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Adaptive delayed feedback control for stabilizing unstable steady states
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Delayed feedback control is a commonly used control method for stabilizing unstable periodic orbits and
unstable steady states. The present paper proposes an adaptive tuning delay time rule for delayed feedback
control focused on stabilizing unstable steady states. The rule is designed to slowly vary the delay time,
increasing the difference between the past and current states of dynamical systems, which induces the delay
time to automatically fall into the stability region. We numerically confirm that the tuning rule works well for
the Stuart–Landau oscillator, FitzHugh–Nagumo model, and Lorenz system.
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I. INTRODUCTION

In the field of nonlinear science, considerable research has
been devoted to stabilizing periodic orbits (UPOs) or steady
states (USSs) embedded within nonlinear dynamical sys-
tems [1]. Delayed feedback control (DFC) [2], one of the most
popular methods capable of stabilizing both UPOs [3–11] and
USSs [12–20], has garnered attention, since its control law
does not rely on information on the desired UPOs or USSs.
DFC feeds back a simple signal proportional to the difference
between the past (i.e., delayed) and current states of a dy-
namical system, and can thereby achieve stabilization without
complicated calculations. Once DFC successfully achieves
the stabilization of a UPO or USS embedded within a system,
the stabilized orbit or state can be maintained by a tiny control
energy owing to the noninvasiveness of DFC.

To achieve stabilization, the two parameters for DFC, the
feedback gain and the delay time, have to be appropriately
chosen. Especially, the delay time has to be chosen based on
the period of the UPOs or the frequency around the USSs.
Thus, the choice of the delay time becomes challenging for
real-world situations where exact knowledge of the UPOs
or USSs is not available. Furthermore, even after setting
an appropriate delay time, stabilization is not maintained in
situations where the parameters for the controlled systems
shift to other values. To address these challenges, adaptive
tuning techniques for the two parameters have been reported
as follows: UPOs and USSs can be stabilized by techniques
with adaptive feedback gain [21–24]; UPOs can be stabilized
by techniques with adaptive delay time [25–31]. However,
to the best of the authors’ knowledge, there have been few
efforts to apply techniques with an adaptive delay time to the
stabilization of USSs.1

It must be emphasized that, in real applications, such as
metal cutting processes [32], combustors [33], direct current
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1Subsection V C will discuss the techniques with adaptive delay

time [29,30] which have a potential for stabilizing USSs.

power systems [34], and crowd synchrony on a bridge [35],
self-excited periodic oscillations or chaotic oscillations can
cause performance degradation or structural damage. For such
applications, the stabilization of USSs is a powerful solution
to eliminate these harmful oscillatory behaviors. Among the
control methods for stabilizing USSs, DFC is one of the most
practical methods,2 since DFC can easily obtain the control
signal and also maintain the stabilized state by a tiny control
energy owing to its noninvasiveness. However, for some delay
times, DFC may induce stabilization of UPOs, which causes
a harmful oscillatory behavior in such applications.

The present paper proposes additional functionality to con-
ventional DFC, using a technique with adaptive tuning of the
delay time, which enhances the usability and performance of
DFC. This technique is focused on stabilizing USSs based on
the gradient descent method. The tuning rule is designed such
that the delay time varies sufficiently slowly to increase the
difference between the past and current states of dynamical
systems. Such an increase induces the delay time to automat-
ically fall into the stability region for conventional DFC. In
contrast, the tuning rules aimed at stabilizing UPOs reported
in previous studies [25–29] are designed to decrease the dif-
ference. This contrast means that our tuning rule can avoid the
stabilization of UPOs and the consequent harmful oscillatory
behavior. Here, we summarize the features of our tuning rule
as follows: It is simple and easily implemented, it does not
require information about the desired USSs, it can prevent
periodic orbits, and it can stabilize some types of USSs that
conventional DFC cannot stabilize. These features are useful
for real-world situations where oscillatory behavior is harmful
and information on the dynamical systems to be stabilized is
not available.

The structure of the present paper is as follows. Section II
demonstrates limitations in using conventional DFC for sta-
bilizing USSs through some numerical examples. Section III

2Section VI will provide an overview of the control methods for
stabilizing USSs, and then clarify the relationship between them and
our proposal.
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proposes the adaptive tuning rule and numerically confirms its
performance on linear systems. Section IV applies the adap-
tive tuning rule to the Stuart–Landau oscillator, the normal
form of Hopf bifurcation. Section V numerically confirms
the effectiveness of the adaptive tuning rule for other popu-
lar oscillators, the FitzHugh–Nagumo model and the Lorenz
system, and discusses the relation to previous studies dealing
with adaptive tuning of the delay time. Section VI overviews
several control methods for stabilizing USSs with noninvasive
properties. Section VII concludes our results.

II. LIMITATIONS IN USING DFC

This section outlines limitations in using DFC. We con-
sider a Stuart–Landau (SL) oscillator with conventional DFC,
as used in Ref. [36],

ż(t ) = [λ + iω − (1 + ib)|z(t )|2]z(t ) − k[z(t ) − z(t − τ )],
(1)

where z(t ) = x(t ) + iy(t ) is a complex state variable at time
t ∈ R. The real parameters, λ > 0 and ω > 0, correspond
to the damping and intrinsic frequency near the steady state
(x, y) = (0, 0), respectively. The parameter b ∈ R represents
the frequency dependency on the oscillator amplitude. The
SL oscillator without control (i.e., k = 0 or τ = 0) has an
unstable steady state and a stable limit cycle with amplitude√

λ and frequency ω − bλ. The conventional controller used
in Eq. (1) has two parameters: feedback gain k ∈ R and delay
time τ � 0.

Figure 1(a) shows the time series of x(t ) = Re[z(t )] for
λ = 1, ω = π , b = 0.8π , and k = 0.6, for two different delay
times, τ = 1.0 (broken black line) and τ = 1.3 (solid gray
line). System (1) without control runs for t ∈ [0, 20) with
the initial state (x(0), y(0)) = (1, 0). After that, DFC starts
to work at t = 20 with the initial function which is the tra-
jectory of system (1) without control for t ∈ [20 − τ, 20).
Throughout this paper, we use such initial functions (see our
previous study [37] and references therein for more details)
and the MATLAB function ddesd for all numerical simulations.
As can be seen, the state variable does not converge to the
steady state (i.e., stabilization fails) for both τ = 1.0 and 1.3.
Note that, the steady state is analytically guaranteed to be
locally stable for τ = 1.0 and locally unstable for τ = 1.3.
Hence, for τ = 1.3, the behavior of the state variable agrees
with the stability. In contrast, for τ = 1.0, the state variable
fails to converge to the stable steady state because the initial
state is not within its basin. A well-known major limitation
when using DFC is that the local dynamics of the steady
state (i.e., the Jacobian matrix) is required when designing τ

to obtain a locally stable steady state. The above numerical
examples indicate another limitation: Stabilization fails even
with a stable steady state.

To avoid these limitations, the present study proposes ap-
plying adaptive tuning of the delay time in DFC,

τ̇ (t ) = −β tanh g(t ), (2a)

u̇(t ) = γ {z(t − τ ) − u(t )}, (2b)

g(t ) := −h(z(t ) − z(t − τ ), γ {z(t − τ ) − u(t )}), (2c)

FIG. 1. Time series of real part x(t ) of state variable z(t ) in a
Stuart–Landau oscillator with (a) conventional DFC (1) and (b) adap-
tive tuning (2). The parameters are set to λ = 1, ω = π , b = 0.8π ,
and k = 0.6. Control starts at t = 20. In panel (a), two different delay
times, τ = 1.0 (broken black line) and τ = 1.3 (solid gray line), are
used. In panel (b), the time series of the delay time τ (t ) with initial
value τ (0) = 0.1 for β = 0.1 and γ = 100 is also plotted.

where u(t ) ∈ C is an additional state and the function h is
defined by

h(z1, z2) := z1z̄2 + z̄1z2, (3)

for z1,2 ∈ C. Here, the parameter β > 0 and the parameter
γ > 0 are set to a small value and a large value, respec-
tively. The background to how we obtain Eq. (2) will be
explained in the next section. Figure 1(b) shows the time
series of x(t ) = Re[z(t )] and delay time τ (t ) in system (1)
with adaptive tuning (2) applied with β = 0.1 and γ = 100.
The parameters and the initial condition are the same as those
in Fig. 1(a). The initial delay time is set to τ (0) = 0.1 and
DFC with adaptive tuning (2) starts at t = 20. It can be seen
that τ (t ) slowly increases to τ (76.6) = 1.83. As a result, the
amplitude and frequency of the oscillating x(t ) decreases and
increases, respectively. Eventually, τ (t ) decreases and then
converges to 1.05, and x(t ) successfully reaches the steady
state.

III. ADAPTIVE TUNING OF DELAY TIME

This section details the concept and tuning rule (2) used in
the preceding section.

A. Stability boundaries of delay time [15,16]

It is clear that the stability of the steady state in sys-
tem (1) with adaptive tuning (2) cannot be analyzed using
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FIG. 2. Stability regions bounded by curves (7) for λ = 0.2 and
ω = π in the k–τ plane. The solid and dotted lines represent τ1,n

and τ2,n, respectively. The regions are given by τ ∈ (τ1,n, τ2,n). The
broken lines represent τ ∗

n satisfying Eq. (6) and k = λ/2.

characteristic functions, since the dynamics of the steady state
depends on the state-dependent time delay. However, for small
values of β, the delay time τ (t ) in the tuning rule (2) varies
quite slowly compared to the intrinsic frequency of USSs.
Thus, although we cannot provide a rigorous analysis of the
stability, it is reasonable to consider that understanding the
behavior of dynamical systems under conventional DFC (i.e.,
β = 0) around USSs is helpful for evaluating systems under
DFC having a tuning rule (2) with small β.

Now, let us briefly review the stability boundaries of the
delay time for conventional DFC [15,16]. We consider an
unstable focus near the Hopf bifurcation point. The linear
dynamics around the focus with conventional DFC can be
described by

ż(t ) = (λ + iω)z(t ) − k[z(t ) − z(t − τ )]. (4)

The stability of system (4) is governed by the characteristic
equation,

� + k(1 − e−�τ ) − (λ + iω) = 0. (5)

The rightmost root of Eq. (5) has a minimum real part if the
delay time is set to [16]

τ = τ ∗
n = (2n − 1)π/ω, n = 1, 2, 3, . . . . (6)

The stability boundaries of τ for k > λ/2 [15] are given by

τ1,n = 2(n − 1)π + arccos
(

k−λ
k

)
ω − √

(2k − λ)λ
, (7a)

τ2,n = 2nπ − arccos
(

k−λ
k

)
ω + √

(2k − λ)λ
, (7b)

for n = 1, 2, 3, . . . .
The boundaries (7) for λ = 0.2 and ω = π in the k–τ plane

are plotted in Fig. 2. The solid and dotted lines represent τ1,n

and τ2,n, respectively. For k satisfying τ1,n < τ2,n, system (4)

FIG. 3. Behavior of state variable z(t ) = x(t ) + iy(t ) of sys-
tem (4) for fixed τ = 1.6 with λ = 0.2, ω = π , and k = 0.2: The
open circle represents the unstable focus (x, y) = (0, 0). The three
dots indicate z(t ), z(t − τ ) with τ = 1.6, and z(t − τ ∗

1 ) with τ ∗
1 = 1.

is stable if and only if τ ∈ (τ1,n, τ2,n) holds. The broken lines
represent τ satisfying Eq. (6) and k = λ/2.

B. Concept of adaptive tuning

As mentioned in Sec. II, a limitation with DFC is that an
appropriate value τ for inducing stability cannot be designed
if ω or λ is unknown [see Eq. (7)]. To avoid this limitation, the
present study adds an adaptive function, which automatically
tunes τ (t ) slowly, to the controller. An intuitive concept of
this tuning is that τ (t ) automatically moves inside the stability
regions (τ1,n, τ2,n) at a slow pace. We note that this concept
can be implemented if τ (t ) behaves as τ̇ (t ) > 0 below τ1,n

and as τ̇ (t ) < 0 above τ2,n.
It is obvious that, for τ slightly below τ1,n or above τ2,n,

Eq. (5) has an unstable complex root near the imaginary axis.
As τ (t ) moves slowly, for such τ , after a sufficiently long
time has passed, the state variable behaves as for conven-
tional DFC, which can be expressed by z(t ) ∼ exp [(p + iq)t],
where p and q represent the damping and the frequency of
the unstable rightmost root �, respectively, and the symbol ∼
denotes that the left-hand side of the equation is proportional
to the right-hand side. The behavior for fixed τ = 1.6 with
λ = 0.2, ω = π , and k = 0.2 is illustrated in the x–y plane in
Fig. 3. The state z(t ) moves spirally outward from the unstable
focus (0,0) represented by the open circle, with frequency q.
The three dots in Fig. 3 represent the current state z(t ), the past
state z(t − τ ) with τ = 1.6 > τ2,1, and the past state z(t − τ ∗

1 )
with τ ∗

1 = 1. To stabilize the focus, τ must decrease from 1.6
and satisfy τ ∈ (τ1,1, τ2,1) with τ1,1 = 0.534 and τ2,1 = 1.410.
This corresponds to the fact that z(t − τ ) moves away from
z(t ) in the direction of the arrow on the phase plane in Fig. 3.
It can be expected that z(t ) will converges to (0,0) when τ

reaches τ ∗
1 , because the control signal −k[z(t ) − z(t − τ )]

acts to pull z(t ) to (0,0). Based on this concept and the
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well-known gradient descent method, we provide the details
of the adaptive tuning below.

C. Control law for adaptive tuning

We introduce a negative scalar-valued function based on
the difference between z(t ) and z(t − τ ),

	(t, τ ) := −|z(t ) − z(t − τ )|2 � 0, (8)

which becomes zero when z(t − τ ) = z(t ) holds. Note that
	(t, τ ) decreases with increasing difference between z(t ) and
z(t − τ ). In the case of Fig. 3, if τ approaches τ ∗

1 , then 	(t, τ )
becomes smaller3 compared to 	(t, 1.6). To realize the adap-
tive tuning concept, τ (t ) based on the gradient descent method
should be tuned by

τ̇ (t ) = −β
d	(t, τ )

dτ
. (9)

Obviously, it is not easy to numerically implement the right-
hand side of Eq. (9) because, in practical situations, the
derivative signal of 	(t, τ ) has to be produced from noisy
measurements of z(t ). Such a derivation with noise induces
large undesirable high-frequency fluctuations of τ̇ (t ). To
avoid such fluctuations, we use two approximations. The first
approximation, under the assumption that τ (t ) moves suffi-
ciently slow, is as follows:

d	(t, τ )

dτ
= − h

(
z(t ) − z(t − τ ),

d

dτ
[−z(t − τ )]

)
,

≈ − h(z(t ) − z(t − τ ), ż(t − τ )), (10)

where the symbol ≈ denotes an approximation between the
left- and right-hand sides of equation. The time derivative
ż(t − τ ) in Eq. (10) is still weak against noise. Thus, we em-
ploy the second approximation as follows: the time derivative
can be estimated via a low-pass filter (2b), ż(t − τ ) ≈ γ [z(t −
τ ) − u(t )], where the cutoff frequency parameter γ should be
sufficiently large for z(t − τ ) − u(t ) to be close to ż(t − τ )
(see Ref. [28]). As a result, adaptive tuning (2) requires only
the current state z(t ) and the past state z(t − τ ), which can be
easily measured. In addition to the approximations, for τ (t )
to be varied slowly, the hyperbolic tangent function is used to
restrict g(t ) within (−1,+1) and the parameter β > 0, which
determines the variation rate of tanh g(t ), is chosen to be
sufficiently small. In summary, adaptive tuning (2) is derived
from ideal tuning based on the gradient descent method (9)
with the mentioned approximations and restriction.

The main purpose of the present paper is to show that
adaptive tuning (2) works well for various dynamical sys-
tems without requiring knowledge of USSs. The effectiveness
of the method is demonstrated by the results of numerical
simulations provided in Secs. IV and V. Unfortunately, it is
quite difficult to analytically prove that adaptive tuning (2)

3It should be noted that, if the ideal situation, p = 0 and q = ω,
always holds, 	(t, τ ) takes a minimum value at τ ∗

1 . However, in
general, this situation does not hold, as in Fig. 3, where 	(t, τ ) takes
a minimum value at τ = 0.94, only slightly different from τ ∗

1 = 1.

works well because it is governed by dynamical equations that
include two factors, the nonlinearity and the state-dependent
delay time in Eq. (2). Despite this difficulty, in the neighbor-
hood of USSs with the assumption of small β, we can show
that the behavior of τ (t ) in a linear system (4) with adaptive
tuning (2) exhibits the following properties (see Appendix A
for more details).

Property 1. τ (t ) slightly below τ1,n or slightly above τ2,n

moves inside of the stability regions due to τ̇ (t ) > 0 or τ̇ (t ) <

0, respectively.
Property 2. Once τ (t ) falls into the stability region, the

stabilization is achieved with τ̇ (t ) → 0 as t → +∞.
Note that Property 1 describes the behavior of τ (t ) only

near the stability boundaries. The next subsection numerically
supports these properties and shows that adaptive tuning (2)
works well even for an initial τ (0) far from the boundaries.

FIG. 4. Behavior of linear system (4) with adaptive tuning (2):
(a) ω ∈ {π, 2π, 0.8π}, (b) τ1,1, τ2,1, τ (t ), and (c) x(t ) = Re[z(t )].
The parameters are fixed as λ = 0.2, k = 0.2, β = 0.1, and γ = 100.
The initial delay time is set to τ (0) = 0.1, and DFC with adaptive
tuning starts at t = 5.
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D. Numerical test for linear systems

Let us numerically confirm the performance of adaptive
tuning (2) for linear system (4). To confirm that Properties 1
and 2 are satisfied and adaptive tuning (2) works well even for
the initial τ far from the boundaries, we fix the parameters
λ = 0.2, k = 0.2, β = 0.1, and γ = 100, while ω shifts to
the three values, π , 2π , and 0.8π , at long intervals as shown
in Fig. 4(a). Gaussian noise with zero mean and a variance
of 0.0001 is applied to both the real and imaginary parts
of the right-hand side of Eq. (4). The initial values are set
to (z(0), u(0), τ (0)) = (0.1, 0, 0.1), and DFC with adaptive
tuning starts at t = 5. Figure 4(b) illustrates the time series
of τ (t ) and the stability boundaries (7) for the three values
of ω. Note that τ (0) is set to a value slightly above 0. Since
	(t, τ ) takes its maximum value of 0 at τ = 0, a decrease
in 	(t, τ ) corresponds to an increase in τ (t ), for which τ (t )
approaches the stability boundary τ1,1. The time series of x(t )
is shown in Fig. 4(c). For t ∈ [0, 12], the amplitude of x(t )
increases because τ (t ) /∈ (τ1,1, τ2,1). For t ∈ [5, 25], τ (t ) in-
creases and then moves inside the stability region (τ1,1, τ2,1).
For t ∈ [25, 150], τ (t ) remains within the region and thus x(t )
converges to zero. At t = 150, as ω shifts to 2π , τ (t ) jumps
out of the stability region. For t ∈ [150, 300], the adaptive tun-
ing takes τ (t ), which is far from the boundaries for ω = 2π at
t = 150, into the stability region, and τ (t ) automatically stops
changing after achieving stabilization. Similar phenomena
also occur for t ∈ [300, 500] for ω = 0.8π . These numerical
results support the two properties and the performance of
adaptive tuning (2) for τ (t ) far from the boundaries.

IV. STABILIZATION OF SL OSCILLATOR

Let us apply adaptive tuning (2) to the Stuart–Landau os-
cillator, the normal form of Hopf bifurcation. The dynamics
of SL oscillator (1) with adaptive tuning (2) is described
by the polar coordinate expression of complex numbers,
z(t ) = r(t )eiθ (t ):

ṙ(t ) = λr(t ) − r3(t ) − k(r(t )

−r[t − τ (t )] cos {θ [t − τ (t )] − θ (t )}), (11a)

θ̇ (t ) = ω − br2(t )

+k

(
r[t − τ (t )]

r(t )
sin {θ [t − τ (t )] − θ (t )}

)
. (11b)

If τ is fixed, then a limit cycle exists with ampli-
tude r∗ = r(t ) = r(t − τ ) and frequency � = {θ (t ) − θ (t −
τ )}/τ , which satisfy ṙ(t ) = 0 and θ̇ (t ) = �. We set the pa-
rameters to λ = 1, ω = π , k = 0.6, β = 0.1, and γ = 100.
Note that the stability region for the steady state, which is
determined by Eq. (7), is given by

τ ∈ (τ1,1, τ2,1) = (0.8538, 1.1097). (12)

Now we show the behavior of SL oscillator (11) with adaptive
tuning (2) for three cases, b = 0, b < 0, and b > 0.

For b = 0, the frequency of SL oscillator (11) without
control (i.e., k = 0 or τ = 0) is independent of its ampli-
tude and the oscillator has a stable limit cycle with period
2. The trajectory of SL oscillator (11) with adaptive tuning
(2) in the τ–r phase plane is shown in Fig. 5(a), where the
initial amplitude r(0) = 1 is fixed and the three initial delays

FIG. 5. Trajectories of Stuart–Landau oscillator (11) with adap-
tive tuning (2) for (a) b = 0, (b) b = −4π , and (c) b = 0.8π . The
parameters are set to λ = 1, ω = π , k = 0.6, β = 0.1, and γ = 100.
The black [and gray in panel (c)] dots, the solid lines, and the squares
represent the initial states, the trajectories, and convergence point on
the steady state, respectively. The stable and unstable steady states at
r = 0 are described by the gray solid and dotted lines, respectively.
The stable and unstable r∗ without tuning are plotted by the cyan
(light gray) dots and red (black) crosses. The two big black crosses
in panel (c) correspond to Fig. 1(a).

τ (0) = 0.1, 1.9, and 2.1 represented by the three black
dots are used. DFC and the tuning start at time t = 20. The
trajectory for each τ (0) is plotted by a solid black line. The
amplitude r∗ of the periodic solutions for SL oscillator (11)
without adaptive tuning (2) (i.e., with only the conventional
DFC) are plotted. The cyan (light gray) dots and red (black)
crosses represent stable and unstable r∗. The solid and dotted
gray lines indicate the stable and unstable steady states r∗ = 0.
Supercritical Hopf bifurcation occurs at both τ = τ1,1 and
τ = τ2,1. We note that, if τ (t ) varies very slowly, the trajectory
should move along a stable r∗. As can be seen in Fig. 5(a), the

014214-5



KOKI YOSHIDA AND KEIJI KONISHI PHYSICAL REVIEW E 110, 014214 (2024)

trajectories with τ (0) = 0.1 and 1.9, where τ (0) are smaller
than the period 2 of the stable limit cycle in oscillator (11)
without control, follow the downward curve for the stable r∗,
and then eventually fall within the stability region (12), where
the trajectories remain at r∗ = 0. The square represents the
steady state where the trajectory converges. In contrast, while
the trajectory with τ (0) = 2.1 greater than the period 2, also
follows the stable r∗, it does not converge on r∗ = 0 because
r∗ turns unstable and no stability region exists around τ = 3.
As a result, the trajectory alternates between following r∗ and
jumping to r∗, and thus the stabilization fails for τ (0) = 2.1.

For b < 0, the frequency of SL oscillator (11) without
control increases with an increase in its amplitude. Figure 5(b)
shows the trajectory and r∗ for b = −4π , where SL oscillator
(11) without control has a stable limit cycle with period 0.4.
The stability of r∗ = 0 is equivalent to that for b = 0; how-
ever, r∗ > 0 and its stability for b < 0 is different from that for
b = 0. The supercritical (subcritical) Hopf bifurcation occurs
at τ = τ1,1 (τ = τ2,1). The trajectory with τ (0) = 0.1, which
is smaller than the period 0.4, follows the downward curve
for the stable r∗, and then falls within the stability region. In
contrast, the trajectory with τ (0) = 0.6, which is greater than
the period 0.4, tracks down only for a period because r∗ turns
unstable.

For b > 0, the frequency of SL oscillator (11) without
control decreases with an increase in its amplitude. Figure 5(c)
shows the trajectory and r∗ for b = 0.8π , where SL oscilla-
tor (11) without control has a stable limit cycle with period
10. The stability of r∗ = 0 is equivalent to that for b = 0
and b = −4π ; however, r∗ > 0 and its stability for b > 0 is
different from that for b = 0 and b = −4π . Note that the
two big black crosses in Fig. 5(c), where stable limit cy-
cles occur in oscillator (11), correspond to the time series
of Fig. 1(a). The subcritical (supercritical) Hopf bifurcation
occurs at τ = τ1,1 (τ = τ2,1). The trajectory with τ (0) = 0.1
consists of the following three processes: (i) The trajectory
starts from τ (0) = 0.1 and follows the stable r∗ downwards;
(ii) The trajectory jumps down to the other stable r∗; (iii)
The trajectory follows the other stable r∗ downwards and then
falls within the stability region. Process (ii) occurs because
the stable r∗ in process (i) disappears due to the saddle-node
bifurcation. Note that the time series of τ (t ) in Fig. 1(b) corre-
sponds to the trajectory (i.e., solid black line) of Fig. 5(c). The
behavior of τ (t ) in Fig. 1(b) can be explained by these three
processes: For process (i), τ (t ) increases from τ (0) = 0.1; For
process (ii), the trend of τ (t ) changes from an increase to a
decrease; For process (iii), τ (t ) decreases to 1.05. In addition,
the trajectory with τ (0) = 5.9 is plotted by the gray solid line.
It can be observed that τ (t ) follows the stable r∗, which leads
to stabilization.

The numerical results in Fig. 5 reveal that the stabilization
depends on the structure of r∗, the type of bifurcation, and the
initial delay τ (0). Furthermore, for all b ∈ {0,−4π, 0.8π}, we
see that the stabilization is achieved when τ (0) is smaller than
the period of the stable limit cycle without control. We have
numerically confirmed that the stabilization occurs for any
τ (0) smaller than the period (see Appendix B). In contrast,
the stabilization fails in some cases when τ (0) is greater than
the period. This implies that for small τ (0), the tuning induces
stability independently of b.

FIG. 6. Time series of state variable x(t ) and delay time τ (t ) in
FHN model (13) with adaptive tuning (2) for k = 0.5, β = 0.25, and
γ = 100.

V. OTHER OSCILLATORS

This section numerically confirms that adaptive tuning
(2) works well for two other commonly used oscillators,
the FitzHugh–Nagumo model [38,39] and the Lorenz sys-
tem [40]. In addition, we discuss two previous studies [29,30]
and compare the control performance of tuning rule (2) to that
of the previous studies.

A. FitzHugh–Nagumo model

In the FitzHugh–Nagumo (FHN) model, the oscillation
frequency of the limit cycles is highly dependent on the am-
plitude. The FHN model with DFC is described by

ẋ(t ) = x(t ) − 1
3 x3(t ) − y(t ) + 0.5 − k{x(t ) − x[t − τ (t )]},

(13a)

ẏ(t ) = 0.08[x(t ) + 0.7 − 0.8y(t )], (13b)

where x(t ) ∈ R and y(t ) ∈ R are the state variables. The
FHN model (13) without control has an unstable steady state
(x, y) = (−0.8048,−0.1311) and a stable limit cycle with a
period of 39.5. Note that, for real situations, it is reasonable
to restrict the applicable variables for feedback. Thus, we
suppose that DFC with k = 0.5 only uses the variable x, while
adaptive tuning (2) uses x(t ) instead of z(t ). The parameters
for tuning rule (2) are set to β = 0.25 and γ = 100. Fig-
ure 6 shows the time series of x(t ) and τ (t ) from the initial
states (x(0), y(0), u(0), τ (0)) = (2.1, 0, 0, 0.1), where DFC
with adaptive tuning (2) starts at t = 200. We observe that
the adaptive tuning can induce stabilization even with a single
variable, x(t ).

We now investigate the influence of the initial delay τ (0) ∈
[0.1, 100] on the performance of adaptive tuning (2). The
parameters and other initial conditions are the same as for
Fig. 6. The amplitudes of x(t ) and the delay τ (t ) at t = 3000
are plotted against τ (0) ∈ [0.1, 100] in Fig. 7. The solid gray
line represents the amplitudes of x(t ) for t ∈ [2900, 3000].4

The solid and dotted black lines represent the lower and upper
delay boundaries of the stability region. These boundaries
are numerically obtained by DDE-BIFTOOL [41], a bifur-
cation analysis tool for time-delayed systems. We see that

4Amplitude(x) := maxt∈[2900,3000] {x(t )} − mint∈[2900,3000] {x(t )}.
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FIG. 7. Influence of initial delay time τ (0) on adaptive tuning (2)
for FHN model (13). The horizontal axis represents the initial delay
time τ (0). The solid gray line represents the amplitudes of x(t ) for
t ∈ [2900, 3000]. The solid black line and dotted black line represent
the lower and upper delay boundaries for the stability region. The
open circles indicate the delay time τ (t ) at t = 3000.

τ (t ) at t = 3000, plotted as the open circles, lies between the
lower and upper delay boundaries if stabilization is achieved
(i.e., the amplitudes of x are zeros). Stabilization is success-
fully achieved for all τ (0) smaller than the period 39.5 of
the stable limit cycle without control. However, for 30% of
τ (0) ∈ (39.5, 100], tuning rule (2) fails to stabilize the USS:
τ (t ) becomes significantly large, and the amplitudes of x are
around 3.3. It can be seen that the success or failure of the
stabilization depends on whether τ (0) is smaller or larger than
the period of the stable limit cycle without control. This result
agrees with that for the SL oscillator in Fig. 5.

B. Lorenz system

Let us consider the Lorenz system [40], a well-known
three-dimensional chaotic system, with DFC,

ẋ(t ) = −10x(t ) + 10y(t ), (14a)

ẏ(t ) = 28x(t ) − y(t ) − x(t )z(t ) − k{y(t ) − y[t − τ (t )]},
(14b)

ż(t ) = − 8
3 z(t ) + x(t )y(t ), (14c)

FIG. 8. Time series of state variable y(t ) and delay time τ (t ) in
Lorenz system (14) with adaptive tuning (2) for k = 0.4, β = 0.01,
and γ = 100.

where x(t ), y(t ), z(t ) ∈ R are the state variables. The Lorenz
system has a saddle (x, y, z) = (0, 0, 0) and two unstable foci
(x, y, z) = (±8.4853,±8.4853, 27). In general, DFC never
stabilizes the saddle due to the odd-number property for
USSs [12,13] (see Appendix C for more details); thus, we
concentrate on the foci. The adaptive tuning (2) uses y(t ) in-
stead of z(t ). The parameters are set to k = 0.4, β = 0.01, and
γ = 100. Figure 8 shows the time series of y(t ) and τ (t ) with
(x(0), y(0), z(0), u(0), τ (0)) = (0.1, 0, 0, 0, 0.1), where DFC
with the tuning starts at t = 40. We see that y(t ) converges on
one of the foci adaptively.

We numerically investigate the influence of τ (0) ∈
[0.1, 20] on the performance of tuning (2). The parameters
and other initial conditions are the same as for Fig. 8. In
Fig. 9, the amplitudes of y(t ) for t ∈ [2900, 3000] (solid gray
line) and τ (t ) at t = 3000 (open circles) are plotted against
τ (0) ∈ [0.1, 20]. We can see that there are several stability
regions with lower and upper delay boundaries (i.e., the solid
and dotted black lines). For all τ (0) ∈ [0.1, 14), τ (t ) adap-
tively moves into the stability region near its initial condition
τ (0), and the amplitude of y(t ) then converges to zero. For
example, with τ (0) = 3.52, 6.93, and 10.55, τ (3000) reaches
3.39, 6.38, and 10.13, respectively. For τ (0) ∈ [14, 20], stabi-
lization cannot be achieved due to a lack of stability regions
around τ (0). It can be concluded from Fig. 9 that τ (0) should
be small to achieve stabilization. Furthermore, we see that the
adaptive tuning works well even for a chaotic system.

C. Comparison to adaptive techniques [29,30]

To the best of our knowledge, adaptive tuning of the delay
time for stabilizing only USSs has not yet been proposed.
However, there are a few adaptive tuning rules for delay time
that have the potential for stabilizing USSs [29,30]. This sub-
section discusses two previous studies [29,30] and compares
the control performance of tuning rule (2) to that of the pre-
vious studies based on numerical simulations. The parameters
(λ, ω, k), the initial amplitude r(0), the tuning start time, and
the symbols of Fig. 5 are also considered.

Nakajima et al. proposed an adaptive tuning rule for sta-
bilizing UPOs [29], but not USSs. However, USSs can be
unintentionally stabilized by this rule [29]. Figures 10(a)–
10(c) show the trajectories of SL oscillator (11) with tuning
for the three cases b = 0, b < 0, and b > 0, respectively.
The circles represent the convergence points on periodic
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FIG. 9. Influence of initial delay time τ (0) on adaptive tuning (2)
in Lorenz system (14). The lines and symbols are the same as those
in Fig. 7.

orbits. As can be seen, the trajectories starting from initial
delays (i.e., black dots) fall down to the stable r∗ [i.e., cyan
(light gray) dots] and follow the stable r∗ upwards. As a
result, they finally converge on periodic orbits (i.e., circles).
Since the tuning rule [29] is intended for stabilizing UPOs,
the trajectories behave to avoid USSs. As an exception, the
trajectory starting from τ (0) = 1.05 (i.e., middle black dot)
shown in Fig. 10(a) falls down to the stable steady state (i.e.,
the square) without crossing the stable r∗. This fact suggests
that the tuning rule [29] can stabilize USSs only when the
initial delay τ (0) is within the stability region. It can be
concluded that the tuning rule [29] performs well in stabilizing
UPOs but does not perform for stabilizing USSs.

Lin et al. proposed an adaptive tuning rule which can sta-
bilize both UPOs and USSs [30]. The tuning rule is described
as

τ̇ = −r1{x[t − τ (t )] − x(t )}, (15a)

k̇ = r2{x[t − τ (t )] − x(t )}2, (15b)

where Eqs. (15a) and (15b) are the rules for the delay time and
the feedback gain, respectively. To facilitate a fair comparison
to the rules of Eq. (2) and of the study of Ref. [29], we do not
use Eq. (15b) and we fix k = 0.6. Figures 11(a)–11(c) show
the trajectories of SL oscillator (11) with this tuning rule. We
now focus on the case b = 0 [see Fig. 11(a)]. The trajectory
starting from τ (0) = 0.1 (i.e., left black dot) converges on the
steady state (i.e., square), thus successfully achieving stabi-
lization of the USS. In contrast, the other trajectories converge

FIG. 10. Trajectories of SL oscillator (11) with adaptive tuning
proposed in Ref. [29] for (a) b = 0, (b) b = −4π , and (c) b = 0.8π .
The parameters (λ, ω, k) and the symbols are the same as in Fig. 5.
The circles represent the convergence points on periodic orbits. We
set η = 0.01 in the rule of Ref. [29]. The initial delay times are set
to (a) τ (0) ∈ {0.8 1.05, 1.2}, (b) τ (0) ∈ {0.3, 0.7}, and (c) τ (0) ∈
{1.1, 1.4}.

on the periodic orbits (i.e., circles), i.e. the stabilization of
the USS fails. Figures 11(a)–11(c) show that the trajectories
starting from the initial delays (i.e., black dots) always move
toward the right with small oscillatory behavior. Then, the
trajectories stop at the steady states with r∗ = 0 or the peri-
odic orbits with r∗ = 1, since these states and orbits satisfy
x(t ) = x[t − τ (t )]. These findings indicate that the successful
stabilization of USSs strongly depends on τ (0).

Now we compare rule (2) to those of the two studies with
regard to the stabilization of USSs. We focus on the set of
initial delays which achieve stabilization of USSs. We notice
that the set for rule (2) is larger than for the two studies. It
should be emphasized that for b = 0.8π > 0, although the
trajectories for the two studies [see Figs. 10(c) and 11(c)]
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FIG. 11. Trajectories of SL oscillator (11) with adaptive tuning
proposed in Ref. [30] for (a) b = 0, (b) b = −4π , and (c) b = 0.8π .
The parameters (λ, ω, k) and the symbols are the same as in Fig. 10.
We set r1 = 0.3 and r2 = 0 in the rule of Ref. [30]. The initial delay
times are set to (a) τ (0) ∈ {0.1 1.2, 2.1}, (b) τ (0) ∈ {0.1, 0.6}, and
(c) τ (0) = 0.1.

cannot converge on a steady state, the trajectories for rule (2)
[see Fig. 5(c)] successfully converge on USS. It may be said
that rule (2) shows the best performance for the stabilization
of USSs.

VI. DISCUSSIONS

It has been widely accepted that the stabilization of USSs
is a powerful solution for eliminating harmful oscillatory be-
havior in real applications; hence, several control methods
for stabilizing USSs with noninvasive properties have been
proposed. This section overviews these methods, which can
be categorized as those using DFC and those not using DFC.

We see that, to achieve stabilization of USSs with DFC,
the delay time has to be carefully chosen from the stabil-
ity ranges. It was reported that the ranges can be expanded

by adding some modifications to DFC. Socolar, Sukow, and
Gauthier reported an improved DFC, known as extended
DFC, in which many previous states are used to generate
control signals [42–44]. Ahlborn and Parlitz applied differ-
ent independent delay times to DFC [45–47]. Gjurchinovski
et al. periodically varied the delay time of DFC at high fre-
quencies [48,49]. Although these modifications are useful for
expanding the stability range of delay, it is necessary to add
a feedback loop, to use an additional delay, or to continue
to vary the delay time. Moreover, to design the delay time
for these modifications, a knowledge of USSs is required. In
contrast, DFC with adaptive tuning (2) does not need such
additions, usage, and continuation, and also does not require
knowledge of USSs.

Let us briefly overview the control methods other than
DFC. It was reported that a derivative control method can
be used to stabilize USSs [50–53]. The method is highly
sensitive to high-frequency noise; thus, alternative methods
resistant to noise that employ a high-pass filter [54] or a
low-pass filter [55,56],5 were proposed. Note that, to design
the feedback gain of such filters, a knowledge of USSs is
required. We are aware of two techniques using filters which
can avoid requiring knowledge of USSs: setting the gain suf-
ficiently high [57] and adaptively tuning the gain [58–61].
Although these techniques are useful for stabilizing unknown
USSs, the feedback gain for these techniques tends to be
very high. For practical implementations, such a high gain
makes the control signals large, which is undesirable for real
situations. In contrast, DFC with adaptive tuning (2) does not
require a high gain. In addition, for real applications where
the implementation of filters is difficult, such as metal cutting
processes [62], DFC with adaptive tuning (2) is a reasonable
solution to eliminate harmful oscillations.

VII. CONCLUSION

The present paper proposes an adaptive tuning rule for the
delay time that stabilizes only USSs based on the gradient
descent method. It was shown that the delay time near the
stability region is automatically tuned to fall into the stabil-
ity region and to remain there. The numerical results for a
Stuart–Landau oscillator reveal that the stabilization with the
tuning rule depends on the structure of stable periodic orbits,
the type of bifurcation, and the initial delay. We found that
for small initial delays, the stabilization is achieved robustly
for bifurcation-type structures. It was numerically demon-
strated that the tuning rule shows good performance even for
the FitzHugh–Nagumo model and Lorenz system. Further-
more, we showed that, from the viewpoint of the stabilization
of USSs, the tuning rule works better than other rules for
stabilizing USSs.
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5The methods with a low-pass filter can stabilize various types of
USSs, if the stability of the filter is set based on its type [55].
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FIG. 12. Influence of initial delay time τ (0) on adaptive tuning (2) for SL oscillator (11). The lines and symbols are the same as those in
Figs. 7 and 9: (a) b = 0 (period 2), (b) b = −4π (period 0.4), and (c) b = 0.8π (period 10).

APPENDIX A: DETAILS FOR PROPERTIES 1 AND 2

This Appendix provides details regarding Properties 1 and
2 in Sec. III C. It should be noted that, since the linear sys-
tem (4) with rule (2) has a state-dependent time delay, its
stability cannot be analyzed based on characteristic func-
tions. However, since τ (t ) varies sufficiently slowly due to
the small value of β, this Appendix discusses the behavior
of τ (t ) on the assumption that z(t ) behaves in almost the
same manner as for conventional DFC. It must be empha-
sized that here we provide a rough estimation of the behavior
without rigorous proof. First, we consider Property 1. Such
approximate behavior is governed by characteristic roots � =
p ± iq, as shown in Fig. 3. Thus, the polar representation
z(t ) = r(t ) exp {iθ (t )} allows us to make the approximation
z(t − τ ) ≈ r(t ) exp [−pτ + i{−qτ + θ (t )}]. As a result, func-
tion (8) can be expressed as

	(t, τ ) = −{r2(t ) + r2(t )e−2pτ − 2r2(t )e−pτ cos qτ }. (A1)

Therefore, we have

d	(t, τ )

dτ
= 2r2(t )e−pτ {pe−pτ − p cos qτ − q sin qτ }. (A2)

It is obvious that p = 0 holds if τ is on the stability boundary
(7). Hence, in the vicinity of the boundary, we have

d	(t, τ )

dτ
≈ −2r2(t )q sin qτ . (A3)

Here, if τ is on the boundary (7), then the imaginary parts of
the characteristic roots [15] are given by

q =
{

ω − √
(2k − λ)λ for τ = τ1,n,

ω + √
(2k − λ)λ for τ = τ2,n.

(A4)

By substituting Eqs. (7) and (A4) into Eq. (A3), we see that
the sign of d	(t, τ )/dτ is negative for τ = τ1,n and positive
for τ = τ2,n. From Eqs. (2) and (10), the sign of τ̇ (t ) is

written as

τ̇ (t ) > 0 for τ = τ1,n,

τ̇ (t ) < 0 for τ = τ2,n.
(A5)

Second, we consider Property 2. Once τ (t ) moves into the
stability region, the state variables converge to z(t ) = z(t −
τ ) = 0 as t → +∞. Thus, we have τ̇ → 0 as t → +∞ due
to rule (2).

APPENDIX B: INFLUENCE OF τ(0) FOR SL OSCILLATOR

This Appendix shows the influence of the initial delay τ (0)
on the performance of adaptive tuning (2) for SL oscillator
(11) in the same manner as in Figs. 7 and 9. The parameters
and other initial conditions are the same as for Fig. 5. The
amplitudes of x(t ) = Re[z(t )] and the delay τ (t ) at t = 3000
are plotted against τ (0) ∈ [0.1, 5] for b = 0, τ (0) ∈ [0.1, 4]
for −4π , and τ (0) ∈ [0.1, 50] for 0.8π in Figs. 12(a)–12(c),
respectively. As can be seen, for any b ∈ {0,−4π, 0.8π}, the
stabilization is successfully achieved for all τ (0) smaller than
the period of the stable limit cycle without control, where the
period is 2 for b = 0, 0.4 for b = −4π , and 10 for b = 0.8π .

APPENDIX C: ODD-NUMBER PROPERTY FOR USSS

The odd-number property for USSs is known as follows:
If the Jacobian matrix at a USS has an odd number of
real positive eigenvalues, then the USS cannot be stabilized
by conventional DFC for any feedback gain and any delay
time [12,13]. As the matrix at the saddle has one positive real
eigenvalue, the property guarantees that the saddle cannot be
stabilized by conventional DFC. This fact shows that, even
with adaptive tuning (2), the saddle cannot be stabilized, since
DFC with tuning at USSs performs as conventional DFC
owing to Property 2.

It is well known that the odd-number property for
UPOs has been refuted [63,64] (see review article [65] and
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references therein). However, it was reported in Ref. [66]
that the property for USSs is still valid for the form

of DFC used in the present paper, as described in
Eq. (14).
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