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We explore the energy transfer dynamics in an array of two chains of identical rigid interacting dipoles.
Varying the distance b between the two chains of the array, a crossover between two different ground-state (GS)
equilibrium configurations is observed. Linearizing around the GS configurations, we verify that interactions up
to third nearest neighbors should be accounted to accurately describe the resulting dynamics. Starting with one
of the GS, we excite the system by supplying it with an excess energy �K located initially on one of the dipoles.
We study the time evolution of the array for different values of the system parameters b and �K . Our focus is
hereby on two features of the energy propagation: the redistribution of the excess energy �K among the two
chains and the energy localization along each chain. For typical parameter values, the array of dipoles reaches
both the equipartition between the chains and the thermal equilibrium from the early stages of the time evolution.
Nevertheless, there is a region in parameter space (b,�K ) where even up to the long computation time of this
study, the array does neither reach energy equipartition nor thermalization between chains. This fact is due to the
existence of persistent chaotic breathers.
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I. INTRODUCTION

The intriguing results obtained by Fermi, Pasta, Ulam, and
Tsingou (FPUT) in 1953 [1–3] in their study of the energy
relaxation in a chain of nonlinear oscillators have been driving
much of the research that, since then, has been carried out on
numerous nonlinear Hamiltonian lattices. Much of the great
interest in nonlinear lattices lies in the fact that they show
collective effects. For example, the spontaneous appearance
of chaotic breather-like excitations in Hamiltonian lattices is a
collective effect that plays a fundamental role in energy trans-
fer processes because they may cause the thermalization of
the system to be extremely slow. Different nonlinear systems
exhibit this behavior such as lattices of FPUT-like oscilla-
tors [4], Klein-Gordon oscillators [5–7], Josephson junctions
[8], the Gross-Pitaevskii lattice [9], Bose-Einstein conden-
sates [10–12], Heisenberg spins [13–17], or rigid electric
dipoles [18].

Although many examples of studies on two-dimensional
lattices with different kinds of oscillators can be found
[13–17,19–28], a common denominator in the vast literature
on nonlinear lattices is that, in general, most of the studies
are reduced to one-dimensional systems, i.e., to linear chains
with different boundary conditions. The investigations in non-
linear lattices in two or three dimensions are more scarce and
less developed. Furthermore, in most cases, and regardless
of the dimension of the lattice, the oscillators are coupled
via interactions that are usually only extended up to nearest
neighbors. However, in the case of long-range interactions,
the nearest-neighbors approach may not be well-justified.

Motivated by the above, we address here lattices beyond
nearest-neighbors interactions. This latter condition is easily

met when the lattice is made up of interacting dipoles. One im-
plementation here are cold polar diatomic molecules trapped
in optical lattices that exhibit an intriguing quantum collec-
tive dynamics [29–31]. In this way, the classical approach of
considering trapped cold (but not ultracold) polar molecules
as linear chains of interacting rigid dipoles has been used
by several authors [32–35] to study the energy transfer in
various planar configurations. Indeed, the energy transfer has
been shown to lead to the formation of solitons or to the
emergence of chaoticity [35,36]. We note that even the sim-
plest two-dipole chain [37,38] was found to display a rich
dynamical behavior. More recently, the connection between
chaos, thermalization and ergodicity has been study [18].

An immediate extension of a one-dimensional lattice
would be a one-dimensional array made of a limited number
of parallel linear chains. In the particular case of an array
of two linear chains, particles can be arranged according to
two main configurations, namely in a ladder array or in a
sawtooth array. Note that, besides linear chains of oscillators
with alternating masses [39,40] or with alternating kind of
interactions [41], one-dimensional arrays are the simplest lat-
tices showing a multiband structure. An example can be found
in Ref. [42] where the dynamical properties of a sawtooth
array of frustrated Josephson junctions has been studied.

In this work we perform a dynamics study of a ladder array
formed by two chains of dipoles. Arrays of dipoles can be
prepared experimentally by trapping cold or ultracold dipolar
molecules in optical lattices [43–45] where the wavelength
of the light sets the scale for the interaction strength among
neighboring molecules. In particular, an experimental realiza-
tion of an array of two chains can be obtained by employing
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superlattices of double wells [46] in combination with a reg-
ular optical lattice for the different spatial directions. Other
possible candidates for an experimental implementation are
colloidal polar particles in optical tweezers [47].

In this study we focus on two main goals. On the one side,
we investigate the impact of dipolar interactions beyond near-
est neighbors: We determine up to what order the interaction
should be taken into account such that the dynamics of the
system is properly described. On the other side, we explore
the different energy transfer mechanisms that the ladder array
of dipoles shows when it is subjected to single-site excitations.

This work is organized as follows. In Sec. II we provide
the Hamiltonian that governs the dynamics of the system. The
ground-state (GS) configurations of the system are analyzed in
Sec. II: Depending on the separation between the two chains
we observe two different GS configurations. In Secs. III and
IV we study the linearized dynamics of the system around
those equilibria demonstrating that it is not affected by the
inclusion of interaction ranges beyond third neighbors. Start-
ing from the GS configuration we follow in Sec. V the time
evolution of an initial single-site excitation. In particular, for
different excitation energies, for different values of the separa-
tion between the two chains, and for different time windows,
we compute the time average of the total energy located in
each chain of the array, as well as the corresponding time
averages of the participation function [18,48]. This later calcu-
lation provides information about the degree of thermalization
of each chain. Our conclusions are provided in Sec.VI.

II. HAMILTONIAN AND EQUILIBRIUM
CONFIGURATIONS

The potential energy Vi j between two dipoles with dipole
moments μi and μ j is given by

Vi j = 1

4πε0

(μi · μ j )r
2
i j − 3(μi · ri j )(μ j · ri j )

r5
i j

, (1)

where ri j is the relative vector of the positions of the dipoles i
and j. We consider a ladder array of two chains of N identical
dipoles. According to Fig. 1, the N dipoles of each chain are
fixed in space along the x-axis of the Laboratory Fixed Frame
xyz with a distance a between two consecutive dipoles. The
distance between the chains is d . Using Euler angles (see
Fig. 1), the dipole moments of the rotors belonging to the
lower and the upper chains are given by the vectors

{μ(cos u1, cos φ1 sin u1, sin u1 sin φ1), ...,

μ(cos uN , cos φN sin uN , sin uN sin φN ),

μ(cos v1, cos �1 sin v1, sin v1 sin �1), ...,

μ(cos vN , cos �N sin vN , sin vN sin �N )}, (2)

where 0 � (ui, vi ) < π , and 0 � (φi,�i ) < 2π (see Fig. 1).
The total interaction potential V is made of three

main terms. The interactions V1(ui, φi, u j, φ j ) between the
dipoles belonging to the lower chain, the interactions
V2(vi,�i, v j,� j ) between the dipoles belonging to the up-
per chain, and the interactions V3(ui, φi, v j,� j ) between the
dipoles of the lower chain and the dipoles of the upper chain.

FIG. 1. Schematic representation of the ladder array of two
dipole chains.

Using the general term (1) and the expressions of the dipole
moments (2), these three terms are

V1(ui, φi, u j, φ j ) = μ2

a3(i − j)3
(sin ui sin u j cos(φi − φ j )

− 2 cos ui cos u j ), (3)

V2(vi,�i, v j,� j ) = μ2

a3(i − j)3
(sin vi sin v j cos(�i − � j )

− 2 cos vi cos v j ), (4)

V3(ui, φi, v j,� j )

= μ2

(d2 + a2(i − j)2)5/2
((d2 − 2a2(i − j)2) cos ui cos v j

+ 3ad (i − j) cos ui sin v j sin � j

+ 3ad (i − j) sin ui cos v j sin φ j

+ (d2 + a2(i − j)2) sin ui sin v j cos φi cos � j

+ (a2(i − j)2 − 2d2) sin ui sin v j sin φi sin � j ). (5)

The rotational dynamics of the system, as a function of
the phases x = {(ui, φi, vi,�i ), i = 1, ..., N}, is formally de-
scribed by the following Hamiltonian (corresponding to the
energy E )

H ≡ E = 1

2I

N∑
i=1

(
P2

ui
+ P2

φi

sin u2
i

+ P2
vi

+ P2
�i

sin v2
i

)

+ V (ui, φi, vi,�i ), (6)

where I is the moment of inertia of the dipoles. The term
V (ui, φi, vi,�i ) is the total interaction potential of the system
given by

V (ui, φi, vi,�i ) =
N∑

i< j

(V1(ui, φi, u j, φ j ) + V2(vi,�i, v j,� j ))

+
N∑
i, j

V3(ui, φi, v j,� j ). (7)
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FIG. 2. Schematic representation of the ladder array of two dipole chains in the invariant manifold M.

The Hamiltonian (6) defines a dynamical system with 4N
degrees of freedom, where Pui , Pφi , Pvi and P�i are the con-
jugate momenta of ui, φi, vi and �i respectively. From the
inspection of Hamiltonian (6), we see that the manifold M of
codimension 2N given by

M = {(ui, Pui , vi, Pvi ) | φi = �i = π/2 and Pφi = P�i = 0},
(8)

is invariant under the dynamics, such that the number of
degrees of freedom of the system is reduced to 2N . On the
manifold M, the Hamiltonian (6) reads

H = 1

2I

N∑
i=1

(
P2

i + Q2
i

) + V (u1, ..., uN , v1, ..., vN ), (9)

such that the momenta (Qi, Pi ) = (Pui , Pvi ) are Qi = I dui/dt
and Pi = I dvi/dt . We suspect that this invariant subspace M
represents a stable manifold. Irrespective of this, a standard
way of suppressing additional dimensions in, e.g., ultracold
atomic gases is to provide a strongly confining typically
harmonic potential along the transversal degrees of freedom
which are in our case the y coordinates of the dipoles. The
latter can be achieved by, e.g., optical trapping and standing
light waves. This way our Hamiltonian could be seen as an
effective or reduced Hamiltonian having traced out the fast
transversal degrees of freedom. From now on, we focus on
the planar dynamics arising from the Hamiltonian (9), i.e., we
assume that dipoles are restricted to rotate in the common xz
plane (see Fig. 2).

One of the goals of this article is to explore the impact
of interactions beyond nearest neighbors on the dynamics of
the dipoles. Thereby, we will determine up to what order we
should account for the interactions such that the dynamics is
described accurately. The strategy will be to determine, in a
linear approximation, the relationship between the rotational
frequency and the wave number, i.e., the dispersion relation,
such that the progressive inclusion of more distant neigh-
bors in the interaction does not affect the dispersion relation
significantly.

Periodic boundary conditions (PBC) within each chain are
assumed. Up to a given r � 1 interaction order, the poten-
tial V = V (u1, ..., uN , v1, ..., vN ) in Hamiltonian (9) can be

written as

V = χ

N∑
n=1

(
r∑

j=1

[V1(un, un+ j ) + V2(vn, vn+ j )]

+
r∑

k=−r

V3(un, vn+k )

)
, (10)

where χ = μ2/4πε0a3 is a parameter that measures
the strength of the dipole-dipole interaction. The terms
V1(un, un+ j ), V2(vn, vn+ j ) and V3(un, vn+ j ) in Eq. (10) are

V1(un, un+ j ) = (sin un sin un+ j − 2 cos un cos un+ j )

j3
, (11)

V2(vn, vn+ j ) = (sin vn sin vn+ j − 2 cos vi cos vn+ j )

j3
, (12)

V3(un, vn+k )

= (k2 − 2b2) sin un sin vn+k + (b2 − 2k2) cos un cos vn+k

(b2 + k2)5/2

− 3bk sin(un + vn+k )

(b2 + k2)5/2
, (13)

where b = d/a is the distance between the chains in units
of a. The terms V1 and V2 describe the interactions between
the dipoles of the lower and the upper chains, respectively.
The term V3 accounts for the interactions between dipoles
belonging to different chains.

Defining X as the vector of the phase space variables

X = (u1, ..., uN , v1, ..., vN , Q1, ..., QN , P1, ..., PN ),

the Hamiltonian equations of motion are obtained as Ẋ =
LHX, where

LH = −
2N∑

n=1

(
∂H
∂Xn

∂

∂Xn+2N
− ∂H

∂Xn+2N

∂

∂Xn

)
.

The first step in describing the dynamics of our system
is the determination of the GS, which corresponds to the
equilibrium point of Hamiltonian flow (6). When they exist,
equilibria appear when Qn = Pn = 0. Thence, they actually
correspond to the critical points of the potential energy surface
V given by Eq. (10). Therefore, the critical points of V are the
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roots of the system of equations

∂V

∂un
= χ

r∑
j=1

(sin un− j + sin un+ j ) cos un + 2(cos un− j + cos un+ j ) sin un

j3

+ χ

r∑
k=−r

(k2 − 2b2) cos un sin vn+k − (b2 − 2k2) sin un cos vn+k − 3bk cos(un + vn+k )

(b2 + k2)5/2
= 0, (14)

∂V

∂vn
= χ

r∑
j=1

(sin vn− j + sin vn+ j ) cos vn + 2(cos vn− j + cos vn+ j ) sin vn

j3

+ χ

r∑
k=−r

(k2 − 2b2) cos vn sin un+k − (b2 − 2k2) sin vn cos un+k + 3bk cos(vn + un+k )

(b2 + k2)5/2
= 0. (15)

From the direct inspection of Eqs. (14) and (15), we
conclude that equilibria appear for the following general con-
figurations C1, C2, and C3:

(i) C1 = {un = vn = 0,∀n} or C1 = {un = vn = π,∀n}.
The energy E1 of this head-tail configuration is

E1 = −4χN
r∑

j=1

1

j3
+ χN

b3
+ 2χN

r∑
j=1

b2 − 2 j2

(b2 + j2)5/2
. (16)

In the case of two noninteracting chains (i.e., b → ∞), we
recover the expected value E1 = −4χN

∑r
j=1 1/ j3, which

corresponds to the ground state of two separate chains of
length N each with PBC.

(ii) C2 = {un = 0, vn = π,∀n} or C2 = {un = π, vn =
0,∀n}. The energy E2 of this head-tail configuration, where
dipoles of each chain are oppositely oriented, is

E2 = −4χN
r∑

j=1

1

j3
− χN

b3
− 2χN

r∑
j=1

b2 − 2 j2

(b2 + j2)5/2
. (17)

We note that E2 < E1.
(iii) C3 = {un = vn = (−1)nπ/2,∀n} or C3 = {un = vn =

(−1)n+1π/2,∀n}. The energy E3 of this head-tail config-
uration between chains, where neighboring dipoles are in
alternating orientations ±π/2, is

E3 = 2χN
r∑

j=1

(−1) j

j3
− χN

b3
+ 2χN

r∑
j=1

(−1) j j2 − 2b2

(b2 + j2)5/2
.

(18)

The energies E1, E2, and E3 of the equilibrium configura-
tions C1, C2, and C3 scale with the dipole parameter χ and
with the number of dipoles N . In Fig. 3 we show the evolution
of E1,2,3/χN as a function of the normalized distance b for
r = 3. We observe an energy crossover between E2 and E3

at bc ≈ 0.81. Thus, for b < bc the energy E3 is the minimal
one, i.e., configuration C3 is the GS of the system, while for
b > bc we have that E2 is the minimal energy, so configura-
tion C2 is the GS. It is important noticing that, apart from
b, the values of the energies E1, E2, and E3 depend on the
considered interaction order r. In this sense, we find that those
values remain approximately constant for r � 3, such that the
crossover value between E2 and E3 takes places at b ≈ 0.81
for r � 3.

To further clarify this point, we resort to a brute-force
sampling method to find the GS. The first step in our approach
is to assume that the GS configuration of a ladder chain with
a few dipoles (we use a ladder chain with N = 4 dipoles) can
be extended to systems with an arbitrary number of dipoles.
In a second step, the potential V of that system is evaluated
in a huge number of random points (u1, ..., uN , v1, ..., vN )
uniformly distributed within the volume Vol0 = (2π )2N . This
sampling provides an estimate of the GS. This sampling pro-
cedure is repeated for values of b ranging in the interval
b ∈ [0.5, 1.5] and for different interactions orders r. In all
cases, the results of this brute-force sampling method clearly
predict the existence of two different GS configurations. On
the one side, for b � 0.81 the GS is given by the configuration
C3, while for b � 0.81, the GS configuration is given by C2.

In the next section we address the question about the
energy crossover between the configurations C2 and C3 in
the following way. Indeed, it is expected that this crossover
indicates a change in the stability of those configurations. To
study that stability change, we have to know the nature of the

FIG. 3. The evolution of the energies E1 (solid blue line), E2

(dotted red line), and E3 (dashed black line) of the equilibrium
configurations C1, C2, and C3 as a function of the distance parameter b
up to an interaction of order r = 3. The energy is measured is units of
Eo = χN . The circle marks the energy crossing between the energies
E2 and E3. The black horizontal line indicates the asymptotic energy
E∞/χN = −4

∑r
j=1

1
j3 , which corresponds to the energy of two

noninteracting chains of N dipoles.
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eigenvalues {λn,∀n = 1, ..., 2N} of the Hessian matrix asso-
ciated to the potential energy surface V evaluated in those
equilibria. However, those eigenvalues are the squared val-
ues of the 2N frequencies {ωn = √

λn,∀n = 1, ..., 2N} of the
normal modes of the linearized dynamics associated to Hamil-
tonian (6). Therefore, in the next section we determine the
dispersion relation associated to C2 and C3. As we already
mentioned, the dispersion relation will be also used to address
the question related to the order to which the interaction
must be extended in order for the dynamics to be described
correctly.

III. THE LINEARIZED DYNAMICS AROUND
THE EQUILIBRIUM C2

Using the derivatives (14) and (15), the Newtonian equa-
tions of motion associated to the Hamiltonian (6) are

ün = −1

I

∂V

∂un
, v̈n = −1

I

∂V

∂vn
. (19)

Let us considerer values of b > bc, so that the GS is given by
the equilibrium configuration C2 = {un = 0, vn = π,∀n}. To
study the linear behavior of a certain nonlinear system around
a stable equilibrium, it is convenient that such equilibrium be
located at the origin. Therefore, we move the equilibrium C2 to
the origin by applying the translation τ = {vn = v′

n + π,∀n}
to the potential (10). Then, after this translation, and for small
oscillations around that the translated C2 that, we recall, is
now located at {un = v′

n = 0}, the linear approximation to the
equations of motion (19) yields

ün = −ω2
0

r∑
k=1

un−k + un+k + 4un

k3

− ω2
0

r∑
k=−r

(2b2 − k2)v′
n+k + (b2 − 2k2)un

(b2 + k2)5/2
, (20)

v̈′
n = −ω2

0

r∑
k=1

v′
n−k + v′

n+k + 4v′
n

k3

− ω2
0

r∑
k=−r

(2b2 − k2)un+k + (b2 − 2k2)v′
n

(b2 + k2)5/2
, (21)

where we have defined the frequency ω0 = √
χ/I . The so-

lutions of Eqs. (20) and (21) are linear combinations of two
different propagating plane waves in each sublattice [39,42].
Therefore, we expect solutions of the form

un(t ) = A(q)ei(qna−ωt ), v′
n(t ) = B(q)ei(qna−ωt ), (22)

where q is the wave number and ω is the frequency. Assum-
ing PBC in both sublattices, the allowed values of the wave
number q are

q = 2πm

Na
, m = 1, ..., N.

The substitution of the ansatz (22) into Eqs. (20) and (21)
yields

A(q)
[
ω2 − ω2

0 F (q, r, b)
] − B(q) ω2

0 G(q, r, b) = 0, (23)

A(q) ω2
0 G(q, r, b) + B(q)

[
ω2 − ω2

0 F (q, r, b)
] = 0, (24)

where the functions F (q, r, b) and G(q, r, b) are

F (q, r, b) =
r∑

k=1

4 + 2 cos(qka)

k3
+ 1

b3
+ 2

r∑
k=1

(b2 − 2k2)

(b2 + k2)5/2
,

(25)

G(q, r, b) = 2

b3
+ 2

r∑
k=1

(2b2 − k2)

(b2 + k2)5/2
cos(qka). (26)

To obtain nontrivial solutions for the Eqs. (23) and (24), the
determinant of the matrix of the (A(q), B(q)) coefficients has
to vanish. Therefore, the relation between the frequency ω

and the wave number q, i.e., the dispersion relation, is given
through the following equation

ω4 − 2ω2ω2
0F (q, r, b) + ω4

0(F (q, r, b)2 − G(q, r, b)2) = 0.

(27)

The two solutions ω± of Eq. (27) read

ω±(q, b, r) = ω0

√
F (q, r, b) ± G(q, r, b), (28)

are the two bands of the dispersion relation. For a given
distance a and for all interaction order r > 1, stable motion
around C2 implies that frequencies ω±(q, b, r) have to be pos-
itive for al q. This question will be addressed later. When only
the nearest-neighbor interaction is considered (r = 1), and
when the two chains are very far from each other (b → ∞),
we have that functions (25) and (26) become

F (q, 1, b → ∞) ≈ 4 + 2 cos(qka), G(q, 1, b → ∞) ≈ 0,

therefore obtaining

ω− = ω+ ≈ ω0

√
4 + 2 cos(qa),

the expected single optical band of a linear chain of N dipoles
[35,39].

It is interesting to study in both dispersion bands the ratio
between the amplitudes A(q) and B(q) of the waves propagat-
ing in each chain of the array. Inserting the expression (28) of
the dispersion relation ω± in Eqs. (23) and (24) results in

A(q)

B(q)
=

{+1 in the band ω+,

−1 in the band ω−.
(29)

It is worth to note that this ratio does not depend on the dis-
tance b, nor on the interaction order r, nor on the wave number
q. Therefore, in both bands ω± of the dispersion relation, the
waves propagate in such a way that all dipoles of the array
oscillate with the same amplitude. The linear behavior of the
system in the neighborhood of the center (q ≈ 0) and in the
boundaries (q ≈ ±π/a) of the Brillouin zone can be found in
Appendix A.

A. Evolution of the dispersion relation as a function
of the interaction order r

In addition to the distance parameter b between the chains,
the dispersion relation (28) depends on the considered inter-
action order r. However, for a given value of b, it is expected
that, for a certain value of the interaction order r = rc, the
shape of the two bands of the dispersion relation will not be
affected significantly by the progressive inclusion of higher
interaction orders r > rc. In this way, for b = 1 and b = 1.5,
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FIG. 4. Dispersion relation ω± curves given by Eq. (28) for b = 1 (left panel) and b = 1.5 (right panel) and for the interacting orders r = 1
(solid lines), r = 3 (dashed lines), and r = 4 (dotted lines). In each case, the upper blue and the lower red lines correspond to the ω+ and to the
ω− dispersion curves, respectively. Note that, in both panels, there is a complete overlap between the dashed and the dotted lines, indicating
that, beyond r = 3, the linear behavior of the system is not altered.

we show in Fig. 4 the dispersion relation (28) for r = 1, 3, and
4. As we observe, when r = 3 and r = 4, the corresponding
dispersion bands agree very well, which indicates that the
inclusion of interaction orders beyond r = 3 does not alter the
linear behavior of the system.

As we observe in Fig. 4, the two bands of the linear
spectrum are opticlike with the frequency ω± possessing a
maximum for q = 0 and a minimum for q = ±π/a. The
numerical evaluation of the evolution of ω± with the distance
b indicates that the two bands separate for decreasing values
of b. This fact is depicted in Fig. 5(a) for the interaction order
r = 3. Therefore, and depending on the interaction order r,
there appears for the lower band ω− a critical value bc such
that, for b < bc, part of the linear spectrum of ω− becomes
complex. Because the minimum of ω− takes place at q =
±π/a, the normal modes of the shortest wavelengths of ω−
are the first to become complex. For r = 3, we have a critical
value bc ≈ 0.8112. Therefore, when b < bc the equilibrium
configuration C2 is no longer stable because part of the linear
spectrum becomes complex and, therefore, C2 cannot be the
GS of the system. We notice that this is a consistent result
with the crossover between the energies of C2 and C3 for the
same value b = bc observed in Fig. 3, as well as with the brute

force calculation indicating a change of the GS from the C2

configuration to the C3.
The value of the critical distance bc depends on the value

of the interaction order r. For each value of r, we determine
bc as the value of b for which F (q = π/a, r, b) = G(q =
π/a, r, b). Indeed, in Fig. 5(b), where the evolution of bc as
a function of r is shown, we observe that bc asymptotically
tends to the value bc ≈ 0.8069.

IV. THE LINEARIZED DYNAMICS AROUND
THE EQUILIBRIUM C3

To move the equilibrium C3 to the origin, we ap-
ply the translation τ = {un = u′

n + (−1)nπ/2, vn = v′
n +

(−1)nπ/2,∀n} to the potential (10). For small oscillations
around the translated C3 that is now located at {u′

n = v′
n =

0,∀n}, the linear approximation of the equations of motion
(19) yields

ü′
n = 2ω2

0

r∑
k=1

(−1)k u′
n−k + u′

n+k + u′
n

k3

− ω2
0

r∑
k=−r

(−1)k (2b2 − k2)u′
n + (b2 − 2k2)v′

n+k

(b2 + k2)5/2
, (30)

FIG. 5. Left panel: Dispersion relation ω± curves given by Eq. (28) for the interacting order r = 3 and for b = 1 (solid lines), b = 0.9
(dashed lines), b = 0.85 (dotted lines), and b = 0.8 (dashed-dotted lines). In each case, the upper green and the lower magenta lines correspond
to the ω+ and to the ω− dispersion curves, respectively. Note that, when b > bc = 0.8112, we have a complete positive linear spectrum, which
indicates that, for b > bc, the equilibrium C2 is stable and it is the GS of the system. Right panel: Evolution of the critical distance bc for
different interaction orders r.
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FIG. 6. Left panel: Dispersion relation ω± curves given by Eq. (37) for b = 0.7 and for the interacting orders r = 1 (solid lines), r = 3
(dashed lines), and r = 4 (dotted lines). In each case, the upper blue and the lower red lines correspond to the ω+ and to the ω− dispersion
curves, respectively. Note that there is a very good agreement between the r = 3 and r = 4 cases, indicating that, beyond r = 3, the linear
dynamics is not altered significantly. Right panel: Dispersion relation ω± curves given by Eq. (37) for the interacting order r = 3 and for
b = 1 (solid lines), b = 0.9 (dashed lines), b = 0.85 (dotted lines), and b = 0.8 (dashed-dotted lines). In each case, the upper green and the
lower magenta lines correspond to the ω+ and to the ω− dispersion curves, respectively. Note that, when b < bc = 0.8112, we have a complete
positive linear spectrum, which indicates that, for b < bc, the equilibrium C3 is stable and it is the GS of the system.

v̈′
n = 2ω2

0

r∑
k=1

(−1)k v′
n−k + v′

n+k + v′
n

k3

− ω2
0

r∑
k=−r

(−1)k (2b2 − k2)v′
n + (b2 − 2k2)u′

n+k

(b2 + k2)5/2
. (31)

After the substitution of the ansatz (22) in Eqs. (30) and (31),
we obtain the following equations:

A(q)[ω2 − ω2
0 M(q, r, b)] − B(q) ω2

0 N (q, r, b) = 0, (32)

A(q) ω2
0 M(q, r, b) + B(q)[ω2 − ω2

0 N (q, r, b)] = 0, (33)

where the functions M(q, r, b) and N (q, r, b) are

M(q, r, b) = −2
r∑

k=1

(−1)k 1 + 2 cos(qka)

k3
+ 2

b3

+ 2
r∑

k=1

(−1)k (2b2 − k2)

(b2 + k2)5/2
, (34)

N (q, r, b) = 1

b3
+ 2

r∑
k=1

(−1)k (b2 − 2k2)

(b2 + k2)5/2
cos(qka). (35)

Equating to zero the determinant of the coefficient matrix of
Eqs. (32) and (33), the dispersion relation is given by the
following equation:

ω4 − 2ω2ω2
0M(q, r, b) + ω4

0(M(q, r, b)2 − N (q, r, b)2) = 0,

(36)

such that the two bands of the dispersion relation are the
solutions ω± of Eq. (36),

ω±(q, b, r) = ω0

√
M(q, r, b) ± N (q, r, b). (37)

The substitution of this expression (37) in Eqs. (32) and
(33) give us the same ratio between the amplitudes A(q) and
B(q) of the plane waves (22) as the ratio (29) we have found
for the C2 configuration. Therefore, the linear behavior of the
array in this configuration is very similar to the one observed

in the C2 configuration. That is, in both bands ω±, all dipoles
of the array oscillate with the same amplitude. The linear
behavior of the system in the neighborhood of the center
(q ≈ 0) and in the boundaries (q ≈ ±π/a) of the Brillouin
zone can be found in Appendix B.

The dispersion relation (37) depends on the considered
interaction order r. As we observe in Fig. 6(a) for b = 0.7 and
for r = 1, 3, and 4, the dispersion bands (37) for r = 3 and
r = 4 agree very well, which indicates that, as in the previous
case around C2, the inclusion of interaction orders beyond
r = 3 has only a minor influence on the linearized dynamics.
We observe in Fig. 6(a) for b = 0.7 that the two bands of (37)
are opticlike with a maximum and minimum values at q = 0
and q = ±π/a, respectively. As we already mentioned, for
each interaction order, we expect the existence of a critical bc

such that for b > bc the equilibrium C3 will not be the GS.
Figure 6(b) shows the evolution of the dispersion bands ω±
with the distance b for the interaction order r = 3. We find
that, for the critical value bc ≈ 0.8112, the linear spectrum of
the lower band ω− begins to be complex. Thus, for b > bc the
equilibrium configuration C3 is no longer stable, and the C2

configuration becomes the GS of the system.
Following the same procedure as for the equilibrium C2,

we find numerically, for each interaction order r, the value
bc as the value of b for which M(q = π/a, r, b) = N (q =
π/a, r, b). As expected, we obtain the same results as in
Fig. 5(b). Therefore, at any order r, for b < bc (b > bc)) the
linear spectrum around C3 (C2) is positive and the equilibrium
C3 (C2) represents the GS of the system.

V. ENERGY TRANSFER UNDER
SINGLE-SITE EXCITATION

In this section we study the time propagation of single-site
excitations. More precisely, starting from the GS configura-
tion, we excite one dipole supplying it with an excess of
kinetic energy �K . In the previous sections we have shown
that extending the interactions to orders r > 3 does not signif-
icantly alter the linearized dynamics. Therefore, we assume
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that the complete dynamics will not be dramatically affected
either by the inclusion of terms of order r > 3. Thus, in all our
calculations we extend the dipole interaction up to the order
r = 3. In this way, each dipole will interact with its 13 nearest
neighbors. We can visualized those 13 interactions in Fig. 2
by considering that dipole ui (or dipole vi) interacts with the
remaining 13 dipoles of Fig. 2.

For r = 3 the critical distance between the chains is bc ≈
0.8112. Therefore, being the energy of the GS denoted as EGS ,
when b > bc ≈ 0.8112 we have that EGS = E2 [see Eq. (17)],
while when b < bc ≈ 0.8112 we have that EGS = E3 [see
Eq. (18)]. Without loss of generality, we excite the first dipole
of the lower chain. Thus, at t = 0, the initial conditions of the
array are

vn(0) = π, Pn(0) = 0, ∀ n,

un(0) = Qn(0) = 0, ∀ n 
= 1,

u1(0) = 0, Q1(0) =
√

2�K . (38)

In this study we use N = 100 dipoles in each chain. To carry
out this study, it is convenient to use a dimensionless version
of the Hamiltonian (6). Then, scaling the energy E in terms of
the dipole parameter χ as E ′ = E/χ , we readily arrive at the
following dimensionless Hamiltonian:

E ′ = H
χ

=
N∑

n=1

Q′2
n + P′2

n

2
+ V (u1, ..., uN , v1, ..., vN ), (39)

where Q′
n = dun/dt ′, P′

n = dvn/dt ′, and t ′ = t/τ is a dimen-
sionless time measured in units of τ = √

I/χ . To simplify the
notation, we omit the primes in the Hamiltonian (39). With the
initial conditions (38), the Hamiltonian equations of motion
for different values of b and �K are integrated from an initial
time t = 0, up to a final time t f by means of the SABA2

symplectic integrator [5,49].
At this point, and using Eqs. (11)–(13), we define the local

energy stored at a given time t in each dipole as

Eu
n (t ) = Qn(t )2

2
+ 1

2

3∑
j=−3
j 
=0

V1(un(t ), un+ j (t ))

+ 1

2

3∑
j=−3

V3(un(t ), vn+ j (t )) − EGS

2N
, (40)

E v
n (t ) = Pn(t )2

2
+ 1

2

3∑
j=−3
j 
=0

V2(vn(t ), vn+ j (t ))

+ 1

2

3∑
j=−3

V3(un+ j (t ), vn(t )) − EGS

2N
. (41)

With this definition of the local energies, the GS is shifted to
zero, such that the total energy of the system is �K . Therefore,
the total energy located at time t in each chain of the array is
computed as

ku(t ) =
N∑

n=1

Eu
n (t ), kv (t ) =

N∑
n=1

E v
n (t ),

ku(t ) + kv (t ) = �K. (42)

By using the expressions (42) we define the participation
functions �u(t ) and �v (t ) as

�u(t ) = 1

N − 1

(
k2

u (t )∑N
n=1 Eu

n (t )2
− 1

)
, (43)

�v (t ) = 1

N − 1

(
k2
v (t )∑N

n=1 E v
n (t )2

− 1

)
. (44)

When at a given time t the total energy stored in one of the
chains is maximally localized (carried by a single dipole), the
value of the corresponding participation function is zero. On
the contrary, when in any of the chains there is a complete
equipartition of the energy, (i.e., Eu

n (t ) = ku(t )/N or E v
n (t ) =

kv (t )/N, ∀n), the corresponding participation function is one.
In our system, a global description based on the param-

eters �K and b of a dynamical process such as the energy
transfer can be obtained using average values of the functions
(42)–(44) calculated in convenient time windows. Then, to
follow the propagation and the distribution of the initially
localized excitation �K between the two chains, we define
the normalized average energies 〈Ku〉 and 〈Kv〉 as

〈Ku〉 = 〈ku〉
〈ku〉 + 〈kv〉 , 〈Kv〉 = 〈kv〉

〈ku〉 + 〈kv〉 , (45)

where 〈ku〉 and 〈kv〉 are the average values of ku(t ) and kv (t )
in the time interval �t := [ti, t f ] calculated as

〈ku〉 = 1

t f − ti

∫ t f

ti

ku(t )dt, 〈kv〉 = 1

t f − ti

∫ t f

ti

kv (t )dt .

(46)

Similarly, to quantify the localization of the energy along each
chain, we define the time-averaged participation functions
〈�u〉 and 〈�v〉 as

〈�u〉 = 1

t f − ti

∫ t f

ti

�u(t )dt, 〈�v〉 = 1

t f − ti

∫ t f

ti

�v (t )dt .

(47)

The choice of the value of the final integration time t f

is a delicate issue. On the one hand, it is expected that, for
sufficiently large values of t f , both chains will reach ther-
mal equilibrium, which would be characterized by 〈Ku〉 =
〈Kv〉 = 〈Keq〉 ≈ 0.5 and by 〈�u〉 = 〈�v〉 = 〈�eq〉, with 〈�eq〉
a certain stationary value. At this point we remark that ther-
mal equilibrium does not imply a state of perfect energy
equipartition between all the dipoles of the array, that would
correspond to values of the averaged participation functions
〈�u〉 = 〈�v〉 = 1. Conversely, thermal equilibrium will be
given by a stationary value 〈�u〉 = 〈�v〉 < 1 compatible with
the Boltzmann statistics. On the other hand, and depending on
the particular values of �K and b, the system will go through
(possibly) dynamical phases with different characteristic time
scales before thermal equilibrium is reached. To uncover those
dynamical scenarios, we will compute 〈Ku,v〉 and 〈�u,v〉 for
several values of �K and b, and for different time windows
�t := [ti, t f ].

A. Energy transfer in the C2 configuration

We start by assuming that the C2 configuration is the GS
of the system [i.e., b > bc ≈ 0.8112, EGS = E2, Eq. (17)].
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FIG. 7. Color maps of the time-averaged normalized energy 〈Ku〉 stored in the active u chain for three different time intervals: (a) �t1 :=
[0, 105], (b) �t2 := [4 × 105, 5 × 105], and (c) �t3 := [9 × 105, 106].

Investigating the parameter plane (�K, b) in the excess energy
interval 1 � �K � 15 (in units in of χ ) and in the distance
interval 0.9 � b � 2.5, we generate two-dimensional color
maps with the values of 〈Ku〉, 〈�u〉, and 〈�v〉 determined for
different time-windows �t . More specifically, we choose the
time intervals �t1 := [0, 105], �t2 := [4 × 105, 5 × 105],
and �t3 := [9 × 105, 106], which allows us to study the en-
ergy transfer process from early to late times.

The color map depicted in Fig. 7(a) shows the values of
〈Ku〉 calculated during the time interval �t1 := [0, 105], that
is, in the earliest stage of the time evolution of the system.
We observe a dominant green colored region for which the
energy of the system is evenly distributed between the two
chains, 〈Ku〉 = 〈Kv〉 ≈ 0.5. The remaining region of the map
with values �K � 7 and b � 1.5 is dominated by orange-red
colors indicating that, for those values of the parameters, the
system energy is largely stored in the active u chain. It is
important to notice that the borders between these two regions
are not smooth. Therefore, it is not possible to predict the
final outcome of a given initial condition belonging to those
borders, i.e., whether or not the chains will end up in mutual
energy equipartition.

In the intermediate and late time stages �t2 := [4 ×
105, 5 × 105] and �t3 := [9 × 105, 106] [see Figs. 7(b) and
7(c)], there is a progressive increase in size of the green region
in the parameter plane (�K, b) where the system energy is
evenly distributed between both chains. It is worth to highlight
the fact that, as Fig. 7(c) shows, even up to the maximum com-
putation time t f = 106 used in this study, there still persists
a region between b � 2 and 7 � �K � 9 where the energy
equipartition regime between the two chains of the array has
not been reached.

Regarding the way the energy is distributed in each chain,
we illustrate in Fig. 8 the time evolution of the time-averaged
participation functions for both the active u chain 〈�u〉 (Fig. 8
upper row) and the passive v chain 〈�v〉 (Fig. 8 lower
row) calculated for the same time intervals �t1 := [0, 105],
�t2 := [4 × 105, 5 × 105], and �t3 := [9 × 105, 106]. The
color scale in Fig. 8 indicates that, in all cases, the energy
stored within each chain is far from the perfect equipartition
regime given by 〈�u〉 = 〈�v〉 = 1. Indeed, Fig. 9 displays the

probability distribution function (PDF) of the values of 〈�u〉
and 〈�v〉 calculated for �t3 := [9 × 105, 106] and appear-
ing in the maps of Figs. 8(e) and 8(f). We notice that the
maximum values attained by 〈�u,v〉 in the parameter plane
(�K, b) are roughly around 0.6, which corresponds to the
red color in Fig. 8. Moreover, this value is very close to the
thermal equilibrium value of the participation function of a
single linear chain obtained in [18] using Boltzmann statistics.
Therefore, within the red color regions in Fig. 8, we may say
that both chains and, therefore, the total system, have reached
the thermal equilibrium, which is characterized by a value
〈�u,v〉 = 〈�eq〉 ≈ 0.6. As expected, during the intermediate
�t2 and long times �t3 stages, there is a significant and
progressive increase in size of the red regions in the plane
(�K, b) where both chains are in thermal equilibrium.

Besides the thermal equilibrium regions, we can distin-
guish in the color panels of Fig. 8 several regions where the
blue color dominates (low values of 〈�u〉 and 〈�v〉), which in-
dicates a strong energy localization within the corresponding
chain. Indeed, in the active u chain there is a region located
in the upper part of the maps of Figs. 8(a), 8(c) and 8(e) for
b � 1.5 where the blue color dominates. We denote this region
as U zone. It is worth to note that the size and the evolution
of the U zone during the different time windows match very
well with the orange-red regions appearing in the color maps
of 〈Ku〉 of Fig. 7. Therefore, since for the parameter values
of the U regions there is no energy equipartition between the
two chains (the energy stored in the active u chain persists
strongly localized), the system, up to the maximum time t f =
106 considered in this study, is not able to reach the thermal
equilibrium.

An explanation of the behavior of the system in the U
zone can be obtained from the analysis of the behavior of
a single trajectory with appropriate initial conditions in that
region. More precisely, we visualize how the excess energy
�K is distributed along each of the dipoles by computing
a two-dimensional color map with the time evolution of
the normalized local energies {(Eu

n (t )/�K, E v
n (t )/�K ), n =

1, ..., N} [see Eqs. (40) and (41)]. In particular, for a trajec-
tory with parameter values (�K, b) = (8, 2.2), the color map
of Fig. 10(a) shows the presence of a chaotic breather that
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FIG. 8. Color maps of the time-averaged participation functions 〈�u〉 (upper row) and 〈�v〉 (lower row). In panels (a), (b) the quantities
〈�u〉 and 〈�v〉 are determined for the time interval �t1 := [0, 105]. In panels (c), (d) and in panels (e), (f) the same quantities are determined
for the time intervals �t2 := [4 × 105, 5 × 105] and �t3 := [9 × 105, 106], respectively.

propagates in the active u chain and where a significant
amount of the total energy �K is localized. As we can observe
in the magnification of Fig. 10(b), where the 5000 final time
units of Fig. 10(b) are shown, the breather clearly persists
up to the the maximal computing time t = 106. Therefore,

FIG. 9. Probability distribution function (PDF) of the values of
〈�u,v〉 for the latest time interval �t3 := [9 × 105, 106] of the color
maps of Figs. 8(e) and 8(f).

this chaotic breather prevents both the energy equipartition
between the two chains and the thermal equilibrium in the
u chain. In other words, the presence of chaotic breathers
explains the existence of the orange-red region in the color
maps of Fig. 7 and the U zone in the color maps of Figs. 8(a),
8(c) and 8(e). The evidence of the chaotic nature of the os-
cillations is reflected in the Fourier spectra of the trajectories
u50(t ) and v50(t ) of the dipoles n = 50 of each chain shown
in Fig. 11. Thus, both spectra are broad banded, highlighting
the presence of a pronounced isolated peak in the spectrum
of Fig. 11(a) corresponding to the dipole n = 50 of the u
chain. This peak would be associated with the presence of the
breather observed in Fig. 10.

It is expected that, to observe the energy equipartition
between both chains and a global thermal equilibrium, we
should go to times long enough for the breather to fade
away.

An additional region where the blue color dominates can
be observed in the lower left corner of the maps of Fig. 8
for low values of �K and b. The size of this region, named
as L zone, remains roughly constant during the considered
time windows. Note that, despite the two chains are in mutual
energy equipartition (see the color maps of Fig. 7), neither of
the two chains reaches the thermal equilibrium.
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FIG. 10. Time evolution of the normalized local kinetic energies Eu
n (t ) and E v

n (t ) of the dipoles for (�K, b) = (8, 2.2). The positive values
of the vertical axis stand for the N = 100 dipoles of the u chain, while the negative ones stand for the N = 100 dipoles of the v chain.
(a) Evolution for the complete propagation time. (b) Magnification of the 5000 final time units. Note that in panel (a) a logarithmic scale is
used for the horizontal axis.

To explain the behavior of the energy transfer in the L zone,
we turn again to study the time evolution of particular trajecto-
ries. Indeed, the participation functions �u,v (t ) [see Eqs. (43)
and (44)] for an orbit with �K = 1.5 and b = 0.9 depicted
in Fig. 12 shows that, up to t f = 106, the functions �u,v (t )
fluctuate around a constant nonzero value 〈�u,v〉 ≈ 0.1, which
is well below the thermal equilibrium value 〈�eq〉 ≈ 0.6. In
contrast to this behavior, for the same excess energy �K =
1.5 and a larger distance b = 2 between the chains (these
values are within a red region in Fig. 8), we observe in Fig. 12
that �u,v (t ) fluctuate around the thermal equilibrium value
〈�eq〉 ≈ 0.6. For �K = 4 and b = 1, we see in Fig. 12 that
�u,v (t ) fluctuate around a intermediate value 〈�u,v〉 ≈ 0.3.
The remarkable robustness of the lower left blue area of the
map of Fig. 8, suggests that, up to the maximum computation
time t f = 106 used here, the thermalization of the system is
delayed. At this point, it is useful to study the time evolution
of the total energies ku(t ) and kv (t ) stored in the u chain and
in the v chain [see Eqs. (40) and (41)], respectively, as well
as the mutual interaction energy ku,v (t ) between the chains.
According to Eqs. (40)–(42), that mutual energy ku,v (t ) is

given by

ku,v (t ) =
N∑

n=1

3∑
j=−3

V3(un(t ), vn+ j (t )). (48)

For (�K, b) = (1.5, 0.9) and (�K, b) = (1.5, 2), in Fig. 13
the time evolution of the normalized quantities ku(t )/�K ,
kv (t )/�K and ku,v/�K of the corresponding trajectories is
shown. In both examples, it is worth noticing that, shortly
after the excitation, the system reaches, in average, the energy
equipartition between the two chains.

However, the energy transfer mechanism in each sample
trajectory is different. Indeed, when the distance b between the
chains is large [b = 2, Fig. 13(a)], the mutual energy ku,v (t )
is small and positive, i.e., the two chains weakly repel each
other. Therefore, the interaction taking place between dipoles
belonging to the same chain plays the most important role
in the dynamics. Then, since the total energy �K at stake is
small and the chains are in mutual energy equipartition, the
thermalization of the system is rather fast.

When the distance between the chains is small [b = 0.9,
Fig. 13(b)], the mutual interaction energy ku,v (t ) is large and

FIG. 11. Chaotic Fourier spectra of the trajectories u50(t ) and v50(t ) of the dipoles n = 50 of the (a) u chain and (b) v chain in Fig. 10. The
isolated peak in the spectrum (a) would be associated with the presence of the breather observed in Fig. 10.
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FIG. 12. Time evolution of the participation functions �u,v (t ) of
three different trajectories with (�K, b) = (1.5, 0.9) (solid lines),
(�K, b) = (4, 1) (dashed lines), and (�K, b) = (1.5, 2) (dashed-
dotted lines).

negative, i.e., there is a strong attractive interaction between
the chains. This is the expected result because, a greater prox-
imity between the chains, would lead to a greater interaction
between them. However, this fact also leads to an unexpected
consequence. Indeed, because in this case the dominant in-
teraction takes place between dipoles belonging to different
chains, the thermalization of the system is delayed because
there is a sustained and significant energy flow between the
two chains.

VI. CONCLUSIONS

In this study we have explored the energy transfer dy-
namics in a one-dimensional ladder array of two chains of
rigid rotating dipoles in mutual interaction. Periodic bound-
ary conditions within each chain of the array have been
assumed. We have focused on the planar dynamics of the
system, that is, the dipoles are restricted to rotate in a common

plane which is an invariant manifold of the array under the
dynamics.

First, we have determined the GS equilibrium configura-
tions of the system and their energies as a function of the
normalized distance b between the two chains of the array.
We have found that there exists a critical value bc of the
normalized distance, that separates two different GS equilib-
rium configurations. For values b > bc, the GS, named C2, is
a head-tail configuration where all the dipoles are oriented
along the array axis, but in opposite way in each chain. For
values b < bc, the GS, named C3, is a configuration where
all dipoles are oriented perpendicular to the array axis, in a
head-tail configuration between both chains, alternating the
orientation along the array axis.

Prior to explore the energy transfer dynamics, we have
determined up to what order we should be accounting for
the interaction between neighboring dipoles to describe ac-
curately the system behavior. To this end, we have studied
the linear approximation of the array dynamics around the GS
equilibrium configurations C2 and C3. In this context, we have
deduced the expressions of the two bands of the dispersion
relation as a function of the interaction order r, i.e., the order
of the neighboring dipoles taken into account in the dipolar
interaction. The evolution with r of the dispersion bands has
shown that the inclusion of interaction terms beyond r = 3,
does not alter significantly the linear behavior of the system
around both GS configurations. Interaction order r = 3 means
that each dipole is coupled with its 13 nearest-neighboring
dipoles.

Therefore, we have extended the dipolar interaction up
to order r = 3 in the exploration of the energy propagation
within the array of dipoles. The system, initially in the C2

equilibrium configuration, is excited by supplying it with an
excess energy �K to one of the dipoles. For these initial
conditions, we have studied the time evolution of the array for
different values of the system parameters b ∈ [0.9, 2.5] and
�K ∈ [1, 15]. We have focused on two features of the energy
flow: (i) We studied how the excess energy �K is shared
between both chains of the array, that is, the energy stored
in each chain; (ii) we analyzed how the energy is distributed

FIG. 13. Time evolution of the normalized energy ku(t )/�K stored in the u chain (dashed blue line), the normalized energy kv (t )/�K
stored in the v chain (dotted red line) and the normalized mutual interaction energy ku,v (t )/�K between the chains (solid green line). These
quantities have been computed for (a) (�K, b) = (1.5, 2) and (b) (�K, b) = (1.5, 0.9).
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within each chain, i.e., the localization of the energy along
each chain. Consequently, our analysis tools in the study of
the energy transfer have been the time-averaged normalized
energy stored in each chain 〈Ku,v〉, and the time-averaged
participation functions 〈�u,v〉 which quantify the localization
of the energy within each chain of the array. These time-
averaged quantities have been determined in three convenient
time intervals �t distributed along all the computation time,
which allow us to analyze the energy transfer process from
early to late time instants.

With regard to the energy distribution between both chains
of the array, we have found that in most cases from the early
stage of the time evolution, the energy of the array is evenly
distributed between both chains, that is, 〈Ku〉 = 〈Kv〉 = 0.5.
Only for the parameter values �K � 7 and b � 1.5, the sys-
tem energy is largely stored in the active chain, that is, the
chain initially excited. As expected, for intermediate and late
times, this region of nonevenly energy sharing between both
chains, suffers a progressive reduction in size. Nevertheless,
it is worth to note that, even up to the maximum computation
time used in this study, there still persists a region (b � 2 and
7 � �K � 9) where the energy equipartition between the two
chains has not been achieved.

With respect to the energy distribution along each chain,
we have found that, when the system reaches the thermal equi-
librium, the participation functions of each chain attain the
maximum value 〈�u〉 = 〈�v〉 = 〈�eq〉 ≈ 0.6. This value is
very close to the corresponding equilibrium value for a single
linear chain of dipoles [18]. This thermal equilibrium value for
the participation functions is reached in both chains for early
times for most of the values of the parameters b and �K . It is
worth to highlight that, for the active chain, there is a region in
the parameter space (b,�K ) where the thermalization is not
achieved even up to the maximum computation time because
the energy remains strongly localized within that chain. The
size and time evolution of this region match very well with
the region of nonequipartition energy between both chains.
The similar time evolution of these two energy features can be
explained by the existence of persistent chaotic breathers that
propagate in the active chain, where a significant amount of
energy is localized in a few neighboring dipoles. The presence
of these chaotic breathers prevents both the energy equiparti-
tion between chains, and the thermal equilibrium within the
active chain. The thermalization is not reached in both chains
for low values of the system parameters b and �K despite both
chains are in mutual energy equipartition. This behavior can
be explained by analyzing the evolution of the energy involved
in the mutual interaction between both chains as a function
of the normalized distance b. When the separation between
the two chains is small (low values of b), we have found that
the mutual interaction energy is large and negative, which
means a strong and attractive interaction between the chains.
Therefore, the dominant interaction in the array is between
dipoles of different chains, and the thermal equilibrium within
each chains is delayed because the main energy flow takes
place between the two chains of the array.

In this paper, we have restricted ourselves to only an invari-
ant subspace of the system dynamics. A natural continuation
would be the study of the energy transfer in the full-
dimensional dynamics of the same array. A next step could be

to consider more complex configurations of one-dimensional
arrays of dipoles such as diamond or sawtooth-like arrays
[42], or even dimerized versions of them. In this sense,
an interesting line would be to study the existence of flat
bands [50–52] in the dispersion relations of this kind of one-
dimensional arrays, and their effect on the energy transfer
dynamics. A different approach in the study of this system
would be to consider initial discrete breather solutions in both
chains, and study a possible spontaneous symmetry breaking
[53] in those breathers.
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APPENDIX A: C2 EQUILIBRIUM CONFIGURATION:
LINEAR BEHAVIOR IN THE NEIGHBORHOOD OF THE

CENTER AND BOUNDARIES OF THE BRILLOUIN ZONE

Around the C2 equilibrium, the ratio of the amplitudes A(q)
and B(q) of the propagating plane waves (22) is determined by
Eq. (29). In the neighborhood of the center of the Brillouin
zone (q ≈ 0), we have that the plane waves (22) take the
expressions

un(t ) ≈ A(q) exp−iωt , v′
n(t ) ≈ B(q) exp−iωt . (A1)

Then, around the center of the dispersion bands of Eq. (28),
within each chain of the array, all dipoles oscillate in phase.
Besides, taking into account the ratio (29) between the am-
plitudes, in the positive band ω+ all dipoles of the ladder
chain oscillate in phase, so that un(t ) − v′

n(t ) = 0, i.e., un(t ) −
vn(t ) = π [see Fig. 14(a)]. On the contrary, in the negative
band ω− of (28) the dipoles of the upper chain of the array
oscillate in opposite phase with respect to the dipoles of the
lower chain, that is, un(t ) + v′

n(t ) = 0, i.e., un(t ) + vn(t ) = π

[see Fig. 14(b)]. However, at the boundaries of the Brillouin
zone (q ≈ ±π/a), the propagating waves (22) can be written
as

un(t ) ≈ (−1)nA exp−iωt , v′
n(t ) ≈ (−1)nB exp−iωt . (A2)

Therefore, around the ends of dispersion bands (28), within
each chain, the nearest-neighbor dipoles oscillate opposite in
phase. Moreover, taking into account the ratio (29), in the
positive band ω+ of Eq. (28) the pair of dipoles located in the
same position in each chain oscillate in phase [see Fig. 14(c)],
while in the negative band ω− of Eq. (28) they oscillate in
opposite phase [see Fig. 14(d)].

APPENDIX B: C3 EQUILIBRIUM CONFIGURATION:
LINEAR BEHAVIOR IN THE NEIGHBORHOOD OF THE

CENTER AND BOUNDARIES OF THE BRILLOUIN ZONE

Around the C3 equilibrium, the ratio of the amplitudes
A(q) and B(q) of the propagating plane waves (22) is also
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FIG. 14. Linear oscillations of the dipoles in the ω± dispersion
bands in the neighborhoods of the center (q = 0) and boundaries
(q = ±π/a) of the Brillouin zone in the C2 equilibrium configura-
tion. Green color stands for positive oscillation angles and blue color
for negative oscillation angles.

determined by Eq. (29). In the neighborhood of the center of
the Brillouin zone (q = 0), in the dispersion bands ω± [see
Eq. (37)], within each chain of the array, all dipoles oscillate
in phase. Besides, taking into account the ratio (29) between
the amplitudes, in the positive band ω+ all dipoles of the
ladder chain oscillate in phase, so that u′

n(t ) − v′
n(t ) = 0 [see

Fig. 15(a)], whereas in the negative band ω− the dipoles of
the upper chain oscillate in opposite phase with respect to
the dipoles of the lower chain, that is u′

n(t ) + v′
n(t ) = 0 [see

Fig. 15(b)]. However, at the boundaries of the Brillouin zone
(q = ±π/a), within each chain, the nearest-neighbor dipoles
oscillate in opposite phase, so that u′

n(t ) + u′
n+i(t ) = 0 and

FIG. 15. Linear oscillations of the dipoles in the ω± dispersion
bands in the neighborhoods of the center (q = 0) and boundaries
(q = ±π/a) of the Brillouin zone in the C3 equilibrium configura-
tion. Green color stands for positive oscillation angles and blue color
for negative oscillation angles.

v′
n(t ) + v′

n+i(t ) = 0. Taking into account the ratio (29), in
the positive band ω+ the pair of dipoles located in the same
position in each chain oscillate in phase [see Fig. 15(c)], while
in the negative band ω− they oscillate with opposite phase [see
Fig. 15(d)].
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