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Newton-Krylov continuation of amplitude-modulated rotating waves
in sheared annular electroconvection
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We present an approach for studying the primary, secondary, and tertiary flow transitions in sheared annular
electroconvection. In particular, we describe a Newton-Krylov method based on time integration for the com-
putation of rotating waves and amplitude-modulated rotating waves, and for the continuation of these flows
as a parameter of the system is varied. The method exploits the rotational nature of the flows and requires
only a time-stepping code of the model differential equations, i.e., it does not require an explicit code for
the discretization of the linearized equations. The linear stability of the solutions is computed to identify the
parameter values at which the transitions occur. We apply the method to a model of electroconvection that
simulates the flow of a liquid crystal film in the smectic A phase suspended between two annular electrodes and
subjected to an electric potential difference and a radial shear. Due to the layered structure of the smectic A phase,
the fluid can be treated as two-dimensional (2D) and is modeled using the 2D incompressible Navier-Stokes
equations coupled with an equation for charge continuity. The system is a close analog to laboratory-scale
geophysical fluid experiments and thus represents an ideal system in which to apply the method before its
application to these other systems that exhibit similar flow transitions. In the model for electroconvection,
we identify the parameter values at which the primary transition from steady axisymmetric flow to rotating
waves occurs, as well as at which the secondary transition from the rotating waves to amplitude-modulated
rotating waves occurs. In addition, we locate the tertiary transition, which corresponds to a transition from the
amplitude-modulated waves to a three-frequency flow. Of particular interest is that the method also finds a
period-doubling bifurcation from the amplitude-modulated rotating waves and a subsequent transition from the
flow resulting from this bifurcation.
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I. INTRODUCTION

Much can be learned about the fundamental properties of
geophysical fluid systems, such as the atmosphere, by study-
ing laboratory experiments that isolate certain key aspects
of the system and ignore others that do not determine the
essential character of the flow. One such classical example
is the differentially heated rotating fluid annulus experiment
[1–5], in which a fluid is placed in a rotating cylindrical
annulus while the inner and outer walls of the annulus are held
at different temperatures; the flows observed in these experi-
ments resemble those observed in the atmosphere [3]. In many
such systems, the fluid flow undergoes a common sequence of
transitions upon variation of the system’s parameters, e.g., the
magnitude of the differential heating and/or the rotation rate
[6]. In particular, transitions are observed from axisymmetric
flow to rotating waves, then to amplitude-modulated rotat-
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ing waves (often called amplitude vacillating flow) or other
forms of modulated rotating waves, and eventually to irregular
flows [3].

Another example of such a system that has geophysical rel-
evance is the sheared annular electroconvection experiment.
In this system, a thin liquid crystal film suspended between
two annular electrodes is driven to convection by an applied
potential difference while a shear is imparted through a ro-
tation of the inner electrode. The system is a close analog
of some laboratory-scale geophysical flow experiments, e.g.,
those mentioned above [1,2] (see also [7]), and to simpli-
fied models of the rotating equatorial regions of planetary
atmospheres and planetary interiors [8,9]. The radial electrical
forces of electroconvection play the role of radial gravity-
driven thermal buoyancy in a geophysical context, and all
these systems share an SO(2) symmetry. A crucial difference
is in the two-dimensional (2D) nature of electroconvection. In
particular, the electroconvection experiments employ a liquid
crystal in the smectic A phase, which can essentially be con-
sidered as a 2D fluid.
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The sheared annular electroconvection experiment exhibits
a succession of flow transitions similar to those observed in its
geophysical counterparts. In particular, laboratory and numer-
ical studies of sheared annular electroconvection [10–17] have
observed that under small applied electric potential difference,
the system exhibits axisymmetric flow in which the velocity of
the fluid is in the azimuthal direction and the electric current
is carried only by conduction between the annular electrodes,
while the surface charge remains undisturbed by the flow. At a
critical potential difference, a primary transition occurs to ro-
tating waves in which the charge is also convected by the flow,
increasing the total current beyond that of pure conduction.
Beyond this critical potential difference, it is observed that
transitions from the rotating wave state to modulated rotating
waves [14], to localized vortices [15], and subsequently to
unsteady turbulent flow [16,17] are observed. As such, in ad-
dition to being an ideal system in which to study bifurcations
in spatiotemporal pattern formation [18], it is, in particular,
an ideal system in which to study transition phenomena of
geophysical relevance.

We propose to use numerical bifurcation methods to study
flow transitions in such geophysical fluid systems. In par-
ticular, numerical continuation can be used to follow the
solutions corresponding to the steady axisymmetric flow, ro-
tating waves, and amplitude-modulated rotating waves, as
a parameter of the system is varied, and linear stability
analysis can be used to determine transitions from these
solutions. The application of this approach to a model of
sheared annular electroconvection that we present here is an
indication of its effectiveness. In relation to numerical exper-
imentation, i.e., using time-stepping simulations alone, such
bifurcation techniques are able to compute unstable solutions
and are able to unambiguously and accurately determine the
range of parameters over which a flow is stable, even when
the ranges are small. Bifurcation methods can also determine
regions of bistability without relying on finding specific initial
conditions that lead to the different stable solutions. They
can determine the type of bifurcation associated with the
transition, even in the case of subcritical bifurcations, and can
determine the form of the instability leading to the transition.
Thus, a clearer picture of the dynamics of the system can be
discovered. However, the advantages of this approach are bal-
anced by the increase in the required computational resources
in comparison with time-stepping methods alone.

Steady axisymmetric flows correspond to steady solu-
tions of the model equations, while the rotating waves and
amplitude-modulated rotating waves correspond to periodic
orbits and invariant tori, respectively. Numerical methods
have been developed for the parameter continuation of such
solutions in large-dimensional systems, with special interest
in applications to fluid dynamics; see, e.g., [19] for a re-
view. Some such methods, e.g., [20–22], are based on time
integration of the dynamical system. These methods can be
useful, in particular, when a time-stepping (i.e., simulation)
code is already available, as is often the case. The method
of Tuckerman and Barkley [22] effectively uses the linear
part of the time-stepping code as a preconditioner to solve
for steady solutions of the model equations; this method,
however, cannot be generally used to compute periodic orbits.
The approach of Sanchez et al. [20,21] formulates the solution

of the relevant flows as fixed points of maps, can be used
to compute steady solutions and periodic orbits, and can be
extended for the computation of invariant tori.

In many geophysical systems, it is possible to use the
rotational property of the flow to aid in the reduction of
the computational cost. In particular, our approach uses the
observation that the rotating waves are relative equilibria with
respect to a rotating reference frame. Consequently, the rotat-
ing waves can be computed as steady solutions with an addi-
tional unknown, corresponding to the constant phase speed
of the rotating wave. This approach has been used exten-
sively in the context of fluid dynamics; see, e.g., [19,23–26].
Not common is the application to amplitude-modulated ro-
tating waves, which are periodic orbits when viewed in an
appropriately defined rotating reference frame [6]. This idea
has been used in [27] to compute such solutions in thermal
convection in a spherical shell. We use a similar approach
here. In particular, we use a Newton-Krylov method based on
time integration, in a formulation in which the rotating waves
and modulated rotating waves are computed as fixed points
of a discrete dynamical system (a map) [20]. Stability of the
flows can be determined in terms of the stability of the fixed
points of the map. Here, unlike [27], we do not use an explicit
implementation of the discretized linearized equations in the
computations, but instead use a finite-difference approxima-
tion of the action of the linearized map. This requires the
use of a different auxiliary condition than that of [27] for
the defining system used in the numerical continuation of the
modulated rotating waves. In particular, the advantage of our
approach is that the numerical simulation code is required
only to act as a “black-box,” i.e., it can be used directly
without modification, which significantly simplifies the im-
plementation. In addition, unlike [27], our computations, at
least in the application to the electroconvection problem, re-
quire the use of preconditioning (see [20,28] and Sec. IV C).
Although here we present an application of the numerical
method to the electroconvection problem, the method can be
applied in a straightforward manner for the continuation of
rotating waves and amplitude-modulated rotating waves in
other applications.

In Sec. II we provide details of the electroconvection ex-
periment and of the mathematical and numerical models used
in the study. In Sec. IV we introduce the methods and discuss
some details of the implementation. The results and discus-
sion are presented in Sec. V.

II. ELECTROCONVECTION

Electroconvection refers to fluid flows generated by elec-
trical forces acting on space charges within the fluid, or on
surface charges at the interfaces between fluids [29]. Here we
will be concerned with convection of thin liquid films driven
by surface charges. Smectic A liquid crystals are layered ma-
terials that naturally form stable suspended films composed
of weakly conducting organic liquids. In the smectic A phase,
the elongated molecules arrange themselves into layers with
their long axes oriented perpendicular to the layers. A layer
is of nanometer thickness, and, within a layer, the oriented
molecules move freely as in a normal Newtonian viscous liq-
uid, while molecular motion between layers is very restricted,
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FIG. 1. Geometry of sheared annular electroconvection. The liq-
uid crystal is confined in an annular region ri � r � ro, and the inner
electrode rotates at a constant rate ωi.

as in a soft solid. A suspended smectic A film has a submicron
film thickness and consists of an integer number of discrete
molecular layers that move together as a nearly ideal 2D
fluid and strongly resist variations in the film thickness. When
suspended between electrodes, the films readily form surface
charges that interact with the electric field to produce flow;
the film can span a distance between electrodes on the order
of millimeters.

Many laboratory experiments on electroconvecting smectic
A films, using various geometries, have been reported, includ-
ing rectangular geometry [30–33], annular geometry [13], and
annular films with an applied shear [10–12,34]; see also [35].
Here we consider the experiment of Tsai et al. [12], which
employs a smectic A film suspended between two concentric
annular electrodes. The inner electrode is rotated at a constant
angular speed ωi, imposing a radial shear, and a DC voltage V
is applied between the two electrodes; see Fig. 1. The working
fluid is 8CB (4-cyano-4’octylbiphenyl) [12], which is in the
smectic A phase at room temperature.

The standard experimental protocol of Tsai et al. [12] con-
sisted of measuring the current I between the electrodes as the
applied DC voltage V is incremented from zero to a maximum
value in small steps, and then similarly decremented back to
zero, with the inner anode rotating at a prescribed constant an-
gular speed ωi and the outer cathode stationary and grounded.
For relatively low voltage, the fluid flow is axisymmetric. In
this state, the velocity of the fluid is in the azimuthal direction
where the flow lines are concentric circles and the current
passes between the electrodes by conduction. However, when
the applied voltage V exceeds a critical voltage Vc, the ax-
isymmetry is broken and the fluid becomes arranged into
symmetric pairs of convective vortices. At higher voltages,
more complicated flows are provoked.

It is shown in [11,12], that, for various rotation rates ωi,
the primary transition to convection is supercritical, i.e., the
amplitude of the observed convective vortices grows mono-
tonically from zero as the applied voltage V increases from
Vc. Furthermore, the rotation acts as a stabilizer of the flow,
delaying the onset of convection.

These transitions have been reproduced with numerical
simulations [14,17]. The numerical experiments consisted
of long-time integrations using a random perturbation from
the base state solution (axisymmetric flow) as the initial
condition. Simulations were conducted for a wide range of
applied voltage V for a fixed rotation rate ωi. In addition
to reproducing the transition from the axisymmetric flow to
rotating waves, a secondary transition from rotating waves to
amplitude-modulated rotating waves was found.

A. The mathematical model

The mathematical model of electroconvection used in this
paper is based on the one described in [10]. We start with a
summary of this model; for further details see [10]. In the
physical experiment, the thin film is confined in an annular
region defined in circular cylindrical coordinates (r, θ, z) as,
ri � r � ro; see Fig. 1. The film is a liquid crystal in smectic
A phase with uniform thickness s, and gap width d = ro − ri.
Since s � d , the film is treated as a 2D electrically conduct-
ing Newtonian fluid lying in the plane z = 0. The density,
dynamic viscosity, and conductivity of the fluid are denoted
by ρ, η, and σ , respectively. The inner electrode, 0 � r � ri,
z = 0, is rotating at a constant angular speed ωi and is held
at a constant electric potential V . The outer electrode, r �
ro, z = 0, is held at zero potential and does not rotate. The
conservation of momentum and the conservation of matter,
given by the incompressible Navier-Stokes equations with an
electric body force qE, model the velocity field u(r, θ, t ) =
u(r, θ, t )r̂ + v(r, θ, t )θ̂, where r̂ is the unit vector in the radial
direction, θ̂ is the unit vector in the azimuthal direction, q is
the surface charge density, E = −(∇ψ )|z=0 is the electric field
in the film plane z = 0, ∇ is the 2D gradient operator, and ψ

is the three-dimensional (3D) electric potential which extends
both above and below the film [[10], Eqs. (2.1), (2.2)]. The
conservation of charge is expressed by a continuity equation
where the current density J is composed of an ohmic con-
duction term σE, and a convective term qu due to the fluid
motion [[10], Eq. (2.3)]. The 3D electric potential ψ satisfies
the Laplace equation in the charge-free region z �= 0 with a
boundary condition that depends on the surface charge density
q [[10], Eq. (2.4) (2.5)].

The system is subject to the following boundary condi-
tions. At each electrode, the velocity field satisfies no-slip
boundary conditions:

u = ωiriθ̂, r = ri, (1a)

u = 0, r = ro. (1b)

The potential ψ is set to zero at infinity

lim
z→±∞ ψ (r, θ, z) = 0, (1c)
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and, at z = 0, takes on the imposed voltage, so that

ψ (r, θ, 0) = ψ2(r, θ ) =
{

V, for r � ri,

0, for r � ro,
(1d)

where ψ2 is the 2D electric potential in the z = 0 plane.
A stream function/vorticity formulation is used, where

the stream function φ = φ(r, θ, t ) and vorticity ω = ω(r, θ, t )
satisfy

u = ∇φ × ẑ, ∇ × u = ωẑ. (2)

In addition, we define a characteristic length, time, and charge.
If we let the imposed voltage V denote a representative voltage
over a length scale of d = ro − ri and a relaxation time τc =
ε0d/σ , where σ is the conductivity and ε0 is the permeability
of free space, then we obtain the following nondimensional-
ization:

r = dr̃, φ = σd

ε0
φ̃, ψ = V ψ̃, t = τct̃, q = ε0V

d
q̃,

(3)

where the tilde represents the dimensionless variables. Nondi-
mensionalizing with (3), and dropping the tildes, we obtain
the system of equations describing the evolution of the di-
mensionless physical quantities, i.e., the vorticity ω, stream
function φ, charge density q, the 2D potential in the fluid ψ2,
and the 3D potential ψ :

∇2φ = −ω, (4a)

∂ω

∂t
+ (u · ∇)ω = P∇2ω + PR(∇ψ2 × ∇q) · ẑ, (4b)

∂q

∂t
+ (u · ∇)q = ∇2ψ2, (4c)(

∇2 + ∂2

∂z2

)
ψ = 0, q = −2

∂ψ

∂z

∣∣∣
z=0+

, (4d)

where the nondimensional parameter groups are defined as

R = ε2
0V 2

ση
, P = ε0η

ρσd
. (5)

The dimensionless parameter R, which is analogous to the
dimensionless Rayleigh number that arises in thermal convec-
tion, is proportional to the square of the applied voltage V and
describes the relative strength of the applied electric forcing
to the viscous dissipation. The dimensionless parameter P
is analogous to the Prandtl number and is a fluid parameter
that describes the ratio of the charge relaxation time to the
viscous relaxation time. For simplicity, we will refer to R as
the electric Rayleigh number, or simply the Rayleigh number,
and P as the electric Prandtl number, or simply the Prandtl
number. However, we will use the script letters to refer to
these dimensionless parameters to highlight the differences
with their dimensionless counterparts that arise in thermal
convection.

The dimensionless boundary conditions are
∂

∂r
φ(ro, θ ) = 0, φ(ro, θ ) = 0,

(6a)

∂

∂r
φ(ri, θ ) = −ωriε0

σ
= −ωiriτc, φ(ri, θ, t ) = g(t ),

(6b)

ψ2(ri, θ ) = 1, ψ2(ro, θ ) = 0, (6c)

ψ (r, θ, 0) =
⎧⎨⎩1, for 0 � r � ri,

ψ2(r, θ ), for ri � r � ro,

0, for r � ro,

(6d)

lim
z→±∞ ψ (r, θ, z) = 0, (6e)

where g(t ), which gives the value of the stream function φ on
the inner electrode, must be computed (see below). The width
of the film in dimensionless units is ro − ri = 1. The problem
does not depend on ro and ri separately, rather it depends on
the radius ratio α = ri/ro. Indeed, the dimensionless radii can
be expressed as

ri = α

1 − α
, ro = 1

1 − α
. (7)

The experimental studies have radius ratio α = 0.56 [10] and
α = 0.8 [12]. See [10] for a study on how the linear stability
of the base state depends on α.

The stream function φ is determined up to a (possibly
time-dependent) constant, which can be determined with a
single additional condition of our choosing. The radial com-
ponent of the no-slip boundary condition (1a)–(1b) implies
that the stream function is independent of θ at the boundaries.
Thus, if there were only one boundary, one could choose this
undetermined constant using the condition that the stream
function be zero at that boundary. As there are two boundaries,
we can choose the additional condition to be that the stream
function at the outer boundary be zero [as indicated in (6a)],
but it remains to close the system by determining the stream
function at the inner boundary [i.e., the function g(t ); see
(6b)]. We do not have the freedom to determine g(t ) using
a second condition of our choosing, and therefore it must
be determined from the flow. In particular, g(t ) is given by
the total azimuthal flux and is determined from the azimuthal
component of the velocity as follows:∫ ro

ri

v(r, θ, t ) dr = φ(ri, θ, t ) − φ(ro, θ, t ) = g(t ) − 0

�⇒ g(t ) =
∫ ro

ri

v̂
0
(r, t ) dr, (8)

where an average in the azimuthal variable θ has been taken,
the hat denotes an azimuthally averaged quantity, and v̂

0
(r, t )

satisfies the following partial differential equation:

∂ v̂
0

∂t
+

(
û
∂v

∂r

)
0

+ 1

r
(ûv)

0
=P

⎛⎝1

r

∂ v̂
0

∂r
+

∂ 2̂v
0

∂r2
− 1

r2
v̂

0

⎞⎠
− P R

r

( ̂
q
∂ψ2

∂θ

)
0

, (9)

which is found by computing the azimuthal average of the
azimuthal component of the incompressible Navier-Stokes
equations with an electric body force [[10], Eqs. (2.1), (2.2)].
Integrating (9) with respect to r yields an ODE for g(t ),
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closing the system

dg

dt
=

∫ ro

ri

[
P

⎛⎝1

r

∂ v̂
0

∂r
+

∂ 2̂v
0

∂r2
− 1

r2
v̂

0

⎞⎠
− P R

r

( ̂
q
∂ψ2

∂θ

)
0

−
(

û
∂v

∂r

)
0

− 1

r
(ûv)

0

]
dr. (10)

The PDEs (4a)–(4d) and (10) with the boundary condi-
tions (6a)–(6e) describe both sheared and unsheared annular
electroconvection. We note that, unlike in [10], no approxi-
mation has been made for the stream function at the inner
electrode. In that work the authors made the approximation
of φ(ri, θ, t ) = 0, and so no equation like (10) was needed to
close the system.

1. The deviation equations

The rotation of the inner electrode generates an axisym-
metric steady Couette shear, which is observed at low R. This
flow is characterized by a dimensionless Reynolds number

Re = ri


P , (11)

where 
 = τcωi is the dimensionless angular frequency of the
inner electrode. We call this flow the base state and denote
it by a superscript zero. This flow can be computed analyt-
ically by considering only steady axisymmetric solutions of
(4a)–(4d) with boundary conditions (6a)–(6e). In particular,
the base state is given by

∂φ(0)(r)

∂r
= ReP ri

r2
o − r2

i

(
r − r2

o

r

)
, (12a)

ω0(r) = −2 ReP
(

ri

r2
0 − r2

i

)
, (12b)

q(0)(r) = 2

ln(ri/ro)

[
1

ro
F

(
1

2
,

1

2
; 1;

r2

r2
o

)

−1

r
F

(
1

2
,

1

2
; 1;

r2
i

r2
o

)]
, (12c)

ψ
(0)
2 (r) =

⎧⎨⎩
1, for 0 � r � ri,
ln(r/ro)
ln(ri/ro) , for ri � r � ro,

0, for r � ro,

(12d)

ψ (0)(r, z) =
∫ ∞

0
A(k)J0(kr)e−kz dk; (12e)

see [10], where F is a hypergeometric function, J0 is the
zeroth Bessel function, and

A(k) = k
∫ ∞

0
ψ (0)(r, 0)J0(kr)r dr. (13)

Equation (12a) can be integrated from ri to ro to obtain an
explicit form for φ(0) that satisfies the boundary condition (6b)
with

g(t ) = g(0) = ReP
[

ri

2
− rir2

o

r2
o − r2

i

ln

(
ro

ri

)]
. (14)

We note that, in this experiment, the inner electrode is rotating
at a constant rate while the outer electrode is fixed. However,
independent rotations of the electrodes can be dealt with by
applying a transformation to a rotating frame of reference,
where the outer electrode is stationary. The Coriolis forces
introduced by the transformation can be absorbed into the
pressure term of the corresponding Navier-Stokes equations.

We can write the dependent variables in terms of their
deviations from the base state:

q(r, θ, t ) = q(0)(r) + q(1)(r, θ, t ), (15)

and likewise for the other dependent variables, where the
deviations are identified using a superscript 1, e.g., q(1). It is
convenient to rewrite Eqs. (4c)–(4d) in terms of the deviations,
φ(1), ψ (1), and q(1), instead of their counterparts, φ, ψ , and
q, respectively. Upon applying this decomposition and substi-
tuting into (4c)–(4d), we obtain equations which govern the
evolution of the charge density deviation q(1) and the potential
deviation ψ (1):

∂q(1)

∂t
+ 1

r

(
∂q(0)

∂r

∂φ(1)

∂θ
+ ∂q(1)

∂r

∂φ(1)

∂θ

−∂φ(0)

∂r

∂q(1)

∂θ
− ∂φ(1)

∂r

∂q(1)

∂θ

)
−∇2ψ

(1)
2 = 0, (16a)(

∇2 + ∂2

∂z2

)
ψ (1) = 0, q(1) = −2

∂ψ (1)

∂z

∣∣∣
z=0

. (16b)

The deviation variables, ψ
(1)
2 and ψ (1), satisfy the following

boundary conditions:

ψ
(1)
2 (ri, θ ) = ψ

(1)
2 (ro, θ ) = 0, (17a)

ψ (1)(r, θ, 0) =
⎧⎨⎩

0, for 0 � r � ri,

ψ
(1)
2 (r, θ ), for ri � r � ro,

0, for r � ro,

(17b)

lim
z→±∞ ψ (1)(r, θ, z) = 0. (17c)

Thus, Eqs. (4a)–(4b), (10), and (16a)–(16b) with bound-
ary conditions (6a)–(6b) and (17a)–(17c) form a closed set
of equations describing both sheared and unsheared annular
electroconvection.

III. THE NUMERICAL TIME STEPPER

In this section we provide a brief overview of the pseudo-
spectral time stepper for the PDEs (4a)–(4b), (10), and
(16a)–(16b) with boundary conditions (6a)–(6b) and (17a)–
(17c). The time stepper is implemented in MATLAB and is,
in many ways, very similar to that described in [14,17]. The
2D physical quantities, the stream function φ, the vorticity ω,
the charge density deviation q(1), and the electric potential
deviation ψ

(1)
2 are approximated using a truncated Fourier

series {eimθ } in the θ̂ direction and a truncated Chebyshev
series {Tn(r)} in the r̂ direction. That is, we write

φ(r, θ, t ) =
Nc∑

n=0

K∑
m=−K

φ̃nm(t )eimθ Tn(x), (18)
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and similarly for the other physical quantities, where K is the
highest Fourier mode, Nc is the order of the highest Chebyshev
polynomial, and

x = 2
r − ri

ro − ri
− 1 (19)

linearly maps r ∈ [ri, ro] to x ∈ [−1, 1].
The AB/BDI2 time-stepping scheme

3u(k+1) − 4u(k) + u(k−1)

2δt
≈ ∂u

∂t
= L(u) + N

≈ L(u(k+1)) + 2N (k) − N (k−1)

(20)

is implemented, where δt is a prescribed time step and u(k)

is the spatially discretized solution vector at the kth time
step (see e.g., [36]). This scheme is a second-order implicit-
explicit method, in which the nonlinear part N is treated
explicitly and the linear part L(u) is treated fully implicitly.
It has also been referred to as SBDF (semi-implicit BDF) and
as extrapolated Gear [37,38].

The charge density deviation q(1) and the potential devi-
ation ψ

(1)
2 are nonlocally related to one another via the 3D

Laplace equation (16b). Rather than computing this 3D ellip-
tic problem, q(1) can be computed directly from ψ

(1)
2 using

a Dirichlet-to-Neumann map. Similarly, the stream function
φ and the vorticity ω are nonlocally related via the vorticity
equation (4a), and one can be recovered from the other using a
linear map. The time stepper proceeds as follows: the potential
deviation ψ

(1)
2 and the vorticity ω are advanced by one time

step, after which the charge deviation q(1) and the stream
function φ are computed at this new time using the newly
computed potential deviation and vorticity, respectively. The
Orszag 3/2 aliasing rule is performed when constructing the
nonlinear terms needed for (20). With appropriately chosen
starting values, the method is second-order accurate in time.

For more details on the time stepper, the reader is referred
to [14,17]. The method we use is essentially the same, except
that in those works the authors time step the stream function
deviation φ(1) and the vorticity deviation ω(1), while we time
step the stream function φ and the vorticity ω. Also in [14,17],
as in [10], the approximation that φ(1)(ro, t ) = φ(1)(ri, t ) =
0 is made [39]. We do not make this approximation, and,
therefore, we need to time step (10), starting from (8), for
the full stream function φ. Specifically, from (8), g(t ) is the
radial integral of v̂

0
(r, t ). We time step (9) to find v̂

(k+1)

0
,

where here the superscript denotes the k + 1st time step,
and then use Chebyshev-Gauss quadrature to approximate the
radial integral, thus determining g(k+1). The time stepping is
done as follows. First, the velocity components u(k−1), u(k),
v(k−1), and v(k) are determined from the stream function φ(k−1)

and φ(k). The nonlinear terms u ∂ v
∂r , uv, and q ∂ψ2

∂θ
are com-

puted at the (k − 1)st and kth time levels. Applying the fast
Fourier transform (FFT) and then selecting the component
that approximates the zeroth Fourier coefficient determines

the nonlinear terms of (9): ̂N (k−1)
0

and N̂ (k)
0
. The time step-

ping (20) is then applied to (9), determining v̂
(k+1)

0
.

A two-step method, such as (20), requires two initial
values. One initial value, at t = 0, is given by the initial
conditions of the problem. A second initial value, at t = δt ,
must be provided by some other mechanism. It is common to
simply take one step, of size δt , with a lower-order one-step
method to generate this second initial value. In the context of
the bifurcation methods discussed in Sec. IV, which are built
upon time-integration methods using the time stepper, this
approach may not provide sufficient accuracy. Specifically, if
the “t = 0” initial value is on the periodic solution at t = 0,
to a given tolerance, then the “t = δt” initial value also needs
to be on the periodic solution at t = δt , to a similar tolerance,
otherwise the method may not converge to the desired solu-
tions; this is particularly important when considering unstable
solutions. Thus, unlike in the application of the time stepper as
discussed in [14,17], here it is vital that the second initial con-
dition be sufficiently accurate. To this end we use a hierarchy
of discretizations to produce a more accurate approximation
of the solution at time t = δt . Specifically, a one-step first-
order scheme is used with a very small time-step, e.g., δt/k,
where k is some integer, to generate an approximation of
the solution at t = δt/k. This approximation is used as the
second initial condition for the two-step method, using a time
step of δt/k, to obtain an approximation at t = nδt/k. This
approximation is subsequently used as the second initial step
for the two-step method with time step nδt/k, where n is some
integer. This is then repeated, with sequentially increasing
step size, to generate an approximation of the solution at
t = δt . Once the two required initial values at t = 0 and t = δt
are available, the time stepper can then be used with time step
δt for the rest of the computation. Here we use n = 5 and
k = n5.

IV. METHODS FOR COMPUTING SPECIAL SOLUTIONS

After spatial discretization using the spectral methods de-
scribed above, our model can be written as a continuous
dynamical system in the general form

Mdu
dt

= F(u, μ), F : Rn × R → Rn, (21)

where u = u(t ) ∈ Rn is the discretized solution vector, μ is a
real parameter, and the matrix M may not be invertible due to
algebraic constraints. Here μ is the Rayleigh number R and
the solution vector u contains the four physical quantities (the
electric potential deviation ψ

(1)
2 , the charge density deviation

q(1), the vorticity ω, and the stream function φ) and has size
n = 4(2K + 1)(Nc + 1), where K is the highest Fourier mode
and Nc is the highest degree of Chebyshev polynomial as
shown in Sec. III.

A. Computation of rotating waves

The solutions of the continuous dynamical system (21)
corresponding to rotating waves can be computed as fixed
points of a flow map �t :

u → �t (u, μ), �t : Rn × R × R → Rn, (22)

which maps an initial condition u ∈ Rn to the solution of (21)
at time t ∈ R, for a fixed parameter μ ∈ R. In particular, the
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rotating waves are limit cycles, and thus, such solutions of
(21) must satisfy u(t ) = u(t + τw ), where τw is the period of
the limit cycle. Therefore, the flow map �τw

(u, μ) will map
u to itself, for any u on the limit cycle, and thus the rotating
waves can be found as fixed points of the map �τw

by solving

�τw
(u, μ) − u = 0, (23)

where τw is to be determined. This method, however, requires
each integration of the map to be over a full period τw, and
therefore, we choose, instead, a less general, but more effi-
cient, approach. In particular, we use the property that the
rotating waves are relative equilibria, i.e., integration through
any time t is equivalent to rotation by θ̃ = wt , where w is the
constant phase speed of the wave. Therefore, all points u on
the rotating wave must satisfy

�t (u, μ) − γ u = 0, (24)

where the rotation operator γ ∈ SO(2) acts on u via γ u =
u(r, θ − wt ), the phase speed w is to be determined, and t is
arbitrary and thus may be taken to be much smaller than the
period τw.

Equation (24) defines the rotating wave up to a phase,
and therefore, to obtain uniqueness, we introduce the phase
condition

∂

∂θ
u(0) · (u − u(0) ) = 0, (25)

which chooses the phase relative to a reference solution u(0),
usually chosen to be the initial guess used for the nonlinear
solver (see below). The phase condition ensures that we seek
corrections to u(0) that are orthogonal to the tangent to the
symmetry generator ∂

∂θ
u(0), the derivative of u(0) with respect

to θ . We choose to seek corrections orthogonal to u(0) instead
of u to remove the complication of working with an extra
nonlinear equation.

The nonlinear system given by (24) and (25) can then
be solved using Newton’s method, in which case updates
[δu(k)

j , δw
(k)
j ] at each iteration k are found from the linear

system [
Du�t (u

(k)
j , μ j ) − γ t

∂ u(k)
j

∂θ
∂ u(0)

∂θ
0

][
δu(k)

j

δw
(k)
j

]

=
[

u(k)
j − �t (u

(k)
j , μ j )

∂ u(0)

∂θ
· (

u(k)
j − u(0)

)], (26a)

u(k+1)
j = u(k)

j + δu(k)
j , (26b)

w
(k+1)
j = w

(k)
j + δw

(k)
j , (26c)

where the subscript j labels points along the solution curve
�, and Du�t is the Jacobian of the map �t . The matrix in
the linear system (26a) is of size (n + 1) × (n + 1), that is,
it is only a single row and column larger than the matrices
required for the numerical integration, but it is dense and
computationally intensive to compute. However, the action
of the Jacobian Du�t on a vector δu can be found from
the evolution of an initial perturbation δu as determined by
the model equations linearized about the solution u. Thus, if
GMRES [40], or some other iterative method, is used to solve
the linear system (26a), it is not necessary to form the Jacobian

explicitly, because such methods require only knowledge of
matrix-vector products involving the Jacobian. As such, each
iteration of the linear solve involves a time integration of the
linearized model equations (i.e., the solution of a variational
problem).

If code for the linearization is not available, the action of
Du�t on δu can be approximated using a finite-difference
method, e.g., the forward finite-difference approximation can
be used:

Du�t (u, μ)δu ≈ �t (u + εδu, μ) − �t (u, μ)

ε
, (27)

for some ε > 0. Thus, the action of Du�t on the vector δu
can be approximated given knowledge of the action of �t on
the vectors (u + εδu) and u. That is, using the approximation
(27), each matrix-vector product in the linear solve can be
computed from two evaluations of �t . However, one of the
two is the same for each GMRES iteration, and therefore, only
a single time integration is required per iteration. In general,
in order to ensure convergence of the solution of the linear
system in a reasonable number of iterations, preconditioning
may be required (see, e.g., [28]). We discuss this in Sec. IV C.
When using spectral methods, as we do here, the computation
of the derivative with respect to the angle θ and the action
of the rotation operator γ on the vector δu can be computed
in spectral space as an element-wise multiplication using the
FFT. As such, these do not contribute significantly to the
overall computation time.

These systems can be adapted very simply to incorporate
pseudo-arclength continuation [19]. However, we choose to
implement natural continuation as we do not observe any limit
points along the solution branches.

B. Computation of amplitude-modulated waves

Amplitude-modulated rotating waves correspond to invari-
ant two-tori in phase space and resemble rotating waves with
the exception that their amplitude varies periodically in time.
As such, we can use an extended version of the approach
used to compute the rotating waves. In particular, we replace
integration for arbitrary time t with integration for time τ the
unknown period of the oscillation of the wave amplitude. That
is, an amplitude-modulated rotating wave has the property
that integration for time τ will be equivalent to rotation by
angle wτ [6]. In this case, there are two unknown parameters,
namely, the phase speed w and the unknown period τ of
the amplitude, while there are also two phases that need to
be specified, namely, the phase of the wave and the phase
of the amplitude oscillation. To fix the phase of the wave, we
use the criterion (25) as we did for the rotating waves, while to
fix the phase of the amplitude, we consider only corrections to
our initial guess that are orthogonal to the initial guess (28c);
essentially this selects an amplitude of the solution. Other
possibilities exist for this second condition; see [27]. As such,
the amplitude-modulated rotating waves can be found from
the defining system:

�τ (u, μ) − γ u = 0, (28a)

∂

∂θ
u(0) · (u − u(0) ) = 0, (28b)

u(0) · (u − u(0) ) = 0, (28c)
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where τ is the (unknown) period of the amplitude oscillations,
γ u = u(r, θ − wτ, τ ), and w is the phase speed. The phase
speed itself does not need to be constant; in particular, we can
interpret w as a mean phase speed for which θ̃ = wτ gives the
angle of rotation required for (28a) to be satisfied.

This system is solved using the same approach as used
for the rotating waves. In particular, the linear system to be
solved for each Newton iteration is similar to that for the
rotating wave (26) and is solved with GMRES, using (27)
to approximate the action of the Jacobian Du�. The linear
system contains only a single extra equation, i.e., the am-
plitude phase equation (28c), and the Jacobian Du� is the
same size as in (26). Generally, the period τ is much longer
than the arbitrarily chosen t , and therefore, the computation
of the amplitude-modulated waves requires significantly more
computation time but is not more memory-intensive.

C. Preconditioning

As described above, the linear systems for the Newton
iterations can be solved with GMRES. If the spectrum of the
matrix associated with the linear system is well clustered,
then it may not be necessary to introduce precondition-
ing to obtain convergence in a reasonable number of the
GMRES iterations. See [28] for a general discussion on pre-
conditioning. Generally, for dissipative systems, the spectrum
of the Jacobian Du�t is expected to become more clus-
tered around the origin as the integration time t increases,
because most of the eigenvalues correspond to stable mani-
folds of the associated time-dependent problem, and so, the
longer the integration time t , the more the map �t will
contract the corresponding perturbations. Thus, for suffi-
ciently long integration times, preconditioning may not be
required [20]. However, for the current application, we find
that even for relatively long integration times, a prohibitively
large number of GMRES iterations is required to achieve
convergence, and thus preconditioning is required.

The primary reason for considering an iterative method
for the solution of the linear systems is not for memory or
computational efficiency, but rather because we can compute
matrix-vector products involving the Jacobian matrix Du�t ,
even though we do not have an explicit form of Du�t . How-
ever, for a particular u(k)

j and μ j , it is possible to construct

the full matrix Du�t (u
(k)
j , μ j ), column by column, using only

matrix-vector products. In particular, the ith column of Du�t

is given by the matrix-vector product [Du�t ]ei, where ei is
the ith standard basis vector. Thus, theoretically, an alternative
approach could use a direct method for solving the linear
systems involving this explicitly constructed matrix. This ap-
proach, however, is not practical, because the construction of
an approximation of this matrix, using (27), requires n + 1
evaluations of �t , and would have to be constructed for each
Newton iteration (i.e., for each j and k).

We can, however, use Du�t (u
(k)
j , μ j ), constructed using a

particular u(k)
j and μ j , to construct a (left) preconditioner for

all Newton iterations over a range of parameter values, i.e., for
a range of j and k. In particular, we solve the left precondi-
tioned system P−1(Ax − b) = 0 associated with the Newton
iterations (26a), where P is Du�t (u

(k)
j , μ j ) augmented by

an additional row corresponding to each auxiliary condition
[e.g., (25)] and by an additional column corresponding to the
derivatives with respect to each of the additional unknowns
(e.g., the phase speed w); see (26a). For the particular u(k)

j and
μ j used to construct P, P is an approximation of A, which
is the “perfect” preconditioner (i.e., only a single iteration
would be required for convergence), but we find that P also
works well as a preconditioner for a large range of u and
μ. Thus, although expensive to compute initially, the same
P can be used for all Newton iterations and over a range of
parameters. Furthermore, an accurate approximation of Du�t

is not required, and therefore, significant efficiency is obtained
by computing it using time steps that are significantly larger
than those used in the computation of the solutions themselves
(e.g., for the continuation of amplitude-modulated rotating
waves, we can use a time step of 5 × 10−4 for the computation
of the preconditioner, rather than the 2 × 10−4 that we use for
the computation of solutions; the savings is more significant
in the computation of the rotating waves, see below). In ad-
dition, the computation of Du�t is highly parallelizable, as
each of the required n + 1 evaluations of �t are independent.
Also, although Du�t is dense, the required memory is the
same order of magnitude as that of the matrices involved in
the numerical integration itself, due to the use of spectral
methods.

D. Linear stability of special solutions

The steady solutions, which are given by (u, μ) and the
rotating wave solutions (u,w, μ) described above, can be
computed as fixed points of the flow map �t (u, μ); for the
steady solutions, t is arbitrary, while for the rotating waves,
t is the period τw of the corresponding solution, which can
be computed from wτw = 2π/m, where m is the primary az-
imuthal wave number observed in the rotating wave. Thus, the
stability of the solutions can be determined from the spectrum
of Du�t (u, μ), the linearization of the flow map �t (u, μ)
about the fixed point u. In particular, for maps, a fixed point
is said to be linearly stable if all eigenvalues of the Jacobian
Du�t (u, μ) lie in the unit circle of the complex plane, and
unstable if at least one eigenvalue lies outside the unit circle.
Bifurcations of the system occur when an eigenvalue crosses
the unit circle as a parameter is varied.

The amplitude-modulated rotating wave solutions
(u,w, τ, μ) are fixed points of the map γ −1�τ (u, μ),
where τ is the period of the amplitude oscillations. The linear
stability of these solutions can be found from the eigenvalues
of γ −1Du�τ (u, μ).

To determine the linear stability of a fixed point of
a map, it is sufficient to find the eigenvalues of largest
magnitude. For the efficient computation of these eigen-
values, we would prefer a method that does not require
the explicit formation of Du�t (u, μ). Thus, we use the
Implicitly Restarted Arnoldi Method (IRAM), which is a
Krylov subspace method that computes approximations of
the eigenvalues of largest magnitude of a matrix using only
matrix-vector products [41,42]. Its implementation together
with (27) enables us to efficiently approximate the relevant
eigenvalues.

014212-8



NEWTON-KRYLOV CONTINUATION OF … PHYSICAL REVIEW E 110, 014212 (2024)

TABLE I. Parameters used in the numerical results.. RW indicates rotating wave; AM indicates amplitude-modulated rotating wave.

Model parameters

Symbol Parameter Value

P Prandlt number 75.8
Re Reynolds number 0.231
α Aspect ratio 0.56

Time stepper: Discretization parameters

Symbol Parameter Value

Nc Highest order of the Chebyshev basis 24
K Highest Fourier wave number 32
δt Time step (RW/AM) 1 × 10−4/2 × 10−4

δtP Time step for preconditioner calculation (RW/AM) 1 × 10−3/5 × 10−4

Numerical bifurcation parameters

Symbol Parameter Value

t Arbitrary integration time (RW) 0.1
ε Perturbation amplitude of the forward finite difference approximation 10−4

New_tol Newton residual tolerance 10−8

gmres_tol GMRES tolerance 10−6

V. RESULTS AND DISCUSSION

We apply the methods described in Sec. IV to the elec-
troconvection problem. In this context, the Rayleigh number
R is used as the bifurcation parameter μ, and u contains
the stream function deviation φ(1) and the electric potential
deviation ψ

(1)
2 ; the charge density deviation and the vorticity

deviation can be computed directly from these and therefore
are not necessary to consider as variables of the flow map
�t . The relevant physical and numerical parameters used for
the computations are presented in Table I. The results are
presented in the bifurcation diagram of Fig. 2.

A. Axisymmetric flow and the primary transition

For all values of the Rayleigh number, the base state
(axisymmetric solution) is given by (12); in terms of the
deviations, this solution corresponds to the zero solution.
Computation of the eigenvalues of the map Du=0�t reveals
a primary bifurcation from the base state at a critical Rayleigh
number Rc1 = 534.1; see Fig. 2. In particular, at Rc1, a
supercritical Neimark-Sacker bifurcation of the flow map �t

occurs, at which a complex conjugate pair of eigenvalues has
modulus 1, and for R < Rc1, all eigenvalues have modulus
less than 1 [43]. The bifurcating solutions exist for R > Rc1

and correspond to stable rotating waves with azimuthal wave
number six. See Fig. 3 in which a snapshot of the rotating
wave is plotted; deviations from the base state, as opposed to
the full solutions, are plotted to highlight the azimuthal varia-
tion of the wave. The wave has constant (positive) phase speed
and constant amplitude, i.e., as time evolves, the solution
maintains its shape and rotates counterclockwise at a constant
rate. See the Supplemental Material [44] for an animation
of the stream function deviation φ(1) corresponding to the
rotating wave solution at R = 560. We discuss the parameter
continuation of the rotating waves in Sec. V B.

The value of t used in the computation of the eigenvalues
is arbitrary in the determination of the stability; i.e., although
it will affect the eigenvalues, it will not change whether the
eigenvalue has modulus greater than or less than 1. We use

520 540 560 580 600 620

0

0.05

0.1

0.15

0.2

0.25 stable axisymmetric
unstable axisymmetric
stable wave
unstable wave
stable AM wave (max)
stable AM wave (min)
unstable AM wave (max)
unstable AM wave (min)
stable PD-AM wave (local extrema)
unstable PD-AM wave (local extrema)

FIG. 2. Bifurcation diagram with Rayleigh number R as pa-
rameter. Solutions are represented in terms of ‖φ (1)(·, t )‖∞, the
infinity norm of the stream function deviation at a particular time
(spatial maximum of |φ (1)|), i.e., the wave amplitude. For the
amplitude-modulated (AM) rotating waves, the maximum and min-
imum amplitude of the solution over a period of the amplitude
oscillations is plotted. The squares represent the critical parameter
values, i.e., the bifurcation points. The branches labeled PD-AM rep-
resent period-2 amplitude-modulated rotating waves resulting from a
period-doubling bifurcation (which occurs at the point represented
by a triangle); the four PD-AM branches correspond to the two local
maxima and two local minima of the wave amplitude that occur
over one period of the amplitude oscillation; see Fig. 7(b). For a
blow-up of this region, and further details see Fig. 8. Values for other
parameters are listed in Table I.
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FIG. 3. Rotating wave solution at Rayleigh number R = 560. A snapshot of the deviations from the base state of the four physical
quantities are shown: (a) the stream function deviation φ (1), (b) the 2D electric potential deviation ψ

(1)
2 , (c) the vorticity deviation ω(1), and

(d) the charge distribution deviation q(1). The solution maintains this shape and rotates counterclockwise at a constant phase speed; see the
Supplemental Material [44] for an animation of the stream function deviation φ (1) at R = 560.

a value t = 0.1, which provides convergence of the Arnoldi
method in a reasonable number of iterations. Increasing the
value of t increases the separation of the eigenvalues, enabling
convergence in fewer iterations, but also increases the cost per
iteration. The linear stability is determined from the computa-
tion of the eigenvalues with the 20 largest magnitudes, using
the IRAM MATLAB implementation eigs, and the critical
value Rc1 is computed to a tolerance of 10−2 using a secant
method. Other parameters are held fixed at the values listed in
Table I.

As an accuracy check, the eigenvalues at R = 530 are also
computed using a grid size reduced by a factor of two (i.e.,
using Nc = 48 and K = 64, see Table I); results are presented
in Table II. The reduction in grid size results in differences
of at most 0.001, or less than 0.2%, in both the real and
imaginary parts. Similarly, the critical Rayleigh number with
corresponding critical eigenvalue has been computed on the
finer grid; see Table III. The critical Rayleigh number on the
finer grid differs by less than 0.04, or less than 0.01%.

B. Rotating waves and the secondary transition

The rotating wave solutions, observed for R > Rc1, satisfy
(24) and (25), while their linear stability can be determined
from the spectrum of Du�τw

, where τw = 2π/(mw) is the
period of the rotating wave, and w and m are its phase speed
and primary azimuthal wave number, respectively. As we con-
tinue the rotating wave solution in the Rayleigh number R, the
amplitude of the rotating wave grows from zero at R = Rc1

as shown in Fig. 2, while the phase speed w does not vary
significantly along the branch; specifically, the phase speed
w decreases monotonically from 5.06 at R = Rc1 to 5.05 at
R = 630.

Each point on the rotating wave solution branch
{(u j,w j,R j )} is obtained by using the Newton solver to cor-
rect an initial guess to within the desired residual tolerance
of 10−8 in the infinity norm. The initial guess is obtained
by following a secant to the branch which is computed from
the two previous (known) points on the branch. The initial
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TABLE II. Eigenvalues computed with two different grid sizes (Nc, K ).

Rayleigh number R = 530

(Nc, K ) λ1, λ2 λ3, λ4 λ5, λ6 λ7 λ8, λ9

(24, 32) 0.9425 ± i0.2098 0.2716 ± i0.8264 0.5324 ± i0.5170 0.6683 −0.4258 ± i0.4662
(48, 64) 0.9427 ± i0.2101 0.2716 ± i0.8265 0.5320 ± i0.5181 0.6683 −0.4259 ± i0.4663

Rayleigh number R = 590

(Nc, K ) λ0 λ1, λ2 λ3 λ4, λ5 λ6, λ7

(24, 32) 1.0000 0.6551 ± i0.7131 −0.9286 −0.4695 ± i0.7987 0.4503 ± i0.8200
(48, 64) 1.0001 0.6622 ± i0.7124 −0.9293 −0.4696 ± i0.7996 0.4504 ± i0.8202

Rayleigh number R = 629

(Nc, K ) λa
0 λb

0 λ1, λ2 λ3 λ4, λ5

(24, 32) 1.0000 1.0007 0.1286 ± i1.0249 −0.9509 0.4082 ± i0.2911
(48, 64) 0.9999 1.0006 0.1296 ± i0.9846 −0.9209 0.3818 ± i0.2918

guess for the first two points on the branch is obtained by time
stepping a random initial condition for t = 10, with R = 560
and 561. At this parameter value the solution associated with
the flow of rotating waves is stable and the time integration
produces a sufficiently good guess to obtain convergence of
the Newton iterations. Along the solution branch, convergence
in approximately three Newton iterations is obtained when
the parameter is incremented by δR = 1. Each point on the
branch is validated by integration over the full period τw of
the solution; each point on the branch is a wave of constant
amplitude and is a fixed point of the map �τw

to an error
of less than 10−4 in the infinity norm. A secant method to
a tolerance of 10−2 in the parameter R is used to locate the
bifurcation point R = Rc2.

Using the method described in Sec. IV C, the precondi-
tioner is computed at R = 560, with u taken as the initial
guess for the corresponding point on the branch of rotating
wave solutions. This preconditioner is used for the entire
rotating wave solution branch. The time step δtP = 1 × 10−3

is used for the computation of the preconditioner. This
value is chosen to maximize efficiency, while still enabling
convergence. In particular, choosing a δtP > 10−3 does not
produce an effective preconditioner, while choosing it smaller
does not significantly improve the effectiveness. The param-
eter value for the arbitrary computation time used for the
computation of the rotating waves (i.e., of the flow map �t ) is
chosen as t = 0.1. Changes in this value did not affect any of
the results.

As an accuracy check, eigenvalues have been computed at
R = 590 using a grid size reduced by a factor of two (i.e.,
using Nc = 48 and K = 64). The reduction in grid size results
in differences of at most 0.013, or less than 2%, in both the real
and imaginary parts; see Table II. Mostly, the differences are
much less than this. Similarly, the critical Rayleigh number
with corresponding critical eigenvalue for the finer grid is
shown in Table III. The difference of critical Rayleigh number
Rc2 on the finer grid is 0.8, or approximately 0.13%.

TABLE III. Critical Rayleigh number Rc and corresponding eigenvalues; numerical values computed with two different grid sizes (Nc, K ).

Primary transition

(Nc, K ) Rc1 λc, λc λ3, λ4 λ5, λ6

(24, 32) 534.11 0.9771 ± i0.2126 0.2823 ± i0.8483 0.5518 ± i0.5434
(48, 64) 534.07 0.9771 ± i0.2128 0.2822 ± i0.8483 0.5514 ± i0.5443

Secondary transition

(Nc, K ) Rc2 λc, λc λ3 λ4, λ5

(24, 32) 595.6 0.654 ± i0.756 −0.949 −0.477 ± i0.813
(48, 64) 594.8 0.662 ± i0.750 −0.948 −0.476 ± i0.811

Tertiary transition

(Nc, K ) Rc3 λc, λc λ3 λ4, λ5

(24, 32) 626.8 0.100 ± i0.995 −0.879 0.386 ± i0.266
(48, 64) 629.4 0.137 ± i0.991 −0.934 0.386 ± i0.296
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FIG. 4. Eigenvalues and critical eigenfunction along rotating wave branch. (a) The evolution of the largest magnitude eigenvalues of the
linearization of the map �τw

along the solution branch of the rotating waves; the 10 largest eigenvalues with respect to modulus are depicted
for Rayleigh number 560 � R � 614. At Rc2 = 595.6, the critical eigenvalues are marked with a square, while the others eigenvalues are
marked with a circle; all eigenvalues are marked with a star at R = 560. (b) The real part of Vφ , and (c) the imaginary part of Vφ , where Vφ is
the φ component of the eigenfunction corresponding to the critical eigenvalues at R = Rc2.

C. Amplitude-modulated waves and the tertiary transition

Along the branch of rotating waves, a secondary bi-
furcation is detected at a critical Rayleigh number Rc2 =
595.6, where again a complex conjugate pair of eigenvalues
of Du�τw

crosses the |z| = 1 curve in the complex plane,
while for Rc1 < R < Rc2, all eigenvalues have modulus 1
or less [45]; see Fig. 4. The bifurcation of the map �τw

at R = Rc2 is supercritical and of type Neimark-Sacker. In
this case, the bifurcating solution lies on a two-torus in the
corresponding continuous-time phase space. In terms of the
physical quantities, because the eigenfunction corresponding
to the critical eigenvalue, shown in Fig. 4, resembles a wave
with the same azimuthal wave number as the rotating wave
undergoing the bifurcation, we expect that the bifurcating
solution is an amplitude-modulated wave (also referred to as
amplitude-vacillating wave). We confirm this using simula-
tions of the initial value problem. These solutions resemble
a rotating wave with wave number 6 (see Fig. 3) whose
amplitude oscillates periodically in time, except that there is
a slight tilting of the vortices when the amplitude is at its
lowest. See the Supplemental Material [44] for an anima-
tion of the stream function deviation φ(1) corresponding to
the amplitude-modulated rotating wave solution at R = 620.
Generally, the solutions are quasiperiodic. That is, although
the solution at the end of a period of the amplitude oscillations
is a rotated version of the solution at the beginning of the
period, it never quite returns to its starting point, regardless
of the number of periods of amplitude oscillation. This occurs
because, generally, the ratio of the frequency of amplitude
oscillations to the frequency of the oscillations due to the
rotating wave, is irrational. However, this ratio is expected
to vary smoothly with the parameters [6], and therefore at
isolated points along the solution branch, in particular when
the ratio of frequencies is rational, the solution is periodic.
In this case, there are an infinite number of periodic solu-
tions; phase shifts of the periodic solution at any point in
time correspond to other periodic solutions. This property
of the solutions is not a generic property of general dy-
namics on two-tori, but is a consequence of the rotational
symmetry [6,43].

We continue the amplitude-modulated waves in R > Rc2

by solving (28) using Newton iteration with natural continua-
tion, i.e., with R fixed at each point along the solution branch
[46]. Initial guesses of the first two points on the solution
branch are found from time integration of a random initial
guesses at R = 620 and 620.25. As in the case for the rotating
waves, for this value of the parameter, time integration leads
to sufficient decay of transients because the solution is stable.
Initial guesses for all other points along the curve are found by
following a secant to the solution branch which is computed
from the previous two points along the branch. Relative to
the rotating wave case, smaller increments of δR = 1/4 in
the parameter along the solution branch are required to obtain
adequate initial guesses for the Newton iteration to converge.
In addition, it is necessary to recompute preconditioning ma-
trices every several steps along the solution branch. Also, a
reduced time step of δtP = 5 × 10−4 is required to produce
an effective preconditioner. These factors, along with the re-
quirement that the integration time be the period τ of the
amplitude oscillations, lead to a significantly more intensive
computational task, relative to the computation of the rotating
waves. For this reason, we choose a time step for the time
stepper to be δt = 2 × 10−4. Tests show that this increase in
the time step introduced errors in the eigenvalues of less than
0.1%.

Each point on the branch of amplitude-modulated wave
solutions is a fixed point of the map γ −1�τ to an error of
less than 10−4 in the infinity norm. We validate points on
the branch as an amplitude-modulated wave by using them as
initial data for the time stepper, integrated over a period τ , and
confirming that the amplitude of the observed rotating wave
undergoes a single period of oscillation; see Fig. 5(a). At each
point on the branch, a maximum and minimum of the wave
amplitude of the stream function deviation are found from the
results of this time stepper integration. These are plotted in
the bifurcation diagram of Fig. 2. It can be seen that the range
of the wave amplitude grows quickly as R is increased from
Rc2 = 595.6, then as the minimum amplitude approaches
zero, begins to grow more slowly. Figure 5 shows the variation
of the amplitude (spatial maximum of the absolute value of
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FIG. 5. Amplitude-modulated rotating wave. (a) ‖φ (1)(·, t )‖∞, the infinity norm of the stream function deviation at a particular time (spatial
maximum of |φ (1)|), i.e., the wave amplitude, as a function of time t over one period of the amplitude oscillations; results for three different
values of the Rayleigh number R are plotted. (b) The period τ of the amplitude oscillations as a function of R; the dot indicates the period at
R = Rc3 = 626.8.

the stream function deviation φ(1)) as a function of time over a
single period of the amplitude oscillation, as well as the period
of the amplitude oscillations as R is varied. The phase speed
w (not shown) decreases monotonically from 5.05 at R = 600
to 4.72 at R = 635, where, initially, the slope is relatively
flat but becomes steeper as R is increased. For values of the
parameter close to the bifurcation (Rc2 = 595.6 < R < 600),
errors are introduced to the calculation of the phase speed
and period of amplitude oscillation due to the small variation
of amplitude over the period of oscillation coupled with the
spatial and temporal discretization. As such, we do not plot
these values in Fig. 5(b).

The stability of the amplitude-modulated waves is found
from the spectrum of γ −1Du�τ , where τ is the period of the
amplitude oscillations and γ is the rotation operator through
angle θ = wτ (see Sec. IV D). The 12 eigenvalues with largest
magnitude are computed at each point along the branch; their
dependence on R is plotted in Fig. 6. Application of the secant
method finds a tertiary transition at Rc3 = 626.8; see Fig. 2.
There is also a short interval of instability along the branch
of amplitude-modulated waves that occurs at R = 608. Time-
stepping simulations taken in the small region of instability

produce solutions that are indistinguishable from those taken
in neighboring stable regions. This suggests that a supercrit-
ical bifurcation occurs and the bifurcating solution does not
grow significantly before again coalescing with the branch of
amplitude-modulated waves. Variation in a second parameter
would be necessary to investigate this further; we leave this
for future study.

In order to verify the computations, the eigenvalues have
been computed for R = 629 on a grid with Nc = 48 and
K = 64; see Table II. The largest discrepancy between the
computations on the two grids is 0.027, or approximately 7%.
This, however, is in the real part of the eigenvalue with sixth
largest magnitude; all others are similar to less than approxi-
mately 4%. The critical Rayleigh number Rc3 has also been
computed on the finer grid; see Table III. The computations
for Rc3 on the different grids show a difference of 2.6, or
approximately 0.4%.

The linear stability analysis reveals that a Neimark-Sacker
bifurcation of the map γ −1�τ occurs as a complex conjugate
pair of eigenvalues crosses the |z| = 1 curve in the complex
plane, while all other eigenvalues have magnitude less than
or equal to 1 [47]. For a Neimark-Sacker bifurcation, to first
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FIG. 6. Eigenvalues and critical eigenfunction along branch of amplitude-modulated waves. (a) The evolution of the largest magnitude
eigenvalues of γ −1Du�τ along the solution branch of the amplitude-modulated rotating waves; the nine largest eigenvalues with respect to
modulus are depicted for Rayleigh number 611 � R � 631. At Rc3 = 626.8, the critical eigenvalues are marked with a square, while the
others eigenvalues are marked with a circle; all eigenvalues are marked with a star at R = 611. (b) The real part of Vφ , and (c) the imaginary
part of Vφ , where Vφ is the φ component of the eigenfunction corresponding to the critical eigenvalues at R = Rc3.
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FIG. 7. ‖φ (1)(·, t )‖∞, the infinity norm of the stream function deviation (spatial maximum of |φ(1)|), i.e., the wave amplitude, as a function
of time t (a) stable amplitude-modulated rotating wave at R = 626 (before transition at Rc3); (b) period-2 amplitude-modulated rotating wave
at R = 631.7. See the Supplemental Material [44] for respective animations of the stream function deviation φ (1).

order, the bifurcating solution is the stationary solution of the
map plus a perturbation that is a linear combination of the real
and imaginary parts of the critical eigenfunction. Generically,
the specific linear combination will be different on each iter-
ation of the map and will depend on the critical eigenvalue
and parameter. The corresponding solution for the continuous
time case must coincide with this solution after each interval
of the period τ , specifically, in a frame of reference follow-
ing the flow (i.e., rotating at the phase speed ω). Here the
critical eigenfunction, associated with the critical eigenvalue
λ1 = 0.100 + i0.995, looks like a wave with wave number 5,
but with two pairs of cells elongated relative to the other cells;
see Fig. 6. The cells that are not elongated appear to have
the same size as those with azimuthal wave number 6, while
the elongated cells are approximately twice as large. Thus,
it resembles a wave with wave number 6, multiplicatively
coupled to one with wave number 1. The imaginary part of
the eigenfunction resembles the real part, but rotated by an
angle of approximately π/2. As such, linear combinations of
the real and imaginary parts of the eigenfunction (and there-
fore, the perturbation from the amplitude-modulated wave
associated with the bifurcating solution) will resemble a wave
of azimuthal wave number 6, whose amplitude varies with the
azimuthal variable.

Because the nodal lines of the real and imaginary parts of
the eigenfunctions coincide, the azimuthal phase of this wave
is the same for all possible linear combinations. This implies
that after each iteration of the map γ −1�τ , the perturbation
has the same phase as the amplitude-modulated wave, i.e., it is
phase locked with the amplitude-modulated wave or possibly
has some integer multiple of the phase speed. If the pertur-
bation is phase-locked, the form of the perturbation ensures
that, at any given time, it will constructively interfere with
the amplitude-modulated wave on one side of the annulus and
destructive on the other side. Generically, the amplitude of
the perturbation varies at a distinct frequency, and thus, the
bifurcating solution corresponds to a three-frequency flow that
breaks the discrete rotational symmetry.

Although linear analysis can determine the parameter value
at which a bifurcation occurs, and, to first order, the form of
the bifurcating solutions, it cannot determine the stability of
the bifurcating solutions, or the regions in parameter space
in which they exist (i.e., whether the bifurcation is supercrit-
ical or subcritical). In fact, the solution may be dynamically
or structurally, unstable. A weakly nonlinear analysis could
provide further information. However, it is not guaranteed to
provide results that extend sufficiently far from the bifurcation
point, and such an analysis is a very large computational
task. Therefore, we leave this for possible future study, and,
consequently, the branch of solutions emanating from the
tertiary bifurcation is not plotted in the bifurcation diagram
of Fig. 2. Here we confirm our predictions with a com-
parison with simulations of the initial value problem (i.e.,
time stepping). In particular, simulations at values of the
Rayleigh number slightly larger than the critical value Rc3,
reveal a flow consistent with the occurrence of a supercritical
Neimark-Sacker bifurcation, i.e., we observe a stable bifur-
cating solution of the form predicted from the linear stability
computations discussed above. See the Supplemental Material
[44] for an animation of the stream function deviation φ(1)

corresponding to the solution at R = 629.
It is interesting to note that this tertiary transition may

lie close to a strong 1:4 resonant bifurcation, i.e., it may be
possible to vary a second parameter in such a way that the
critical eigenvalue (which for the current choice of parame-
ters is λ1 = 0.100 + i0.995) becomes purely imaginary. Near
such a bifurcation, frequencies may synchronize resulting in
a period-4 flow. Furthermore, there is a rich variety of other
behavior that may be seen near such a bifurcation, including
period-4 cycles and heteroclinic connections [43]. We leave
the localization of the bifurcation and analysis of the reso-
nance to future study.

The three-frequency flow is observed in simulations
throughout the interval 628 < R < 632; we expect that these
solutions persist down to Rc3, but, as previously mentioned,
we do not perform a weakly nonlinear analysis to prove this.
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FIG. 8. The bifurcation diagram (enlargement of region around
the bifurcation at Rc3 = 626.8). Solutions are represented in terms of
‖φ (1)(·, t )‖∞, the infinity norm of the stream function deviation at a
particular time (spatial maximum of |φ (1)|), i.e., the wave amplitude.
For the period-2 amplitude-modulated rotating waves, the higher and
lower maximum, as well as the higher and lower minimum amplitude
of the solution over a period of the amplitude oscillations, are plotted
in green (lightest). The triangle represents the period-doubling bifur-
cation at R = 630.6, and the squares at R = 631.4 and R = 632.0
delineate the region of stability of the period-2 flow. Values for other
parameters are listed in Table I.

Near R = 632, the simulations produce a flow that resembles
an amplitude-modulated rotating wave with an amplitude that
oscillates twice before returning to its initial amplitude; see

Fig. 7 and the Supplemental Material [44] for an animation
of the stream function deviation φ(1) corresponding to this
solution at R = 632. This pattern is repeated throughout the
duration of the simulation (i.e., over 40 cycles). We will refer
to this flow as a period-two amplitude-modulated wave. The
initial conditions for the simulations are taken to be the end
point of the simulation at the previously computed Rayleigh
number, and we visualize solutions only for t > 100 to ensure
that transients have been dampened.

If this period-2 flow is an amplitude-modulated wave re-
sulting from a period doubling bifurcation, then the system
(28), involving the map �τ , can be used to compute them
directly. We show that this is the case, starting at a Rayleigh
number of R = 632, following the same procedure as dis-
cussed at the beginning of this section. In this case it is
necessary to use smaller increments δR = 1/10 of the pa-
rameter along the solution curve to obtain adequate initial
guesses for the Newton iteration to converge. In addition,
it is necessary to recompute preconditioning matrices every
second step along the solution branch.

It is found that this period-2 flow results from a period-
doubling bifurcation of the original amplitude-modulated
rotating wave at R = 630.6, i.e., at the bifurcation, there is a
single λ = −1 eigenvalue. The corresponding eigenfunction
is real and resembles a wave with azimuthal wave number
6. The bifurcating flow is unstable at transition, as the flow
originates from one that is already unstable. However, at R =
631.4, it becomes stable for a small interval of R. Namely, the
bifurcating flow again becomes unstable at R = 632.0. The
period-2 amplitude-modulated waves are represented in the
bifurcation diagram in Fig. 2, while Fig. 8 shows the relevant
region of Fig. 2 blown up to highlight these new solutions.

At the R = 632.0 transition, the critical eigenvalues of
the map γ −1�τ are a complex conjugate pair (in particular
λc = −0.2527 ± 0.9675i), suggesting that the bifurcating so-
lution will again be a three-frequency flow. Simulations of the
initial value problem suggest that this is the case. In particular,
for R > 632, an apparent three-frequency flow is observed,
which resembles the period-2 flow, but with lower frequency
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FIG. 9. ‖φ (1)(·, t )‖∞, the infinity norm of the stream function deviation (spatial maximum of |φ(1)|), i.e., the wave amplitude, as a function
of time t . (a) Period-2 amplitude-modulated rotating wave at Rayleigh number R = 631.7, as in Fig. 7(b); (b) modulated amplitude vacillating
flow at Rayleigh number R = 633. See the Supplemental Material [44] for respective animations of the stream function deviation φ (1).
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oscillations in the peak amplitude (see Fig. 9); this is con-
sistent with a supercritical Neimark-Sacker bifurcation of the
period-2 flow at R = 632. See also the Supplemental Material
[44] for an animation of the stream function deviation φ(1) of
the solution at R = 637. This type of flow has been called
modulated amplitude vacillation and has been observed in
both experiment and simulation of the differentially heated
rotating fluid annulus; see, e.g., [48–51].

In [51] numerical simulations of the differentially heated
rotating annulus reveal a period-doubling bifurcation se-
quence similar to that observed in the logistic map. Our results
may provide some insight into the origin of this behavior,
which warrants further investigation.

VI. CONCLUSION

In this study we use numerical bifurcation techniques to
study the flow transitions that occur in a mathematical model
of sheared annular electroconvection as the electric Rayleigh
number R is increased. A pseudospectral time-stepping code
that models the motion of the thin film is used to approximate
a flow map �t (u) that gives the solution of the model equa-
tions at time t for initial conditions u. The axisymmetric flow,
rotating waves, and amplitude-modulated waves observed in
the physical system, which, in the model equations, corre-
spond to steady solutions, limit cycles, and invariant 2-tori,
respectively, are computed as fixed points of this flow map.
The approach exploits the fact that the rotating waves are rela-
tive equilibria, which enables the extension of such methods to
the continuation of the amplitude-modulated rotating waves.

The Newton-Krylov numerical continuation and linear sta-
bility analysis that are implemented require only knowledge
of the map �t (u) and do not require access to a linearized
code. That is, we consider �t (u) as a black box, and all com-
putations of the solutions and eigenvalues are accomplished
solely by evaluations of �t . This distinguishes this study
from [27], the previous study that uses a similar approach
to perform numerical continuation of amplitude-modulated
rotating waves. This aspect may enable a more straightforward
implementation on other problems.

Unlike in previous applications of similar methods [20,27],
we do not obtain reasonable convergence of the GMRES
iterations, during the solution of the linear systems for the
Newton iterations, without the use of a preconditioner. This
may be due to the nonlocal nature of the coupling of the charge
density through the 3D electric potential. Our preconditioner
is naively computed as a direct approximation of the matrix
involved in the linear equations but is used for all Newton
iterations across a range of parameter values. Although this
preconditioner is very effective across a range of parameters,
its computation may be a major contribution to the overall
time of computation. However, its computation is trivially par-
allelizable, and therefore this issue may be easily mitigated.

The numerical methods locate a sequence of three flow
transitions as the Rayleigh number R is increased. The
primary transition, which is a transition from axisym-
metric to rotating wave flow, is shown to occur at the
critical Rayleigh number, Rc1 = 534.1, with a critical az-
imuthal wave number, mc = 6, for the parameters in Table I.
These results are in agreement with those obtained ex-

perimentally [11,12], analytically [10,32], and using direct
numerical simulation [14,15,17]. The secondary transition to
the amplitude-modulated waves is identified at Rc2 = 595.6,
which also compares quantitatively to previous studies that
have used direct numerical simulation [14,17]. The tertiary
transition occurs at Rc3 = 626.8, as the amplitude-modulated
waves lose stability to a three-frequency flow. Also, along
the solution branch of the amplitude-modulated waves, we
find a period-doubling bifurcation at Rc4 = 630.6, which
gives rise to an amplitude-modulated wave whose period
of amplitude oscillation is twice that of the original solu-
tions. These period-2 solutions transition to a three-frequency
flow previously referred to as modulated amplitude vacilla-
tion, which resembles amplitude-modulated waves but for
which the amplitude oscillations are modulated [48]. The
tertiary transition has not previously been identified, and the
period-2 amplitude-modulated waves and modulated ampli-
tude vacillating flows have not previously been reported to
the best of our knowledge. Furthermore, the analysis reveals
that the primary, secondary, and tertiary transitions all oc-
cur via supercritical Neimark-Sacker bifurcations, while the
period-2 bifurcation, which results in the period-2 amplitude-
modulated waves, is also supercritical. The form of the
bifurcating flows can be explained in terms of the critical
eigenfunctions.

We have confirmed all results by both qualitative and quan-
titative comparison to computations with a numerical grid size
reduced by a factor of two.

The flows observed near the tertiary transition greatly re-
semble flows of interest that have been observed in various
differentially heated rotating systems. In particular, we ob-
serve flows that resemble the modulated amplitude vacillation
seen in [48–51], and those that result from the sequence of
bifurcations observed in [51]. This presents an opportunity to
study such flows, and the progression to more complex flows
in general, in a 2D system.

We have shown the feasibility and validity of the ap-
plication of numerical bifurcation techniques to sheared
annular electroconvection. This motivates the application of
the method to other geophysical fluid systems, and motivates
further bifurcation analysis of the electroconvection system
itself, including the exploration of the effects of other nondi-
mensional parameters (e.g., the Reynolds number Re, the
aspect ration α, and the Prandtl number P), and the study
of other interesting flows that have previously been observed.
Of particular interest are rotating waves consisting of isolated
(localized) or elongated vortices [14,17], because their origin
and nature are not understood.
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