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In the investigation of extreme density or wave height statistics in a disordered medium, of special interest is
the search for universal or fundamental properties shared by different types of disorder. In previous work [Chen
and Kaplan, Entropy 25, 161 (2023)] we have established a direct connection between the degree of stretching or
focusing of ray trajectories and the density distribution. Here we demonstrate the universality of this connection
for different physical contexts, and both analytically and numerically show a universal scaling relationship
for the stretching exponent distribution in weak, small-angle scattering at finite times for different dispersion
relations. We observe that the mean, skewness, and kurtosis of the stretching exponent all display universal
nonmonotonic behavior on timescales comparable to the time of first caustic formation, corresponding to the first
generation of hot spots in the density profile. In particular, the mean stretching exponent attains negative values
before beginning its linear rise at large times. Using the correspondence between two-dimensional small-angle
scattering and a one-dimensional kicked model, we show how higher moments of the distribution of the second
derivative of the potential affect the statistics of the stretching exponents.
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I. INTRODUCTION

Ocean waves of extreme height relative to the typical waves
in a given sea state are known as freak or rogue waves. Many
publicized and documented encounters with extreme oceanic
waves have attracted interest over the years, especially in the
direction of quantitative predictions for freak wave probabil-
ity distributions. Commonly used approaches to model freak
waves include the Longuet-Higgins random sea model [1], the
nonlinear Schrödinger equation (NLS) and its extension in the
Dysthe equation [2,3], and ray dynamics as exemplified in the
work of White and Fornberg [4].

The Longuet-Higgins random sea model is based on ran-
dom linear superposition of many plane waves with different
direction and wavelength, where the sea surface height at
any spatial location behaves, by the central limit theorem,
as a Gaussian random variable. In the limit of a narrow fre-
quency spectrum, the crest height then follows a Rayleigh
distribution, while observational data [5] show that this purely
stochastic Rayleigh model significantly underestimates the
actual probabilities of freak waves.

The NLS or the Dysthe equation incorporate nonlinear
effects perturbatively and work well in the regime of small or
moderate values of wave steepness kH , where H represents
wave height and k is the wave number. As nonlinear effects
scale as a power of the wave steepness, strong nonlinear
evolution is more likely to come from initial conditions with
already unusually high waves. In other words, the tail of the
crest height distribution is likely to be influenced by linear
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triggering mechanisms, even if subsequent nonlinear develop-
ment is also significant. In the work of White and Fornberg
[4], the linear triggering mechanism arises from the focusing
or refraction of an incoming plane wave by random current
eddies. Whenever a focusing current is present, an incoming
sea state develops caustics or singularities with infinite ray
density, and consequently a repeated and reproducible pattern
of freak waves. Statistics regarding the distribution of crest
heights can be obtained by combining the stochastic random
seas picture (given by a locally Rayleigh distribution) and the
statistics of ray focusing in the presence of random currents
[6,7].

Besides extreme waves in the ocean, extreme waves are
known to occur in many other physical systems, governed
by different equations of motion, where the waves or rays
are scattered by a weak random potential. Examples have
been reported on a wide range of length scales, including the
branching of electron flow [8–12], amplification of tsunami
waves [13–15], branching of light traveling through a soap
film [16], and freak waves in optical [17,18], acoustic [19,20],
and microwave propagation [7,21]. These systems share sim-
ilarities in statistics and scaling relations, suggesting that a
universal theory of scattering in weak random potentials may
describe these different phenomena. Indeed, a search for uni-
versality in branched flows through potentials with differing
correlation structures has obtained success [22,23], including
an extension to the anisotropic case [24].

Recently, it was demonstrated that a one-parameter model
suffices to describe classical branched flow in a time-
dependent 1D random potential, and a two-parameter phase
diagram describes the corresponding quantum branched flow
[25]. For a recent overview of the theory and applications of
branched flow, see Ref. [26].
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In our previous work [27], we have seen that scattering
of nonrelativistic particles in a random weak potential field
generates density patterns very similar to those observed for
deep-water ocean waves in the work of White and Fornberg
[4]. Moreover the stretching exponent, a quantity that de-
scribes the degree of stretching or focusing of nearby ray
trajectories, is explicitly connected to ray densities. This direct
connection allows us to treat the stretching exponent [28,29]
as a quantitative mirror for the intensity or ray density, so
that the statistical distribution of the stretching exponent can
reflect the statistics of the density, and therefore also the
statistics of wave heights.

In this paper we further explore the statistics of stretch-
ing exponents along the forward direction in ray dynamics.
Both in different physical contexts associated with diverse
dispersion relations and in potentials of differing correlation
structures, we are able to demonstrate semianalytically and
numerically universal scaling relationships of the stretching
exponent for small-angle scattering in weak random poten-
tials. We also observe that particle dynamics in a 2D ray
model is, in the regime of small angular spread, analogous to
a 1D model with a time-dependent potential. The stretching
exponent is mathematically linked to the monodromy matrix,
which evolves the phase space displacement vector through
time, and therefore the 2D ray dynamics in a random potential
is equivalently a problem of random matrix multiplication as
observed in Ref. [30]. Whereas the full 4 × 4 monodromy
matrix in 2D space is challenging for numerical evolution and
even more so when it comes to an analytical treatment, the 1D
model is simple enough to obtain quantitative predictions for
the distribution of the stretching exponent. Therefore, we are
able to further explore the mechanism and statistics of freak
wave events by studying monodromy matrix statistics in the
1D model.

The remainder of this paper is organized as follows: The
basic mathematical formalism of monodromy matrices and
stretching exponents is reviewed in Sec. II A. Then in Sec. II B
we obtain an explicit correspondence for the finite-time evo-
lution of stretching exponent statistics in physical systems
described by different dispersion relations, including non-
relativistic classical particle flow, deep-water gravity waves,
capillary waves, and vibration of membranes. It shown that for
small-angle scattering, the statistical distribution of stretching
exponents is equivalent for these diverse systems, under an
appropriate time or distance rescaling. Then analytical results
for the short-time evolution of the mean stretching exponent
and its spread are obtained for 1D kicked flow and for flow in
a 2D potential.

Numerical results supporting and extending this analysis
are presented in Sec. III. The finite-time evolution of the first
four moments of the stretching exponent distribution (mean,
variance, skewness, and kurtosis) is obtained numerically in
Sec. III A and the scaling for different dispersion relations is
demonstrated. Notably, the mean, skewness, and kurtosis all
display nonmonotonic behavior on timescales comparable to
the time of first caustic formation, with the mean stretching
exponent attaining negative values before beginning its linear
rise at large times. Section III B compares the behavior of
2D potential flow with 1D kicked flow, while the effect of
different spatial correlation functions of the random potential

is analyzed in Sec. III C. The effects of non-Gaussian distri-
bution of the second derivative of the random potential Vxx are
examined in Sec. III D, where we find that the mean value and
skewness of the stretching exponent are more sensitive to an
asymmetry in the Vxx distribution, as compared to the even
moments. Finally, Sec. IV summarizes some key results.

II. MODEL AND THEORY

A. Monodromy matrix and stretching exponents

A linear dynamical system in N-dimensional space
is governed by 2N ordinary differential equations that
evolve the 2N-dimensional phase space point φ =
(x[1], k[1], . . . , x[N], k[N] ) in time. This evolution in phase
space can be considered as a flow f where dφ

dt = f (φ), and
in discrete time as a map F from one time point to the next,
φn+1 = F (φn). The flow of the tangent space is a matrix
operation acting on a perturbation δt of the phase space vector
φ(t ),

dδt

dt
= J (t )δt , (1)

where the Jacobian matrix J (t ) is

Ji j (t ) = ∂ fi

∂φ j

∣∣∣∣
φ=φ(t )

. (2)

Finally, the monodromy or stability matrix M(t ), which
projects the initial phase space perturbation at time 0 to the
phase space perturbation at time t , δt = M(t )δ0, evolves in
accordance with

dM(t )

dt
= J (t )M(t ). (3)

Physically, the evolution in phase space occurs in continuous
time, but numerical simulations can only take the route of
mapping in discrete time. In discrete time, the map F deter-
mines the Jacobian matrix K ,

Ki j (φn) = ∂Fi

∂φ( j)

∣∣∣∣
φ=φn

, (4)

which iterates the tangent space from time step n to n + 1 as

δn+1 = K (φn)δn. (5)

Therefore an initial perturbation δ0 in the phase space vector
is evolved to δn at time step n by the monodromy matrix,

δn = Mnδ0, (6)

where

Mn = K (φn−1)K (φn−2) · · · K (φ0). (7)

The matrix operation Mn or M(t ) can be viewed as a
linear, canonical transformation with unit determinant, and
the eigenvalues come in pairs, m[2 j](t )m[2 j+1](t ) = 1 (e.g.,
see Ref. [31], Ch. 5), reducing the effective dimension of
the spectrum from 2N to N . Moreover, as total energy is a
constant of the motion in conservative systems, two of the
eigenvalues of M(t ) are unity. Therefore in a 2D Hamiltonian
system, the eigenvalues of M(t ) become {m(t ), 1/m(t ), 1, 1},
so that a single parameter |m(t )| solely captures the stability
of a trajectory.
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In the large-time limit of a weakly disordered system,
|m(t )| ≈ exp(λt ), where λ is the maximal Lyapunov exponent
(MLE), independent of time and independent of the initial
conditions. However, we are interested here not in this triv-
ial large-time regime but rather in the finite-time behavior,
on timescales comparable to the formation time of the first
caustics. As established previously in Ref. [27], the stretch-
ing exponents of 2D small-angle scattering in weak random
potentials are closely related to the density distribution, as
the first generation of caustics is where strongest focusing
occurs. Given two ray trajectories (x1(t ), y1(t )), (x2(t ), y2(t ))
propagating initially along the y direction and initially slightly
separated by δ along the transverse direction x, the degree of
stretching or focusing can be quantified by the logarithm of
the stretching ratio of the transverse separation:

α(t ) = log

(∣∣∣∣ x1(t ) − x2(t )

x1(0) − x2(0)

∣∣∣∣
)

= log

( |x1(t ) − x2(t )|
δ

)
.

(8)

The value of the stretching exponent α(t ) describes the cu-
mulative exponential divergence or convergence along the
transverse direction from time 0 to time t , and its time deriva-
tive dα(t )/dt quantifies the rate of exponential divergence
or convergence at time t . In the large-time limit, dα(t )/dt
approaches the maximum Lyapunov exponent λ of the system.
The behavior of the stretching exponent α(t ) before reaching
the large-time limit is mathematically nontrivial, but previous
numerical calculations [27] showed the distribution of the
stretching exponent at short and intermediate times. If we
adopt phase space coordinates φ = (x, kx, y, ky ), the stretch-
ing exponent α is also the logarithm of the first element in the
monodromy matrix,

α(t ) = log(M11(t )). (9)

B. Dispersion relations

In the limit of weak (small-angle) scattering, a very wide
variety of dispersion relations in two dimensions can be ex-
pressed as

H = 1
2 |�k|β + V (�r), (10)

where the energy or frequency H is conserved and the prefac-
tor 1

2 is included for mathematical convenience. The vector
�k = (kx, ky ) is the wave vector or momentum, and the ex-
ponent β takes different values depending on the specific
physical context. When β = 2, the dispersion relation de-
scribes nonrelativistic classical particles,

H = 1
2 |�k|2 + V (�r), (11)

e.g., electrons traveling through a weak potential field. The
dispersion relation with β = 1/2 models deep-water gravity
waves where H is the wave frequency [4] [and for a narrow
angular trajectory spread, the field V (�r) is proportional to the
current in the forward direction]. Other values of β are also
commonly found physically, such as in vibrating membranes
(β = 1) and capillary waves (β = 3/2) [32].

In the following analysis, V (�r) is taken to be a 2D ran-
dom time-independent disordered potential with zero average,

fluctuations of size σ (σ 2 = V 2), and a spatial correlation
function C(�r) characterized by correlation length ξ . Note that
when the potential strength σ is small compared to the total
energy (σ � H), Eq. (10) may be regarded as the first-order
expansion of a more complicated dispersion relation. In the
special case of β = 2 (Eq. (11)), the first caustics appear after
a travel distance

L ∼ ξ (σ/H )−2/3 (12)

along the y direction, where the earliest cusp singularities
form [4,12]. More generally, the motion obeys the usual
eikonal equations:

d�r
dt

= ∂H

∂�k ,
d�k
dt

= −∂H

∂�r . (13)

In 2D space and in the limit of weak disorder (σ � H),
Eq. (13) can be explicitly written out as

dx

dt
= β

2
kx[2(H − V )]1− 2

β ≈ β

2
kx(2H )1− 2

β ,

dy

dt
= β

2
ky[2(H − V )]1− 2

β ≈ β

2
ky(2H )1− 2

β ,

dkx

dt
= −∂V

∂x
,

dky

dt
= −∂V

∂y
. (14)

Defining B = β

2 (2H )1− 2
β , the equations of motions can be

reexpressed as

dx

dt
= Bkx,

dy

dt
= Bky,

dkx

dt
= −∂V

∂x
,

dky

dt
= −∂V

∂y
, (15)

which are the Hamiltonian equations of motion for an effec-
tive Hamiltonian

H̃ = B

2
|�k|2 + V (�r). (16)

Thus, motion governed by a dispersion relation of the form of
Eq. (10), for any β, is identical to leading order in the potential
strength with the motion of nonrelativistic particles with an
effective mass 1/B in the same disorder. Therefore in the limit
of weak scattering, the 2D classical particle model is sufficient
for the study of stretching exponent statistics.

Equivalently, it is convenient to note from Eq. (15) or
Eq. (16) that the constant B may be eliminated via the transfor-
mation V → BV and t → t/B. Thus, the monodromy matrix
arising from the dispersion relation (10) in disorder V (�r) at
time Nδt is identical with the monodromy matrix from clas-
sical particle mechanics, Eq. (11), in disorder Ṽ (�r) = V (�r)/B
at time NδT = BNδt .

Given the distance scaling law shown in Eq. (12), if Hamil-
tonian motion in disorder Ṽ (�r) = V (�r)/B after time NδT =
BNδt covers a distance associated with the formation of first
caustics, so will another Hamiltonian motion with same to-
tal energy in disorder V (�r) after time B−2/3NδT = B1/3Nδt .
In other words these two Hamiltonian motions in disorders
Ṽ (�r) = V (�r)/B and V (�r) achieve the same monodromy ma-
trix at times BNδt and B1/3Nδt , respectively. Now, using the
equivalence between Hamiltonians (11) and (16), we find that
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motion governed by the general dispersion relation (10) in
disorder V (�r) achieves the same monodromy matrix after time
Nδt as does nonrelativistic particle dynamics (11) in the same
disorder V (�r) after time B1/3Nδt . Note that the equivalence
relies on the assumptions of weak disorder and narrow angular
ray spread.

Since rays under the classical particle dispersion relation
(10) are propagating forward with momentum (2H )1/2, the
distance scale associated with caustic formation is given for
general β by

Lβ ∼ B1/3ξ (σ/H )−2/3

∼ ξ (σ/H )−2/3(βH )1/3(2H )−
2

3β , (17)

which of course is equivalent to the simpler form (12) for
the special case β = 2. This rescaling—the key result of this
subsection—bridges different dispersion relations and greatly
simplifies the analysis of 2D weak random scattering, because
both the distribution of stretching exponents and the density
distribution for the general situation described by Eq. (10)
may be expressed in terms of the corresponding behavior for
the special situation of classical particle motion, Eq. (11).

C. Stretching exponent statistics for 1D kicked model
and 2D scattering

Mathematically, because the stretching exponent is given
by the logarithm of one element of the monodromy matrix
[see Eq. (9)], the statistics of the stretching exponent over
time in weak random potentials are to be obtained from the
statistics of the evolving monodromy matrix, which for a
disordered potential may be viewed as a product of random
Jacobian matrices drawn from a certain statistical distribution.
More specifically, it is the distribution and correlation of sec-
ond derivatives of the potential, Vxx, Vxy, and Vyy, that directly
determine the statistics of the monodromy matrix.

In 2D dynamics, the analysis requires multiplication of
4 × 4 matrices with random matrix elements, which is a rela-
tively challenging problem to treat. Hence we first approach
the evolution of the stretching exponent in a simple model
of one-dimensional Hamiltonian motion in a time-dependent
potential H (t ) = 1

2 k2 + V (x, t ), where the single spatial di-
mension x corresponds to the transverse dimension in 2D
small-angle scattering, and the time parameter is analogous
to the forward direction y.

1. 1D kicked model

In the 1D model, the Jacobian matrices and the mon-
odromy matrix have dimension 2 instead of 4. The Jacobian
matrix that evolves the phase space displacement vector (δx

δk)

by one step takes the form K (t ) = [ 1 δt
−Vxx (x, t )δt 1 − Vxx (x, t )δt2].

Without loss of generality, we may choose units where δt = 1,
so that the Jacobian matrix further simplifies to

K (t ) =
[

1 1
−Vxx(x, t ) 1 − Vxx(x, t )

]
. (18)

This model can be viewed as a kicked model where Vxx(x, t )
is the derivative of a single kick. The monodromy matrix after
N steps is given by MN = ∏N−1

i=0 Ki and the stretching ratio

eα = (MN )11 is expressed as follows:

eα = 1 −
N∑

i=1

(N − i)vi +
∑

1�i< j�N

( j − i)(N − j)viv j

−
∑

1�i< j<k�N

(k − j)( j − i)(N − k)viv jvk + . . . ,

(19)

where we employ the notation vi = Vxx|xi,ti .
For times N � TL, where TL is the Lyapunov timescale,

we are in the short-time regime |α| � 1. Here the stretching
exponent α may be expanded as a power series in v,

α ≈ −
N∑

i=1

(N − i)vi +
∑

1�i< j�N

( j − i)(N − j)viv j

− 1

2

⎡
⎣−

N∑
i=1

(N − i)vi +
∑

1�i< j�N

( j − i)(N − j)viv j

⎤
⎦

2

.

(20)

Naturally there are two aspects of vi(x, t ) that affect the statis-
tics of the stretching exponent α: the distribution of individual
kick strengths vi(x, t ) and the time correlation among them.
Note that the distance traveled in the 1D kicked model is negli-
gible at short times, so the spatial correlations are not relevant
and only the time correlation of the potential contributes to the
development of the stretching exponent. Let us first assume
no time correlation in the potential and also assume that the
distribution of kicks v is symmetric around 0 with variance
σ 2

v . Then the average and variance of the stretching exponent
are obtained to first order in σ 2

v as

α ≈ − 1
12 (2N3 + 3N2 + N )σ 2

v ≈ − 1
6 N3σ 2

v

(α − α)2 ≈ 1
6 (2N3 + 3N2 + N )σ 2

v ≈ 1
3 N3σ 2

v . (21)

We notice that these expressions are consistent with the
Lyapunov time scaling as TL ∼ σ

−2/3
v , in agreement with

Eq. (12). For short times N � TL, we have stretching expo-
nent α � 1, and at times of order the Lyapunov time, N ∼ TL,
the mean and variance of α are of order unity, as expected.

We now introduce a time correlation in the potential with
time scale ξT in units of the time step (ξT � 1). Here we
are interested only in the scaling behavior, so we are not
concerned with the precise form of the correlation function. To
leading order, the effect of a time-correlated potential is that
averages of the form

∑N
i, j=1 viv j ∼ Nσ 2

v in the uncorrelated

case become
∑N

i, j=1 viv j ∼ NξT σ 2
v when terms |i − j| ∼ ξT

contribute to the sum. Thus, for a time-correlated potential,
the kick strength is effectively rescaled as σ 2

v → ξT σ 2
v and the

leading behavior in Eq. (21) for the average and variance of
the stretching exponent generalizes to

α ∼ N3ξT σ 2
v ,

(α − α)2 ∼ N3ξT σ 2
v . (22)

Again, the Lyapunov time scale corresponds to the value of N
at which the mean exponent α reaches values of order unity,
i.e., TL ∼ ξ

−1/3
T σ

−2/3
v .
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2. 2D scattering

We now return to the 2D Hamiltonian motion described
by the Hamiltonian of Eq. (11). Using coordinates φ =
(x, y, kx, ky), the Jacobian matrix for a single time step δt = 1
can be written, in analogy with Eq. (18) for the 1D case, as

K =

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1

−Vxx −Vxy 1 − Vxx −Vxy

−Vxy −Vyy −Vxy 1 − Vyy

⎤
⎥⎥⎦ =

[
I2 I2

ε I2 + ε

]
,

(23)

where I2 is the 2 × 2 identity matrix and ε = [
−Vxx −Vxy

−Vxy −Vyy
].

The randomness of the Jacobian matrices arises from the ran-
domness of the second derivatives Vxx, Vyy, and Vxy. Then, for
times short compared with the Lyapunov time, the upper-left
2 × 2 block of the monodromy matrix, which acts on the
position coordinates (x, y), may be written as

Msub = 1 +
N∑

i=1

(N − i)εi −
∑

1�i< j�N

( j − i)(N − j)εiε j

+
∑

1�i< j<k�N

(k − j)( j − i)(N − k)εiε jεk + · · · ,

(24)

in full analogy with Eq. (19). Specifically, the first element
M11 = eα of the monodromy matrix takes the form

M11 = 1 −
N∑

i=1

(N − i)Vxx,i +
∑

1�i< j�N

× ( j − i)(N − j)(Vxx,iVxx, j + Vxy,iVxy, j ) − · · · , (25)

where Vxx,i is the second derivative with respect to x at position
(xi, yi ), which is the trajectory position at time step i, and
similarly for Vxy,i. Therefore, the stretching exponent α may
be expanded at short times as

α ≈ −
N∑

i=1

(N − i)Vxx,i +
∑

1�i< j�N

( j − i)(N − j)

× (Vxx,iVxx, j + Vxy,iVxy, j )

− 1

2

[
−

N∑
i=1

(N − i)Vxx,i +
∑

1�i< j�N

( j − i)(N − j)

× (Vxx,iVxx, j + Vxy,iVxy, j )

]2

. (26)

We now take the random 2D potential V (x, y) to be a
superposition of many independent random potential bumps
at randomly chosen locations (xi, yi ):

V (x, y) =
n∑

i=1

hiU (x − xi, y − yi ). (27)

The number of bumps is taken to be sufficiently large so
that the bumps are strongly overlapping—in other words, the
typical interbump separation is small compared to the extent

of the bump shape U . The bump shape U , which for simplicity
is taken to be symmetric in both x and y, determines the
correlation function of the potential, i.e., the potential is white
noise convolved with U . By the central limit theorem the
derivatives of the potential at any location will be distributed
as Gaussian variables with zero mean. Under these conditions,
the mean stretching exponent may be written as

α ≈
∑

1�i� j�N

−(N − j)2 Vxx,iVxx, j

+
∑

1�i� j�N

( j − i)(N − j)Vxy,iVxy, j

≈ −
∫ N

0
d j

∫ j

0
di (N − j)2 Vxx,iVxx, j

+
∫ N

0
d j

∫ j

0
di ( j − i)(N − j)Vxy,iVxy, j, (28)

where in the last step we have introduced a continuum time
limit, valid when the time step is small compared to the time
associated with traversing a single bump.

Before proceeding with the calculation, we introduce the
two-point correlation function of the potential V (x, y),

C(�x,�y) = V (x0 + �x, y0 + �y)V (x0, y0)

V 2(x0, y0)
, (29)

which depends only on the bump shape U . Specifically, start-
ing with the construction of the potential V (x, y) given in
Eq. (27) and replacing the sums over x′ = x − xi, y′ = y − yi

by integrals, we have

C(�x,�y) ∼
∫∫

dx′ dy′ U (x′, y′)U (x′ + �x, y′ − �y)

=
∫∫

dx′ dy′ U (−x′,−y′)U (x′ + �x, y′ − �y),

(30)

where we have dropped a normalization constant, fixed of
course by C(0, 0) = 1, and where in the second line we have
used the reflection symmetry of U . Thus, C is simply the
convolution of the bump size U with itself. Furthermore, the
convolution theorem implies F [C] ∼ (F [U ])2, where F is
the Fourier transform, allowing the construction of the poten-
tial bump shape from the correlation function as

U (�x,�y) ∼ F−1[
√

F [C(�x,�y)]]. (31)

However, the stretching exponent is not directly related
to the values of the potential V (x, y) and instead is deter-
mined by strength of the second derivatives of the potential
and the correlations among them. Since the derivatives of
the full potential are given by sums over bumps, Vxx(x, y) =∑n

i=1 hiUxx(x − xi, y − yi ), and the bumps are uncorrelated,
all calculations (up to normalization) can be based on a sin-
gle potential bump. In Fourier space, the second derivative
v(x, y) = Vxx(x, y) becomes F [v](z,w) = (iz)2F [V ](z,w),
and using Eq. (31),

F [v](z,w) ∼ (iz)2
√

F [C](z,w). (32)

The other second derivatives may be obtained similarly. Con-
tinuing to take v = Vxx as an example, the correlation function
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c(�x,�y) may be defined as

c(�x,�y) = Vxx(x0 + �x, y0 + �y)Vxx(x0, y0)

V 2
xx(x0, y0)

. (33)

Setting aside the normalization constant, in Fourier space we
have

F [c] ∼ (F [v])2 ∼ (iz)4F [C] = F

[
∂4C(�x,�y)

∂�x4

]
. (34)

Therefore the correlation function of the second derivatives
v is connected to the correlation function of the potential V
itself via

c(�x,�y) =
∂4C(�x,�y)

∂�x4

∂4C(�x,�y)
∂�x4

∣∣
�x=�y=0

, (35)

where we have inserted the correct normalization factor, and
the normalized correlation functions of Vyy and Vxy are given
similarly.

Having obtained explicit expressions for the relevant corre-
lation functions, we now return to our goal—the development
of the stretching exponent α. In the regime where time is short
compared with the Lyapunov time but still large compared
to the time needed to traverse a single correlation length of
the potential (so that a statistical treatment of trajectories is
appropriate), the second term in Eq. (28) will be negligible
compared with the first,

α ≈ −V 2
xx

∫ N

0
(N − j)2

∫ j

0
c(x j − xi, y j − yi ) di d j. (36)

Furthermore, when the angular spread of trajectories is nar-
row and the potential is weak, the forward distance traveled
is approximately proportional to time, y j − yi ≈ ky( j − i) ≈√

2H ( j − i), and the distance traveled in the transverse di-
rection remains small (compared to the potential correlation
length), so the result simplifies further to

α ≈ −V 2
xx

∫ N

0
(N − j)2 d j

1√
2H

∫ ∞

0
c(0,�y) d�y

= −N3

3

V 2
xx√
2H

∫ ∞

0
c(0,�y) d�y. (37)

The mean square of Vxx in 2D scattering is proportional to the
strength of the potential,

V 2
xx = σ 2∫∫

V 2(x, y) dx dy

∫∫
V 2

xx(x, y) dx dy

= σ 2 ∂4C(�x,�y)

∂�x4

∣∣∣∣
�x=�y=0

, (38)

where σ 2 is the mean-square strength of the random poten-
tial. The effective length scale that appears in Eq. (37) and
describes the effect of the correlated potential is given by∫ ∞

0
c(0,�y) d�y =

∫ ∞

0

∂4C(�x,�y)
∂�x4

∣∣
�x=0

∂4C(�x,�y)
∂�x4

∣∣
�x=�y=0

d�y. (39)

Therefore in the regime of small-angle scattering and weak
potential, the average stretching exponent at short times is

obtained by substituting Eqs. (38) and (39) into Eq. (37),

α ≈ − σ 2N3

3
√

2H

∫ ∞

0

∂4C(�x,�y)

∂�x4

∣∣∣∣
�x=0

d�y. (40)

Although this scaling relationship is only obtained here for
short times, we will see in Sec. III that the same distance
scaling factor

RC =
∫ ∞

0

∂4C(�x,�y)

∂�x4

∣∣∣∣
�x=0

d�y, (41)

which has been introduced for example in Refs. [4,33], re-
mains valid at intermediate and large timescales. Indeed, we
will observe in Sec. III that not only α but the entire distri-
bution of the stretching exponent α behaves universally under
the rescaling given by Eq. (41).

Now, from Eq. (40) we see that the length associated with
the stretching exponent reaching values of order unity (equiv-
alently, the distance scale to the first caustics) scales as

Lα∼1 ≈
√

2HNα∼1

∼
( σ

H

)−2/3
(∫ ∞

0

∂4C(�x,�y)

∂�x4

∣∣∣∣
�x=0

d�y

)−1/3

.

(42)

We note that the last factor in Eq. (42) may be interpreted
as a correlation length, and thus this expression is in full
agreement with the expected scaling given above in Eq. (12).
Similarly, the maximum Lyapunov exponent scales as

λ ∼
( σ

H

)2/3
(∫ ∞

0

∂4C(�x,�y)

∂�x4

∣∣∣∣
�x=0

d�y

)1/3

. (43)

Such a scaling relationship is consistent with the scaling law
for the maximal Lyapunov exponent seen in previous works
[30].

We remark that the derivation leading up to Eqs. (40), (42),
and (43) relies on the assumption of vanishing average for Vxx.
When Vxx has nonzero average, for example, in the case of
harmonic transverse confinement V (x, y) = k

2 x2 + · · · , faster
divergence from the universal pattern may be expected. Also
universal development of the stretching exponent distribution
is not expected to hold when Vxx is not normally distributed.
The question of possible deviations associated with higher
moments of the Vxx distribution is addressed in Sec. III D.

III. NUMERICAL RESULTS AND DISCUSSION

The analysis in Sec. II suggests that the distribution of
stretching exponents in 2D scattering may be universal under
the conditions of weak correlated disorder and small angular
spread, and in particular that this distribution may be inde-
pendent of the dispersion relation (Sec. II B) and also of the
form of the disorder correlation (Sec. II C), after appropriate
rescaling.

A. Varying dispersion relations

Here we begin by computing moments of the stretching
exponent for evolution in a random potential V (�r) under dis-
persion relations given by Eq. (10) for several different values
of the β parameter. Without loss of generality, the numerical
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value of H is set to unity in each case. The 2D random poten-
tials are constructed to be locally Gaussian with zero mean
and variance σ 2, and to have Gaussian spatial correlation,
C(�r) = e−|�r|2/ξ 2

.
In the simulation, pairs of trajectories are propagated for-

ward along the y direction through the random potential with
small initial separation δ in the transverse direction x, and
the stretching exponent is calculated as α(t ) = log(|x1(t ) −
x2(t )|/δ). For each realization of the random potential, we
propagate the pairs of ray trajectories under the appropriate
dispersion relation, compute the stretching exponents, and
associate these exponents α with positions (x, y). Then the
moments of α are computed as functions of the forward dis-
tance y by averaging over the transverse position x and over
the disorder ensemble. The minimum value of the average
stretching exponent occurs around y = 42, y = 80, y = 100,
and y = 130 (in units of the grid spacing) for dispersion
relations described by β = 0.5, β = 1.5, β = 2, and β = 3,
respectively. The forward distance is then rescaled in accor-
dance with Eq. (17), and the results are displayed in Fig. 1.
Here Fig. 1(a) shows the mean α (lower curves) and the vari-

ance σ 2
α = (α − α)

2
(upper curves), while Fig. 1(b) shows the

normalized skewness (α − α)
3
/σ 3

α (lower curves) and kurto-

sis (α − α)
4
/σ 4

α (upper curves). We find excellent agreement
with the predicted scaling for all moments except in the case
of the smallest value of the power β, β = 0.5. Of course,
the scaling relationship given in Eq. (17) is expected to work
perfectly only in the limit of very weak potential. Keeping
subleading terms omitted in Eq. , we would obtain

dx

dt
≈ β

2
(2H )1− 2

β

[
1 −

(
1 − 2

β

)
V

H

]
kx,

dy

dt
≈ β

2
(2H )1− 2

β

[
1 −

(
1 − 2

β

)
V

H

]
ky, (44)

where the correction −(1 − 2
β

) V
H grows with decreasing β

values: − 1
3

V
H , 0, 1

3
V
H , 3 V

H for β = 3, 2, 3
2 , 1

2 respectively. Thus,
other things being equal, a smaller potential strength is re-
quired to recover universal behavior for small values of β.
In Fig. 1 the predicted scaling factor works very well for
potentials of strength σ = 0.025 for β = 3

2 , 2, 3, and the case
β = 1

2 would require an even weaker potential for full quan-
titative agreement. In any case, we confirm that in the regime
of small angular spread and sufficiently weak potential, the
distribution of stretching exponents and the time evolution
of this distribution are universal for different equations of
motion. Therefore, in the following studies we can use the
motion of nonrelativistic classical particles without loss of
generality.

B. Comparison with 1D kicked model

We have seen in Sec. II C that the 1D kicked model in a
time-dependent weak potential is analogous to small-angle
2D scattering in a weak potential. Further numerical results
displayed in Fig. 2 show that even without time correlation
of the 1D potential, 1D kicked motion gives rise to the same
pattern of stretching exponents as in 2D scattering. Here the
evolution of monodromy matrix MN = ∏N−1

i=0 Ki is simulated

FIG. 1. Moments of the stretching exponent α in 2D scatter-
ing for different dispersion relations given by Eq. (10) with β =
0.5, 1.5, 2, 3. In each case, the value of H is set to unity. The po-
tentials are Gaussian random with mean 0, rms potential strength
σ = 0.025, and Gaussian correlation C(�r) = e−|�r|2/ξ2

, where ξ = 10
in units of the grid spacing. All data are collected on a 512 × 512
potential field. Panel (a) shows the mean (lower curves) and variance
(upper curves) of the stretching exponent α, and panel (b) shows the
normalized skewness (lower curves) and kurtosis (upper curves).

by multiplication of random Jacobian matrices of the form
(18), where each individual kick Vxx is drawn independently
from a normal distribution with standard deviation σv � 1.
The moments of the stretching exponent α = log(M11) are
then computed by averaging over an ensemble of sequences
of random individual kicks. Up to a scaling factor of order
unity, the independent kick model is physically equivalent to
a correlated kick model where the correlation time is of the
order of one time step [see Eq. (22)]. Since this random kicked
model does not involve propagating the phase space trajectory
by integrating the equations of motions in a potential over
time, it provides a great numerical advantage in studying the
relationship between the stretching exponents and the distri-
bution of Vxx.

In fact, if we rescale the 1D data numerically along the
forward direction, by matching the location of the minimum
in the average stretching exponent curve to the 2D data, we

014211-7



SICONG CHEN AND LEV KAPLAN PHYSICAL REVIEW E 110, 014211 (2024)

FIG. 2. Moments of the stretching exponent α in the 1D model
with uncorrelated kicks (σv = 0.002). Panel (a) shows the develop-
ment of the mean and variance of the stretching exponent, and panel
(b) shows the normalized skewness and kurtosis as defined in the
text.

find that the moments of the stretching exponent statistics
in small-angle 2D scattering are in excellent agreement with
those obtained from the uncorrelated 1D model, as seen in
Fig. 3. Of course, this correspondence with 1D motion is
valid only in the regime of small angular spread. For larger
angular spread, the connection between 2D scattering and the
1D kicked model will be broken.

C. Varying correlations

We now investigate the effect of potential correlations.
The 2D random potential V (x, y) can be considered to be
a superposition of many potential bumps of identical shape
and random, independent heights as in Eq. (27). We focus
here on the case where the bump heights follow a symmetric
distribution and the bumps are strongly overlapping, so that
by the central limit theorem the derivatives of V (as well as V
itself) follow a normal distribution. In this scenario, the two
major parameters that tune the length scale for the stretching
exponent evolution are the variance of the second derivatives
Vxx and the correlation function of Vxx, as shown in Eq. (37).

FIG. 3. Numerically rescaled stretching exponent statistics in the
1D uncorrelated kick model (σv = 0.002) and in 2D small-angle
scattering in a Gaussian random potential with Gaussian correla-
tions (rms potential strength σ = 0.025; potential correlation length
ξ = 10). The 1D data are as in Fig. 2 but rescaled along the horizontal
axis so that the minimum in the mean stretching exponent curve is at
the same distance from the origin as the minimum in the 2D data.

Numerically, the bump shape is chosen to obey a specific
correlation function via Eq. (31), and the bumps are then
superposed with random heights to construct a realization of
the full potential,

V (�r) = F−1[
√

F [C(�r)] F [g(�r)]], (45)

where g(�r) represents white noise (numerically g(�r) =∑N
i=1 hiδ(�ri) with hi uniformly distributed in [−1, 1]). We

choose several types of potential correlation functions: a
Gaussian function, a sech function, and inverse polynomials
(referred to as “power” correlations in the following):

C(�r) = e−|�r|2/ξ 2
,

C(�r) = sech(|�r|/ξ ),

C(�r) = 1

1 + (|�r|/ξ )a
(a = 1, 2, 3, 4). (46)
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FIG. 4. Moments of the stretching exponent α for 2D scattering
in random potentials chosen to obey six different correlation func-
tions (σ = 0.025, ξ = 10). Panels (a), (b), and (c) show, respectively,
the average, variance, and normalized skewness of the stretching
exponent α.

Moments of the stretching exponents along the transverse
direction are shown in Fig. 4. The maximal focusing as de-
termined by a minimum in the mean stretching exponent

FIG. 5. Moments of the stretching exponents α for 2D scattering
in random potentials as in Fig. 4, but with the forward distance
rescaled in accordance with Eq. (41). Panel (a) shows the mean
(lower curves) and variance (upper curves) of α. Panel (b) shows the
normalized skewness (lower curves) and normalized kurtosis (upper
curves) of α.

occurs around y = 97, y = 130, y = 90, y = 67, y = 56, and
y = 49 (in units of the grid spacing) for Gaussian correlations,
sech correlations, and power correlations with α = 1, 2, 3, 4
respectively. Since the scaling with the potential strength σ

is well established [see Eqs. (12) and (17)], σ is fixed in
the calculation. In Fig. 5 the forward distance is rescaled
by the factor RC for each correlation function C as indi-
cated in Eq. (41). Excellent correspondence after rescaling
confirms analytical predictions of a universal scaling rela-
tionship for different random disorders. Notably, while the
formal derivation leading up to Eq. (41) is valid only at times
small compared to the Lyapunov time, the results in Fig. 5
indicate that the rescaling remains valid at much larger times.
Given this universality, we can then predict the locations
of the first caustics or extreme intensities in any random
disorder.

We now connect the statistics of the stretching exponent
with the maximum Lyapunov exponent (MLE) λ of a given
system, which describes the motion in the limit of large times
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TABLE I. The maximal Lyapunov exponent λ, before and after
rescaling by the scaling factor Z defined in Eq. (47), is shown for the
six potential correlation functions displayed in Eq. (46). In each case,
the potential is of strength σ = 0.025, with correlation scale ξ = 10.
The exponent λ for each type of correlation function is obtained by
averaging over 30 realization of a disorder ensemble.

Correlation function Z λ λ/Z

Gaussian 0.02985 0.006792 0.2276
Sech 0.02256 0.005275 0.2338
Power(a = 1) 0.03281 0.007625 0.2323
Power(a = 2) 0.04454 0.01046 0.2348
Power(a = 3) 0.05367 0.01254 0.2337
Power(a = 4) 0.06144 0.01484 0.2415

(or equivalently here, in the limit of large forward distance).
While analytically solving for λ in a given scattering system
may not be possible, we can make use of the relation α ∼ λy
for large forward distance y, and obtain λ by performing a
linear fit of α(y) [see Fig. 4(a)] in the large y regime. The
numerical values of the MLE obtained from this fitting proce-
dure for the six different correlation functions are displayed in
Table I. The calculated scaling factors

Z =
( σ

H

)2/3
(∫ ∞

0

∂4C(�x,�y)

∂�x4

∣∣∣∣
�x=0

d�y

)1/3

(47)

and the rescaled MLE values λ/Z are also shown in Table I.
Therefore we obtain an accurate approximation of the maxi-
mum Lyapunov exponent,

λ ≈ 0.234
( σ

H

)2/3
(∫ ∞

0

∂4C(�x,�y)

∂�x4

∣∣∣∣
�x=0

d�y

)1/3

(48)

(with fluctuations less than 5% of the average value). Equiva-
lently, the forward distance to the first caustics from initially
parallel trajectories may be obtained as

L ≈ 2.96
( σ

H

)−2/3
(∫ ∞

0

∂4C(�x,�y)

∂�x4

∣∣∣∣
�x=0

d�y

)−1/3

,

(49)

to be compared with Eq. (42).

D. Non-Gaussian potential distributions

The distribution of second derivatives of the potential and
their correlation jointly determine the evolution of the stretch-
ing exponents. While the average of the second derivative Vxx

vanishes as long as Vx is bounded, higher moments of Vxx,
such as the skewness, can lead to deviations from the universal
pattern. The normalized skewness (and higher moments) of
Vxx approach zero in accordance with the central limit theorem
in the regime of strongly overlapping potential bumps, but the
skewness can be substantial for low bump density (i.e., where
the typical bump separation is large compared to the bump
width).

High-accuracy numerical simulations are challenging for
2D scattering in this dilute regime due to large statistical

FIG. 6. Moments of the stretching exponent α in a 1D kicked
model where the average of the v is zero, the variance is σv = 0.002,
and the skewness is −σ 3

v , 0, or σ 3
v . Panels (a), (b), (c), and (d) show

the mean, variance, skewness, and kurtosis of the stretching expo-
nent, respectively. Accurate statistics are obtained by averaging over
100 million realizations of the ensemble in each case.
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noise. However, any distribution of Vxx, including a strongly
non-Gaussian distribution, can be easily simulated in the 1D
kicked model, and using the correspondence between the
kicked 1D model and small-angle 2D scattering we can pre-
dict the effect of higher moments of the Vxx distribution in 2D
scattering.

As we observe in Fig. 6, the skewness of the Vxx distri-
bution does not significantly change the length scale where
the strongest focusing occurs, but does slightly modify the
large-time behavior, i.e., the value of the maximum Lyapunov
exponent. The even moments of the stretching exponent dis-
tribution seem to be robust to skewness effects.

IV. CONCLUSION

We have seen that the connection between ray densities and
stretching exponents, previously discussed in Ref. [27], can be
extended to a wide variety of physical contexts. Specifically,
we have seen semianalytically and confirmed numerically
that the evolution of the stretching exponent distribution with
propagation distance is identical for a broad range of disper-
sion relations governing the ray propagation, as long as the
disorder is weak and the angular ray spread is narrow. We
have obtained analytically, in Eq. (17), the scaling factor for
the propagation distance needed to relate stretching exponent
evolutions for different dispersion relations.

Furthermore, we have shown that, under the same as-
sumptions of weak disorder and narrow angular spread, the
stretching exponent distributions are independent of the form
of the spatial correlation function describing the random po-
tential. Again, we have obtained an analytical form in Eq. (40)
for mapping the stretching exponent evolution obtained for a
given disorder ensemble into one appropriate for a different

disorder correlation. The same scaling describes correctly the
short-time behavior of the stretching exponent, the maximal
Lyapunov exponent (MLE) displayed in Table I, which gov-
erns large-time behavior, and the intermediate-time evolution.

The universal scaling factor combines contributions from
the strength of the second derivatives of the potential and from
their correlation along the forward direction. We note that
wider angular ray spread or stronger potential or nonlinear
effects will induce higher order terms in the evolution of
stretching exponents, and will therefore lead to deviations of
the stretching exponent evolution from the universal pattern.

Mathematically, the stretching exponents in 2D ray scat-
tering in random disorder can be obtained by multiplying a
sequence of random Jacobian matrices. For small scattering
angle, the equations governing the time evolution are shown
to be equivalent to those for 1D scattering in a time-dependent
potential. Furthermore, up to a numerical prefactor, the 1D
model in a correlated potential is seen to be equivalent to
a sequence of uncorrelated kicks, which does not require a
potential to be constructed at all and is very efficient for nu-
merical simulations. The 1D kicked model proves to be very
convenient for studying how the evolution of the stretching
exponent distribution may be affected both by correlations and
by the distribution of kick strengths.
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