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Resonancelike emergence of chaos in complex networks of damped-driven nonlinear systems
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Characterizing the emergence of chaotic dynamics of complex networks is an essential task in nonlinear
science with potential important applications in many fields such as neural control engineering, microgrid
technologies, and ecological networks. Here, we solve a critical outstanding problem in this multidisciplinary
research field: the emergence and persistence of spatiotemporal chaos in complex networks of damped-driven
nonlinear oscillators in the significant weak-coupling regime, while they exhibit regular behavior when un-
coupled. By developing a comprehensive theory with the aid of standard analytical methods, a hierarchy of
lower-dimensional effective models, and extensive numerical simulations, we uncover and characterize the basic
physical mechanisms concerning both heterogeneity-induced and impulse-induced emergence, enhancement,
and suppression of chaos in starlike and scale-free networks of periodically driven, dissipative nonlinear
oscillators.

DOI: 10.1103/PhysRevE.110.014209

I. INTRODUCTION

Controlling the dynamical state of a complex network is
a fundamental problem in science [1–5] with many poten-
tial applications, including neuronal [6] and ecological [7]
networks. While most of these works consider networks of
linear systems [2,5], only lately has the generic and richer
case of networks of nonlinear systems [1,4] started to be
investigated. Also, the majority of studies of coupled nonlin-
ear systems subjected to external excitations have focused on
either local (homogeneous) diffusive-type or global (all-to-all)
coupling. However, little attention has been paid to the pos-
sible influences of a heterogeneous connectivity on both the
emergence and the strength of chaos in complex networks of
nonautonomous nonlinear systems. Here we characterize the
emergence and persistence (in parameter space) of chaos in
heterogeneous networks of damped-driven nonlinear systems
when the complex network presents a nonchaotic state in
the absence of coupling, while a stable chaotic state emerges
after coupling the same nonautonomous nodes. Specifically,
we study the interplay among heterogeneous connectivity,
driving period, and impulse transmitted by a homogeneous
(nonharmonic) periodic excitation in the emergence and per-
sistence of spatiotemporal chaos in complex networks in the
significant weak-coupling regime. For the sake of clarity,
the findings are discussed through the analysis of starlike
networks (SNs) of N + 1 damped-driven two-well Duffing
oscillators. This system is sufficiently simple to obtain ana-
lytical predictions while retaining the universal features of a
dissipative chaotic system. The complete model system reads

..
xH = (1 − λN )xH − x3

H − δ
.
xH + γ f (t ) + λ

N∑
i=1

yi,

..
yi = (1 − λ)yi − y3

i − δ
.
yi + γ f (t ) + λxH , (1)

i = 1, . . . , N , where f (t ) is a unit-amplitude T -periodic ex-
citation and λ is the coupling. These equations describe
the dynamics of a highly connected node (or hub), xH ,
and N linked oscillators (or leaves), yi. For concrete-
ness, we consider the elliptic excitation f (t ) = fellip(t ) ≡
A(m) sn(4Kt/T ) dn(4Kt/T ) [8] [see Fig. 1(a) and Ap-
pendix A for a detailed characterization of fellip(t )]. In this
work, we concentrate on the relevant (typically asynchronous)
case of sufficiently small coupling λ, the external excitation
amplitude γ , and the damping coefficient δ, such that the
dynamics of the leaves may be decoupled from that of the
hub on the one hand, and may be suitably described as a
periodic orbit around one of the potential minima on the other.
Specifically, we assume λ = O(γ 2) throughout this work.

The article is structured as follows. In Sec. II, we char-
acterize the basic physical mechanisms concerning both
heterogeneity-induced and impulse-induced emergence, en-
hancement, and suppression of chaos in starlike networks
described by Eq. (1) by developing a comprehensive theory
with the aid of standard analytical methods, a hierarchy of
lower-dimensional effective models, and extensive numerical
simulations. The application of the theory to scale-free net-
works is discussed in Sec. III, while Sec. IV is devoted to a
discussion of the major results and of some open problems.
Some numerical results and analytical calculations are rele-
gated to the Appendixes.

II. EFFECTIVE MODEL

Equations (1) for the leaves become
..
yi = yi − y3

i − δ
.
yi + γ fellip(t ), (2)

i = 1, . . . , N . After using the properties of the Fourier se-
ries of fellip(t ) (see Appendix A for analytical details) and
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FIG. 1. (a) External excitation fellip(t ) = A(m) sn(4Kt/T )
dn(4Kt/T ) vs t/T , where T is the period and A(m) ≡ 1/{a + b/[1 +
exp({m − c}/d )]}, with a ≡ 0.439 32, b ≡ 0.697 96, c ≡ 0.372 7,
and d ≡ 0.268 83, for three values of the shape parameter: m = 0
(sinusoidal pulse), m = 0.72 � mmax (nearly square-wave pulse), and
m = 0.999 (double-humped pulse). Inset: The normalized impulse
I (m)/I (m = 0) [cf. Eq. (A3) in Appendix A, solid line] and the
Fourier coefficient a0(m) (dashed line; see Appendix A). Chaotic
threshold function U (ω, λN, m) [cf. Eq. (7)] vs (b) ω and λN for
m = 0.65 � ma0

max, (c) λN and m for ω = 0.65, and (d) ω and m
for λN = 0.45. The solid blue lines indicate the chaotic bound-
aries encircling regions where chaotic instabilities are expected for
γ /δ = 0.29 [cf. Eq. (7)].

applying standard perturbation methods [9] for the main reso-
nance case, one obtains

yi(t → ∞) ∼ ξi + γ a0(m)

2 − ω2
sin(ωt ), (3)

where ω ≡ 2π/T and ξi = ±1 depending on the initial
conditions, while the first Fourier coefficient of fellip(t ),
a0(m), presents a single maximum at m = ma0

max � 0.65 [see
Fig. 1(a), inset]. Since the initial conditions are randomly
chosen, this means that the quantities ξi behave as discrete
random variables governed by Rademacher distributions. Af-
ter inserting Eq. (3) into Eq. (1), the resulting equation for the
hub reads

..
xH = (1 − λN )xH − x3

H − δ
.
xH + � sin(ωt ) + λ	, (4)

where 	 ≡ ∑N
i=1 ξi and � ≡ γ a0(m)[1 + λN/(2 − ω2)] +

O(γ 3a2
0(m)). For finite N , the quantity 	 behaves as a discrete

random variable governed by a binomial distribution with zero
mean and variance N , while for sufficiently large N one may
assume that 	 behaves as a continuous random variable gov-
erned by a normal distribution. Although the hub’s dynamics
are generally affected by spatial quenched disorder through
the term λ	, one expects that it may be neglected in the
present case of weak coupling (WC) (1 � λ � 0) according
to the above assumptions (see Appendix B for a comparison
of the cases with and without the term λ	). Thus, the network
described by Eq. (1) can be effectively replaced by a hierarchy
of reduced networks in which a hub is coupled to M effective
leaves, each of which represents nj randomly chosen identical
leaves (i.e., leaves having exactly the same initial conditions)
such that the condition

∑M
j=1 n j = N is satisfied, in the WC

regime and for values of m sufficiently less than 1:
..
xH = (1 − λN )xH − x3

H − δ
.
xH + γ a0(m) sin(ωt )

+ λ

M∑
j=1

n jyL, j,

..
yL, j = (1 − λ)yL, j − y3

L, j − δ
.
yL, j + γ a0(m) sin(ωt ) + λxH ,

(5)

j = 1, . . . , M, where yL, j represents the common leaf as-
sociated with each group (cluster) of identical leaves.
Equation (4) indicates that the possibility of heterogeneity-
induced emergence of chaos in the hub’s dynamics is now
expected from the lowering of the potential barrier’s height
h ≡ (1 − λN )2/4 because N is increased on the one hand,
and because of the presence of the additional resonant ex-
citation γ a0(m)λ[N/(2 − ω2)] sin(ωt ) on the other. Notice
that the amplitude of this coupling-induced resonant exci-
tation effectively depends upon the impulse transmitted by
fellip(t ) through the Fourier coefficient a0(m). Quantitatively,
this expectation can be deduced with the aid of the Melnikov
method (MM) [10,11]. Indeed, the application of the MM to
Eq. (2) provides an estimate of a necessary condition for the
emergence of chaos:

γ

δ
� U (ω, λN = 0, m) ≡ 2

√
2 cosh (πω/2)

3πωa0(m)
, (6)

where U (ω, λN, m) is the chaotic threshold function. As-
suming that N satisfies the condition 0 < λN < 1 in order
to preserve the existence of an underlying separatrix for all
N , the application of the MM to Eq. (4) after dropping the
term λ	 = O(γ 2) provides an estimate of the corresponding
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necessary condition for the emergence of chaos [12]:

γ

δ
� U (ω, λN, m) ≡

2
√

2(1 − λN )3/2 cosh
(

πω

2
√

1−λN

)
3πωa0(m)

(
1 + λN

2−ω2

) (7)

[see Appendix A for a derivation of Eqs. (6) and (7)]. Now, the
following remarks may be in order. First, the chaotic threshold
function for the hub, Eq. (7), reduces to that of the leaves,
Eq. (6), when λN → 0, i.e., for the limiting case of isolated
nodes (λ = 0) and, in the present WC regime, for the limit-
ing case of homogeneous connectivity (N = 1), as expected.
Second, having fixed the ratio γ /δ and the coupling λ, the pos-
sibility of chaotic behaviour is predicted to be greater for the
hub than for the leaves over wide ranges of ω, while this differ-
ence strongly depends on N [cf. Eqs.(6) and (7); see Fig. 1(b)].
Third, having fixed the coupling λ and the angular frequency
ω, the chaotic threshold function presents a single minimum
in the λN-m parameter plane at N = Nmin ≡ Nmin(ω) and
m = mmin � ma0

max � 0.65 (irrespective of the driving period),
which means that the possibility of chaotic behavior is pre-
dicted to be higher when the impulse transmitted is maximum
and for intermediate values of λN than for the limiting cases
λN → 0, 1 [cf. Eq. (7); see Fig. 1(c)]. Fourth, having fixed the
coupling λ and the number of leaves N , the chaotic threshold
function presents a single minimum in the ω-m parameter
plane at ω = ωmin ≡ ωmin(N ) and m = mmin � ma0

max � 0.65
(irrespective of the driving period), which means again that
the possibility of chaotic behavior is predicted to be greater
when the impulse transmitted is maximum and for interme-
diate values of ω than for the limiting cases ω → 0,∞ [cf.
Eq. (7); see Fig. 1(d)]. Therefore, depending on the remain-
ing parameters, one could expect a heterogeneity-induced
(impulse-induced) route to chaos starting from a regular SN
with a few leaves (low-impulse excitation) by solely increas-
ing their number (the excitation impulse) on the one hand, and
a heterogeneity-induced (impulse-induced) route to regularity
starting from a chaotic SN with many leaves (high-impulse
excitation) by further increasing (decreasing) their number
(excitation impulse) on the other.

Extensive numerical simulations of the complete system
[Eq. (1)] and the effective model system [Eq. (5)] confirmed
an overall good agreement with these expectations even for
quite small values of M. Specifically, one can compare the
theoretical predictions and Lyapunov exponent (LE) calcula-
tions [13] of both systems [Eqs. (1) and (5)] [14]. Illustrative
examples are shown in Figs. 2 and 3 for N = 138 and values
of δ and γ that are clearly beyond the perturbative regime
[compare Figs. 1(b)–1(d) with Figs. 2(a)–2(c), respectively].

Typically, one finds for both systems [Eqs. (1) and (5)] a
similar resonancelike emergence of chaos in the λN-m, ω-λN ,
and ω-m parameter planes, which in turn confirms the effec-
tiveness of model Eq. (5), as is clearly seen when comparing
Figs. 2(a)–2(c) with Figs. 2(d)–2(f), respectively. As expected,
the extent of the chaotic regions is smaller in the case of the
harmonic approximation a0(m) sin(ωt ), which is due to the
absence of the effects of the higher harmonics of fellip(t ). Re-
markably, we found that the emergence of chaos is attenuated
and slightly distorted in the parameter planes by decreasing
the number M of effective leaves from M = N , as for the
case M = 24 shown in Figs. 3(d)–3(f). This suppressory effect

occurs because the uniform initial randomness of the SN for
M = N is broken as M decreases from N due to the formation
of clusters of identical leaves of different cardinality, giving
rise to an increase in network desynchronization [15], which
in turn makes it difficult to reach a synchronized chaotic state.
But, on restoring the uniformity of the initial randomness, an
increase in chaotic behavior is observed even for quite small
values of M, such as for M = 2 in which we took n1 = n2

[cf. Figs. 3(a)–3(c)].

III. SCALE-FREE NETWORKS

Next, we discuss the possibility of extending the results
obtained for an SN to Barabási-Albert (BA) networks [16] of
the same Duffing oscillators. The system is given by

..
xi = xi − x3

i − δ
.
xi + γ fellip(t ) − λLi jx j, (8)

i, j = 1, . . . , N , where Li j = κiδi j − Ai j is the Laplacian ma-
trix of the network, κi = ∑

j Ai j is the degree of node i, and
Ai j is the adjacency matrix with entries of 1 if i is connected
to j and 0 otherwise. Since in a BA network a highly con-
nected node can be thought of as a hub of a local SN with
a certain degree κ picked up from the degree distribution
[P(κ ) ∼ κ−α], one could expect the above scenario for SNs
to remain valid to some degree. Indeed, for each hub with
a sufficiently high (depending on the remaining parameters)
degree κi, one systematically observes that the bifurcation
diagram of its velocity

.
xi vs coupling λ presents, essentially,

the same overall chaotic window over the range 0 < λκi < 1,
in accordance with the predictions from the above SN scenario
[see Fig. 4(b)]. This is reflected in both the global chaos of
the BA network, as shown in Fig. 4(a), and the number of
chaotic nodes of the network, Nchaos, as shown in Fig. 4(c).
When λκi � 1, the potential associated with each hub of de-
gree κi undergoes a topological change, thus preventing the
emergence of homoclinic chaos in such a hub. Therefore, for
λ values sufficiently far from the WC regime, the emergence
of chaos in the BA network is no longer possible, as is con-
firmed by LE calculations [see Fig. 4(c) and Appendix B for
additional examples].

IV. CONCLUSION

Basic physical mechanisms have been discussed con-
cerning both heterogeneity-induced and impulse-induced
emergence, enhancement, and suppression of chaos in com-
plex networks of periodically driven, dissipative nonlinear
systems in the significant weak-coupling regime. With the
aid of a hierarchy of lower-dimensional effective models and
extensive numerical simulations, we have characterized the
resonancelike interplay among heterogeneous connectivity,
impulse transmitted by a homogeneous periodic excitation,
and its driving period in the emergence and persistence
of spatiotemporal chaos in starlike and scale-free networks
of bistable oscillators. In view of the simplicity and gener-
ality of this multiple resonancelike scenario and the great
robustness and scope of the physical mechanisms involved,
we expect it to be quite readily testable by experiment, for
instance, in the context of nonlinear electronic circuits. We
expect our results can serve as an important step towards
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FIG. 2. Maximal LE distribution in the (a), (d) λN-m, (b), (e) ω-λN , and (c), (f) ω-m parameter planes for (a)–(c) the complete
system [Eq. (1)] and (d)–(f) the effective model system [Eq. (5) with M = 138, nj = 1, j = 1, . . . , 138] for (a), (d) ω = 0.65, (b), (e)
m = 0.65 � ma0

max, and (c), (f) λ = 0.003 26. Fixed parameters: N = 138, γ = 0.29, and δ = 1. The black lines indicate the chaotic boundaries
corresponding to γ /δ = 0.29 [cf. Eq. (7)].

understanding the emergence of chaos in complex networks
of interconnected damped-driven nonlinear systems in the
case of time-varying connections [17], while the exploration
of both the effectiveness of local application of additional
chaos-suppressing excitations and of the effects of different
coupling functions [18] represents exciting next steps for fu-
ture research. Finally, we hope that the present dimensional
reduction approach will be useful in various network dynam-
ics problems such as, for instance, network reconstruction
problems [19,20].
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APPENDIX A: ADDITIONAL ANALYTICAL RESULTS

We consider the elliptic excitation

f (t ) = fellip(t ) ≡ A sn (4Kt/T )dn(4Kt/T ), (A1)

in which sn(·) ≡ sn(·; m) and dn(·) ≡ dn(·; m) are Jacobian
elliptic functions of the parameter m [K ≡ K (m) is the com-
plete elliptic integral of the first kind] [8] and

A = A(m) ≡
[

a + b

(
1 + exp

{
m − c

d

})−1
]−1

(A2)

is a normalization function (a ≡ 0.439 32, b ≡ 0.697 96,
c ≡ 0.3727, d ≡ 0.268 83) which is introduced for the elliptic
excitation to have the same amplitude, 1, and period T , for any
wave form (i.e., ∀m ∈ [0, 1]). When m = 0, then f (t )m=0 =
sin(2πt/T ); i.e., one recovers the standard case of a harmonic
excitation, while for the limiting value m = 1 the excita-
tion vanishes. The effect of renormalization of the elliptic
arguments is clear: with T constant, solely the excitation’s
impulse is varied by increasing the shape parameter m from
0 to 1. Note that, as a function of m, the elliptic excitation’s
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FIG. 3. Maximal LE distribution in the (a), (d) λN-m, (b), (e) ω-λN , and (c), (f) ω-m parameter planes for the effective model system
[Eq. (5)] for (a), (d) ω = 0.65, (b), (e) m = 0.65 � ma0

max, (c), (f) λ = 0.003 26, and two values of the number of effective leaves: (a)–(c) M = 2
and (d)–(f) M = 24. The values of nj were randomly chosen while

∑M
j=1 nj = N . Fixed parameters are as in Fig. 2.

impulse per unit of period

I = I (m) ≡ T −1
∫ T/2

0
f (t )dt = A(m)

2K (m)
(A3)

presents a single maximum at m = mimpulse
max � 0.717 (see

Fig. 5). The Fourier expansion of the elliptic excitation
[Eq. (A1)] reads

f (t ) =
∞∑

n=0

an(m) sin

[
(2n + 1)

(
2πt

T

)]
, (A4)

an(m) ≡ π2A(m)
(
n + 1

2

)
√

mK2(m)
sech

[(
n + 1

2

)
πK (1 − m)

K (m)

]
,

(A5)

in which its Fourier coefficients satisfy the following
properties: (i) limm→1 an(m) = 0; (ii) an(m) exhibits a
single maximum at m = mmax(n) such that mmax(n + 1) >

mmax(n), n = 0, 1, . . .; (iii) the normalized functions
a0(m)/a0(m = 0) and I (m, T )/I (m = 0, T ) ≡ π A(m)/
(2K (m)) present, as functions of m, similar behaviors while
their maxima verify that mmax(n = 0) � 0.642 is very close to

mimpulse
max � 0.717 (see Fig. 5); and (iv) the Fourier expansion

[Eq. (A4)] is rapidly convergent over a wide range of values
of the shape parameter. The following remarks may now be
in order. First, regarding analytical estimates, the properties
(iii) and (iv) are relevant in the sense that they allow us to
obtain a useful effective estimate of the chaotic threshold in
parameter space from the MM [10,11] by solely retaining the
first harmonic of the Fourier expansion [Eq. (A4)]:

f (t ) ≈ a0(m) sin (ωt ), (A6)

ω ≡ 2π/T . Second, regarding numerical simulations, we con-
sidered the entire Fourier expansion of the elliptic excitation
in order to obtain useful information concerning the effective-
ness of the approximations used in the theoretical analysis.

Melnikov [10] introduced a function [now known as the
Melnikov function (MF), M(t0)] which measures the dis-
tance between the perturbed stable and unstable manifolds in
the Poincaré section at t0. Although the predictions from the
MM are both limited (only valid for motions based at points
sufficiently near the separatrix) and approximate (the MM is
a first-order perturbative method), they are of great interest
due to the general scarcity of such analytical results in the
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FIG. 4. (a) Maximal LE distribution in the λ-m parameter plane
for a scale-free network [Eq. (8)] with N = 500, α = 2.7, γ = 0.29,
δ = 1, and T = 2π/0.65. (b) Bifurcation diagrams for the velocities
.
xi of its three main hubs (κ1 = 138, κ2 = 61, and κ3 = 27, from top
to bottom) vs coupling λ (logarithmic scale) for m = 0.65 � ma0

max.
(c) Number of chaotic nodes Nchaos (logarithmic scale) vs coupling
λ (logarithmic scale) for two sets of parameters (γ , δ, T ): (0.2,
0.154, 2π/0.5) (top) and (0.29, 1, 2π/0.65) (bottom). The remaining
parameters are as in panel (a) (gray regions denote Nchaos = 0).

theory of chaos. Since the MM has been described many times
by distinct authors [11], we do not discuss it in detail here,
but analyze the results obtained from it. Regarding Eqs. (2)
and (4), note that keeping with the assumption of the MM, it is
assumed that the amplitudes of the dissipation and excitation
terms are sufficiently small (0 < δ, γ � 1). The application

FIG. 5. Normalized first Fourier coefficient a0(m)/a0(m = 0)
[Eq. (A5), solid line] and elliptic excitation’s impulse I (m)/I (m =
0) ≡ π A(m)/(2K (m)) [Eq. (A3), dashed line] versus shape pa-
rameter m. We can see that the respective single maxima occur at
very close values of the shape parameter: mmax(n = 0) � 0.642 and
mimpulse

max � 0.717, respectively.

of the MM to Eq. (2) gives us the MF

M±
0L(t0) = −C ± A sin (ωt0), (A7)

with

C ≡ 4δ/3,

A ≡
√

2πγ a0(m)ω sech (πω/2), (A8)

where the positive (negative) sign refers to the right (left)
homoclinic orbit (of the underlying conservative system):

yi,0(t ) = ±
√

2 sech (t ),
.
yi,0(t ) = ∓

√
2 sech (t ) tanh (t ). (A9)

If the MF M±
0L(t0) has a simple zero, then a homoclinic bifur-

cation occurs, signifying the onset of chaotic instabilities [11].
Clearly, the MF (A7) has simple zeros when

γ

δ
� U (ω, λN = 0, m) ≡ 2

√
2

3πωa0(m)
cosh (πω/2), (A10)

where the equals sign corresponds to the case of tangency be-
tween the stable and unstable manifolds, while U (ω, λN, m)
is the chaotic threshold function [Eq. (6)]. Assuming that N
satisfies the condition 0 < λN < 1 in order to preserve the
existence of an underlying separatrix for all N , the application
of the MM to Eq. (4) after dropping the term λ	 = O(γ 2)
yields the MF

M±
0H (t0) = −C′ ± A′ cos(ωt0), (A11)

with

C′ ≡ 4δ(1 − λN )3/2/3,

A′ ≡
√

2π�ω sech[πω/(2
√

1 − λN )]. (A12)
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FIG. 6. Maximal Lyapunov exponent distribution in the λN − m
parameter plane for the case (a) without and (b) with the term λ	 in
Eq. (4) and N = 138, δ = 1, γ = 0.29, and T = 2π/0.65. (c) His-
togram of the quantity 	 indicating a normal distribution. The data
shown is a random sample of 2.5 × 105 points.

FIG. 7. Maximal Lyapunov exponent of a scale-free network,
�SF, versus the coupling λ over two ranges: λ ∈ [0, 0.03] (a) and
λ ∈ [0, 0.45] (b). Fixed parameters: N = 500, α = 2.7, γ = 0.29,
δ = 1, and T = 2π/0.65.

The MF M±
0H (t0) has simple zeros when

γ

δ
� U (ω, λN, m) ≡

2
√

2(1 − λN )3/2 cosh
(

πω

2
√

1−λN

)
3πωa0(m)

(
1 + λN

2−ω2

) ,

(A13)
which is Eq. (7). Thus, the chaotic boundary in parameter
space is given by

γ

δ
= U (ω, λN, m). (A14)

APPENDIX B: ADDITIONAL NUMERICAL RESULTS

Figure 6 shows the effect of the spatial quenched disorder
through the term λ	 [cf. Eq. (4)]. One sees an overall agree-
ment between the cases with and without the term λ	.

Figure 7 shows the maximal Lyapunov exponent of a
scale-free network, �SF, versus the coupling λ for the same
parameters as in Fig. 4(a). One sees that the appearance of
chaos in the network is exclusively due to the emergence of
chaos in the most connected hubs in the weak-coupling regime
[see Fig. 7(a)], while the broadening of the chaotic windows
beyond the weak-coupling regime is due to the activation of
chaos in a multitude of lower degree nodes [see Fig. 7(b)], as
expected from the power-law distribution P(κ ) ∼ κ−α .
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