.

Differences between the two regimes shown in Fig. 8 are
however muddled due to the coupling of interchange frequen-

cies discussed in Sec. IV A. System dynamics also differs
significantly in parameter regions where the error rate p ap-
proaches its maximum, which are shown in the upper regions
of both panels on Fig. 8. Importantly, in the regime where
νT � νC , defectors (ALLD) thrive at high error rates coupled
with high interchange frequencies—a behavior which is not
observed in the νT � νC scenario.

V. CONCLUSION

The emergence, promotion, and maintenance of cooper-
ation is an essential feature of various natural phenomena,
whether at small or large scale. Our work sheds light on how
the presence of diffusive processes in physical systems affects
the interplay of strategies competing in the spatial iterated
prisoner’s dilemma. We based our analysis on a deterministic
cellular automaton model (Sec. II), from which we derived
a mean-field model in which we introduced linear diffusion
(Sec. III). We further investigated the observed pattern forma-
tion through linear stability analysis, then used diffusion by
interchange to induce similar dynamics in the deterministic
cellular automaton model to characterize its effect on the
dominance of strategies (Sec. IV). Our results indicate that
the emergence of patterns whose characteristic length com-
pares with the system’s size—a behavior observed in other
classes of systems such as autocatalytic models—significantly
influences the populations of strategies playing the IPD and,
importantly, is found to favor cooperation.

Our investigations motivate further research in analyzing
how diffusion can enable the rise of cooperation in various
natural systems. While certain classes of systems such as
autocatalytic reaction-diffusion systems are known to display
pattern formation, we have shown that similar behavior can
emerge in other diffusive systems, with these dynamics fos-
tering cooperative behavior. Further work is needed in order
to analyze how the various diffusive processes at work in the
context of specific natural systems—such as bacterial colonies
or bird flocks—influence coordinated actions and enable the
emergence of cooperation between individuals.

Animations for simulations presented in this paper are
available online [84].
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