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Dynamics of Purcell-type microswimmers with active-elastic joints
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Purcell’s planar three-link microswimmer is a classic model of swimming in low-Reynolds-number fluid,
inspired by motion of flagellated microorganisms. Many works analyzed this model, assuming that the two joint
angles are directly prescribed in phase-shifted periodic inputs. In this work, we study a more realistic scenario by
considering an extension of this model which accounts for joints’ elasticity and mechanical actuation of periodic
torques so that the joint angles are dynamically evolving. Numerical analysis of the swimmer’s dynamics reveals
multiplicity of periodic solutions, depending on parameters of the inputs—frequency and amplitude of excitation,
joints’ stiffness ratio, as well as joint’s activation. We numerically study swimming direction reversal, as well as
bifurcations, stability transitions, and symmetry breaking of the periodic solutions, which represent the effect of
buckling instability observed in swimming microorganisms. The results demonstrate that this variant of Purcell’s
simple model displays rich nonlinear dynamic behavior with actuated-elastic joints. Similar results are also
obtained when studying an extended model of a six-link microswimmer.
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I. INTRODUCTION

Many living microorganisms such as sperm cells, nema-
todes, and bacteria can swim in a fluid environment by
applying shape actuation of their elongated body or flagel-
lated tail [1–5]. In recent years, these microscopic creatures
have inspired the research and development of microrobotic
swimmers, an application of great importance, e.g., in the
field of biomedicine [6–8]. In order to understand the basic
locomotion mechanisms of these creatures and to improve the
engineering design of such microrobots, one needs to formu-
late basic mathematical models of microswimmer motion.

A fundamental principle of microswimmers’ motion is
the fact that they move in the very low Reynolds number
(Stokes flow), in which the dominant forces are generated
by viscous drag resistance of the fluid while the influence of
inertial effects is negligible, so that the motion is quasistatic
[9–11]. Several basic models of microswimmers’ motion were
developed. For example, Taylor’s first models included an
analysis of a two-dimensional flexible sheet which moves as a
propagating wave [12], and based on this model he proposed a
model of a swimmer with a “helical tail” whose shape is sim-
ilar to a sperm cell. Later, Purcell [13] proposed a model for a
swimmer with a rotating helical tail and also presented a pla-
nar microswimmer model with three links connected by two
rotational joints (Purcell swimmer), as shown in Fig. 1. This
swimmer was claimed in Ref. [13] to be the simplest mech-
anism that can move in a viscous flow by periodic actuation.
The two inputs of periodic joint angles generate nonreversible
time profile that enables net locomotion, as required by Pur-
cell’s “scallop theorem.” Later, dynamic equations of motion
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for Purcell’s swimmer were explicitly formulated under the
assumption of slender links [14]. Based on this model, an
asymptotic analysis of the motion of Purcell’s swimmer be-
havior under two types of periodic inputs (gaits) of joint
angles was performed [15]. A macroscale robotic implemen-
tation of Purcell’s three-link swimmer was constructed and
investigated [16] for studying symmetry properties of various
gaits. Other works utilized methods of geometric mechanics
for analyzing the displacement under given gaits [17,18],
whereas the works [19–23] utilized methods of optimal con-
trol for maximizing the swimmer’s displacement or energy
efficiency. All these studies were performed under the sim-
plifying assumption that it is possible to kinematically control
the swimmer’s shape change, for example by directly dictating
the joint angles. In the work [24], the dynamics and stability
of periodic solutions for joint angles of Purcell swimmer were
investigated under the assumption that the controlled inputs
are periodic torques applied at the joints. However, in many
practical situations, microswimmer’s shape change is partially
carried out passively and is also affected by an elastic response
of the swimmer’s structure. Several models have studied
continuous bending deformation of elastic flagellum with dis-
tributed actuation in mathematical models [25,26], some of
which were based on sperm cells motility [2,27]. Such models
revealed the existence of optimal ratio between stiffness and
beating frequency that maximizes swimming performance.
Another important effect that has been studied is dynamic
buckling instability in elastic-actuated swimming microorgan-
isms and their theoretical models [28–32]. This phenomenon
occurs when some parts of the swimmer’s body have local-
ized low stiffness (for example, a flexible hook at the tip of
a rotating flagellum). In such case, increasing the actuation
frequency may result in symmetry breaking bifurcation where
the symmetric beating of straight-line mean swimming loses
stability and asymmetric configurations emerge, leading to
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FIG. 1. Purcell’s three-link microswimmer model.

curved swimming trajectories. The continuous models men-
tioned above typically involve partial differential equations,
so that their analysis is relatively complicated. A simplified
version of a model that takes into account the elastic effects
of the body can be obtained by using rigid links connected
by rotational joints with torsion springs. Hence, several such
models have been proposed to describe the motion of flexible
linked nanoswimmers actuated by an oscillating magnetic
field [33–36].

Passov and Or [37] proposed a generalization of Purcell’s
three-link microswimmer, where one joint is passive elastic
having a torsion spring, while the angle of the other joint is
prescribed as a sinusoidal input. The model in Ref. [37] dis-
played convergence of the passive angle to stable oscillations
about zero mean (corresponding to the straightened load-free
configuration of the torsion spring). In addition, this model
exhibits an optimal frequency that maximizes the net displace-
ment per cycle, which was also approximated in Ref. [37]
using asymptotic analysis. The work [38] considered the same
model, and utilized geometric method and frequency-domain
analysis in order to find optimal time-periodic input for max-
imizing either mean swimming speed or energy efficiency.
A variant of the simple model in Ref. [37] has been used in
Ref. [39] for analyzing the motion of the swimming microor-
ganism Schistosoma mansoni, proving that it tunes the ratio
between its structural stiffness and beating frequency in order
to optimize performance.

Nevertheless, the above-mentioned models were not able
to capture the dynamic buckling effect. A key reason for this
shortcoming is that these models assumed kinematic input of
prescribed joint angle at the active joint. In practice, a more
realistic description involves mechanical actuation of torque
applied at the joint, possibly combined with passive elasticity
and/or feedback based on measurement of the actual joint
angle. The goal of this work is to study such a variant of
Purcell’s microswimmer model with mechanical actuation,
where both joint torques consist of time-periodic input signal
and/or passive elastic terms. In such case, the two joint angles
are evolving dynamically as a result of the swimmer-fluid
interaction. This may lead to multiplicity of periodic solu-
tions, with possible stability transitions, symmetry-breaking
and bifurcations. This work presents numerical investigation
of the influence of the swimmer’s parameters on its dynamic
behavior and characteristics of periodic solutions. We study
the case in which both joints are active-elastic, as well as

the case where only one joint is active. We show that when
there is large ratio between joint stiffnesses, the swimmer’s
motion may undergo reversal in swimming direction, as well
as symmetry-breaking bifurcations and stability transitions
of periodic solutions, which represent the dynamic buckling
effect. Last, we also present some examples of a higher-
dimensional six-link model with elastic passive/active joints,
showing a similar behavior.

II. PROBLEM STATEMENT

We now introduce Purcell’s three-link microswimmer
model [13] and the formulation of its dynamic equations of
motion in viscous fluid [14–16]. The swimmer consists of
three rigid links connected by two rotational joints, as shown
in Fig. 1. The coordinates of the robot are decomposed
into body variables q = (x, y, θ )T , which describe the posi-
tion and orientation of the central link, and shape variables
� = (φ1, φ2)T which are the two relative angles at the joints.
The vector of torques acting at the joints is denoted as
τ = (τ1, τ2)T .

In low-Reynolds-number fluid, the viscous resistance force
and torque acting on a rigid body in Stokes flow are linear in
its translational and rotational velocities [9,13]. For slender
links, these expressions are given as [14,15,40]:

fi = −ct li(vi · ti )ti − cnli(vi · ni )ni

mi = − 1
12 cnl3

i ωi,

}
, (1)

where fi is the viscous drag force acting on link i and mi is the
hydrodynamic torque with respect to the link’s center. ti is a
unit vector along the link’s axial direction, ni is a unit vector
along transversal direction, vi is the velocity vector of the
link’s center, and ωi is its angular velocity along ẑ direction.
For simplicity, we assume equal links lengths l0 = l1 = l2 = l .
The resistance coefficients in (1) for slender links are given as
[40]:

cn = 2ct = 4πμ

log (l/a)
, (2)

where μ is the fluid’s viscosity and a is the link’s cross-
section radius. Due to negligibility of inertial forces, the force
and torque balance on the swimmer’s links give rise to first-
order equation of motion [15]:

q̇ = R(θ )G(�)�̇, (3)

�̇ = H(�)τ, (4)

where R is the rotation matrix. Equation (3) is the swim-
mer’s equation of motion assuming kinematic input which
directly prescribes the joint angles �(t ), which was obtained
in Refs. [14,15]. Equation (4) is the relation between joint
torques and the motion of the joint angles, which has been
derived in Refs. [16,24,37].

The previous work [37] assumed one passive elastic joint
and one kinematically actuated joint with periodic input:

φ1(t ) = ε sin(ωt ), τ2 = −kφ2. (5)

In this study, we assume that mechanical inputs are the joint
torques, active and/or passive, where joint angles become
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FIG. 2. Simulations of case 1, as given in (8)—two identical active-elastic joints with periodic actuation torques. Joint angles (a) φ1 and
(b) φ2 versus time t , as well as the swimmer’s trajectory in (c) the φ1-φ2 plane. The small swimmer’s sketches illustrate the periodic shape
changes during cycle. (d) The swimmer’s trajectory in the x-y plane. The stable periodic symmetric solution is indicated with maroon color.

dynamically evolving variables. Moreover, we assume that
the swimmer is actuated by periodic torque input and parallel
elasticity, so that the torques are expressed as

τi = εi sin(ωt + γi ) − kiφi = −ki(φi − ψi(t )), i = 1, 2.

(6)

This means that the joint torque contains periodic input
connected in parallel to an elastic torsion spring having stiff-
ness ki. An equivalent description of the joint torque is a

proportional feedback law which aims to make the angle φi

track a desired periodic signal ψi(t ), as formulated in the last
term of (6).

III. NUMERICAL INTEGRATION RESULTS

In order to study the general behavior and to search
for characteristic types of dynamic evolution, we perform
numerical dynamic simulations on different combinations

FIG. 3. Simulations of case 2, as given in (9)—actuated and passive elastic joints are with equal stiffnesses. Joint angles (a) φ1 and (b) φ2

versus time t , as well as the swimmer’s trajectory in (c) φ1-φ2 and (d) x-y planes. The stable periodic symmetric solution is indicated with
maroon color.
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FIG. 4. Simulations of case 3, as given in (10)—actuated joint with zero stiffness and passive elastic joint. Joint angles (a) φ1 and (b) φ2

versus time t , as well as (c) the swimmer’s trajectory in φ1-φ2 plane. The first period, which displays unstable symmetric oscillations about
zero mean angles, is marked by a dashed magenta curve, and the stable periodic solution of oscillations about mean values of (φ̄1, φ̄2) = (π, 0)
is indicated with solid maroon curve. The inset in (a) shows the convergence to the second solution with (φ̄1, φ̄2) = (−π, 0).

of the spring constants, frequencies, and actuation torque
amplitudes.

In order to render the problem in (3)–(6) dimensionless, we
first define a characteristic scale of length l and characteristic
scale of torsional stiffness kc (units of moment). This induces
a characteristic timescale [37], tc = ct l3/kc. Second, we scale
all of the physical quantities by the characteristic scales to
make them dimensionless:

x̃ = x

l
, ỹ = y

l
, t̃ = t

tc
, ω̃ = ωtc, f̃i = fi

(ct l2/tc)
,

τ̃i = τi

(ct l3/tc)
, k̃i = ki

kc
, ε̃i = εi

kc
. (7)

For convenience, we hereafter remove the tilde ( ˜ ) symbol
from all variables τ̃i, ε̃i, k̃i, and ω̃i, where we use the conven-
tion that they all represent scaled dimensionless quantities.

In order to perform dynamic simulation for the solution of
the system in (3), (4), and (6) in different cases, we used the
built-in ODE45 solver in Matlab.

In case 1, we perform a simulation with torque-spring in-
put, where both joints are actuated and have equal stiffnesses.
The dimensionless input and parameter values are

τ1 = A1 sin (ωt ) − k1φ1, τ2 = A2 cos (ωt ) − k2φ2,
(8)

k1 = k2 = 1, ω = 1, A1 = A2 = 0.5,

with the initial conditions φ1(0) = 2 [rad] and φ2(0) = 0. In
Fig. 2 we show the joint angles φ1(t ) and φ2(t ) versus time
and the swimmer’s trajectory in the x-y plane and in the φ1-φ2

plane. It can be seen that after an initial transient, the solution
converges to symmetric oscillations about zero mean angles,
φ̄i = 0, i = 1, 2, where the symmetry implies straight-line net
swimming with net displacement per cycle denoted by |d|, as
indicated in Fig. 2(d).

In case 2, we perform a simulation with one active joint and
one passive joint and with equal stiffnesses in both of them,
namely

τ1 = A1 sin (ωt ) − k1φ1, τ2 = −k2φ2,
(9)

k1 = k2 = 1, ω = 1, A1 = 0.5, A2 = 0,

and with the initial conditions φ1(0) = 2 [rad] and φ2(0) = 0.
In Fig. 3 we show the joint angles φ1(t ) and φ2(t ) versus time
and the swimmer’s trajectory in the x-y plane and in the φ1-φ2

plane. Similarly to case 1 when the two joints were identical,
also in this case (one joint is active and the other one is pas-
sive) it can be seen that after an initial transient, the solution
converges to symmetric oscillations about zero mean angles,
φ̄i = 0, i = 1, 2, with straight-line net swimming. Moreover,
when comparing between Figs. 2(d) and 3(d), it can be ob-
served that the net displacement per cycle |d| is much smaller
in the case that one of the joints is passive, relative to the case
that both joints are active.

In case 3, we perform a simulation with one active joint
and one passive joint and zero stiffness at the actuated joint,
namely

τ1 = A1 sin (ωt ), τ2 = −k2φ2,

k1 = 0, k2 = 1, ω = 1, A1 = 0.5, A2 = 0, (10)

with the initial conditions φ1(0) = −1.88 [rad] and
φ2(0) = 0.0189 [rad] for the main figure in Fig. 4 (and
φ1(0) = −2.5 [rad] and φ2(0) = −2 [rad] for the inset). In
Fig. 4 we show the joint angles φ1(t ) and φ2(t ) versus time
and the swimmer’s trajectory in φ1-φ2 plane. It can be seen
that the swimmer’s joint angles initially perform symmetric
oscillations about mean zero values φ̄i = 0. However, the
oscillations of φ1(t ) eventually drift from mean zero and
converge to oscillations about (φ̄1, φ̄2) = (π, 0). Thus, we
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conclude that the symmetric periodic solution with φ̄i = 0
is unstable and there is a convergence to stable periodic
solution with mean (φ̄1, φ̄2) = (π, 0), where two links are
folded on each other. Note that the latter oscillations also
result in straight-line net motion due to symmetry about the
swimmer’s folded configuration. Note that a configuration
with φ1 = π where two links are folded on top of each
other is unphysical and unreachable in a planar setup due
to intersection of the links and also irrelevant for undulating
microorganisms. Nevertheless, such configuration may still
be possible for an articulated robot which is designed such
that the links are moving in parallel planes. Additionally, we
shall see below that this case serves as a mathematical limit
of cases where the stiffness of the active joint is very low,
which lead to asymmetric periodic solutions.

Considering the periodic solution of symmetric oscillations
about straightened configuration φ̄i = 0, we observed above
that it is stable for sufficiently large stiffness k1 (cases 1 and
2), whereas it is unstable for zero stiffness (case 3). Thus, it
is reasonable to assume that there exists an intermediate value
of k1 for which a stability transition occurs. Hence, in case 4,
we perform a simulation with a small value of k1. Specifically,
in this case we use the following input:

τ1 = A1 sin (ωt ) − k1φ1, τ2 = −k2φ2,

k1 = 0.01, k2 = 1, ω = 2, A1 = 0.5, A2 = 0,

(11)

with initial conditions (φ1(0), φ2(0)) ≈ (−1.154, 0.048) for
the unstable symmetric solution, and (φ1(0), φ2(0)) =
(0.166, 0.0702) and (φ1(0), φ2(0)) = (−1.975, 0.028) for the
two asymmetric solutions (all angles are given in [rad]). In
Fig. 5 we show the swimmer’s trajectory in the x-y plane
and in the φ1-φ2 plane. It is possible to see that the swim-
mer starts the motion with oscillations about the straightened
configuration φ̄i = 0, which generates motion along straight
line for some cycles. Then the solution eventually diverges
away and converges to asymmetric oscillations about nonzero
mean values, φ̄i �= 0. Due to asymmetry of the oscillations,
they result in swimming along a circular arc, with nonzero net
rotation, as shown in Fig. 5. Note that in this case, unstable
symmetric periodic solutions with φ̄i = 0 coexist. Interest-
ingly, for parameter values as given in Eq. (11), this behavior
is obtained only for specific range of actuation frequencies,
1.16 < ω < 8.77. For higher or lower frequencies, one ob-
tains only stable symmetric oscillations about φ̄i = 0, as in
case 2. This motivates the analysis of periodic solutions, as
presented next.

IV. ANALYSIS OF PERIODIC SOLUTIONS
(POINCARÉ MAP)

After we have seen various possible behaviors of the
swimmer in response to different torque inputs and discussed
situations which appear to be classified as stable or unstable
periodic solutions of symmetric or asymmetric oscillations, as
well as multiplicity of periodic solutions for given configura-
tions, in this section, we shall investigate periodic solutions
and their stability in a rigorous way. In particular, we scan

FIG. 5. Simulations of case 4, as given in (11)—actuated joint
with low stiffness and passive elastic joint. The swimmer’s trajec-
tory in (a) the x-y plane and (b) the φ1-φ2 plane. The red dashed
curve represents unstable symmetric solution, while the green and
blue solid curves represent stable asymmetric solutions. The colored
“x” markers denote the mean values (φ̄1, φ̄2) corresponding to the
different periodic solutions. Setting the initial conditions close to the
values along the dashed red curve, the solution will converge either
to the green or to the blue curve.

the possible parametric ranges in order to find and classify
periodic solutions.

In order to investigate periodic solutions we use Poincaré
map [41], which is found numerically. Let us define the sys-
tem’s state as z = (φ1, φ2) and define zk = z(t = ktp), where
tp = 2π/ω and k = 1, 2, 3, . . .. Poincaré map is then defined
as F(zk ) = zk+1, which induces a discrete-time-invariant dy-
namical system for zk . Initial conditions z(0) = z∗ which lead
to a periodic solution of (4), z(t ) = z(t + tp), are reflected by
a fixed point of the Poincaré map, namely F(z∗) = z∗. After
a periodic solution corresponding to fixed point z∗ is found,
it is possible to use the eigenvalues of the Jacobian matrix
of the Poincaré map J = dF/dz|z=z∗ in order to determine
whether the solution is locally stable or unstable. Specifically,
if all eigenvalues of the Jacobian satisfy |λi(J)| < 1, then it
is possible to conclude that the periodic solution is locally
asymptotically stable [41]. However, if there exists at least one
eigenvalue satisfying |λi| > 1, then the solution is unstable. In
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FIG. 6. Properties of the symmetric periodic solutions as a function of actuation frequency ω, where for the blue curve the parameters
correspond to case 1 and are given in (8) except that ω varies in [0,100] and for the orange curve the parameters correspond to case 2 and are
given in (9) except that ω varies in [0,100]: (a) Displacement per cycle |d|, (b) mean speed |V̄ |, (c) oscillation amplitude of φ1(t ) denoted by
α1, and (d) oscillation amplitude of φ2(t ) denoted by α2. All of the panels are in log-log scale.

summary, it is possible to find periodic solutions by numerical
search for solutions of F(z∗) = z∗. Moreover, this method also
allows to find multiplicity of periodic solutions and to analyze
their stability.

For symmetric solutions only, let us define the mean value
θ̄ about which the angle θ (t ) oscillates after initial transient
response followed by convergence to a periodic solution, as
the mean value of θ (t ) over a period, namely

θ̄ =
∫ t0+tp

t0

θ (t ) dt . (12)

Note that for symmetric solutions θ̄ is a constant that does
not depend on the choice of t0, after settling to steady-state
periodic oscillations. Let us define signed net displacement
per cycle, which we denote by d , as follows:

d =
[

x(t0 + tp) − x(t0)

y(t0 + tp) − y(t0)

]
·
[

cos (θ̄ )

sin (θ̄ )

]
, (13)

where · denotes the scalar product. Then the signed mean
speed per cycle which we denote by V̄ may be defined as

V̄ = d

tp
. (14)

By varying system’s dimensionless parameters
(A1, A2, k1, k2, ω), we are able to find multiple periodic
solutions and analyze their stability and bifurcations. First,
we consider the cases of equal stiffness at the two active joints
or at one active and one passive joint [see cases 1 and 2 which
are given in (8) and (9)], and vary the actuation frequency ω.
In Fig. 6 we show the absolute value of the net displacement
per cycle |d|, the absolute value of the mean speed |V̄ |, and
oscillation amplitudes of φi(t ) in steady state, which are
denoted by αi, versus frequency for two sets of parameters,
as given in (8) and (9). Note that for both these sets of

input parameters there exists a unique solution of symmetric
oscillations about mean zero angles, φ̄i = 0, which is stable.
We did not obtain multiple or unstable periodic solutions
for any dimensionless frequency in the range ω ∈ [0, 100].
Moreover, it is possible to see that for case 1 where both
joints are active, namely A1 = A2 = 0.5, the net displacement
|d| grows monotonically with the actuation frequency ω,
but there exists optimal frequency that gives maximum mean
speed V̄ (Fig. 6). However, for case 2 with one active joint and
one passive joint, namely A1 = 0.5 and A2 = 0, there exists
an optimal frequency which allows to obtain maximal net
displacement per cycle |d| and a different optimal frequency,
that allows to obtain maximal mean speed |V̄ |; see Fig. 6.
This observation is different from the results in Ref. [37],
where the actuated joint involved direct kinematic input of the
angle φ1(t ) as time-periodic signal, which resulted in optimal
frequency for maximizing |d|, but not for maximizing |V̄ |.

An additional observation is that in cases 1 and 2 (of equal
stiffnesses) the direction of motion of the swimmer is constant
and not reversed as a function of ω. However, generally a
reversal in the direction of motion when varying ω can occur.
Let us show this phenomenon in the following examples,
which we denote by case 5 with the following parameters:

τ1 = A1 sin (ωt ) − k1φ1, τ2 = A2 cos (ωt ) − k2φ2,

k1 = 0.1 or k1 = 0.01, k2 = 1, A1 = A2 = 0.5,

(15)

and varying frequency, ω ∈ [0, 100]. In this case, both joints
are active but the ratio between their stiffnesses is large.

In Fig. 7 we show the signed net displacement per cycle
d , the mean speed V̄ , and the phase difference 
ψ between
steady-state oscillations of the two joint angles φ1(t ) and
φ2(t ), for the two values of k1 in case 5 given in (15). It can be
seen that if k1 is sufficiently small k1 � 0.1, then there exists
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FIG. 7. Properties of the symmetric periodic solutions in case 5 as a function of actuation frequency ω, where the parameters are given in
(15) for the blue curve k1 = 0.1 and for the orange curve k1 = 0.01: (a) Signed displacement per cycle d , (b) mean speed V̄ , and (c) phase
difference 
ψ between steady-state oscillations of the two joint angles φ1(t ) and φ2(t ). All panels are in log-linear scale. The horizontal black
lines in (a) and (b) denote zero displacement or velocity, respectively, and in (c) phase difference of 180◦. The vertical dashed lines denote
sign reversal of the signed distance. The dashed-dotted purple curve in panel (c) denotes 
ψ for case 1 with k1 = k2 = 1, which does not
cross 180◦.

a frequency ω for which the swimmer reverses its direction of
motion and starts to move in the opposite direction. In order to
explain this direction reversal, we now show that it is tightly
related to the phase difference between the oscillations of the
two joint angles. Figure 7(c) shows the phase difference 
ψ

as a function of frequency, for the two values of k1 in case 5,
as well as for case 1 with two equal stiffnesses k1 = k2 = 1.
In case 1, the phase difference of the joint angles changes
monotonically between 90◦ and 180◦, so that φ1(t ) lags be-
hind φ2(t ), resulting in net motion towards joint 2, i.e., d < 0.
However, for case 5 with k2 = 1 and k1 = 0.1 or k1 = 0.01,
the phase difference crosses 180◦, which means interchange
in roles of leading and lagging joint angles, implying

reversal in direction and in sign of d . Moreover, note that for
k1 = 0.1, the net displacement attains global maximum be-
tween two sign reversals. On the other hand, for k1 = 0.01,
the net displacement has a single reversal and does not have a
local maximum.

Next, we revisit case 4 where one joint is passive and
the actuated joint has low dimensionless stiffness, with pa-
rameter values given in (11). Since our previous simulations
show different behavior depending on dimensionless actua-
tion frequency (see Fig. 5), we now vary ω within the range
[0.085,10] and study properties of the multiple periodic solu-
tions. Figure 8 shows plots of the mean angle φ̄1, and maximal
eigenvalue magnitude max |λi| as a function of ω, for the

FIG. 8. Properties of the symmetric periodic solutions in case 4 as a function of actuation frequency ω, on log-linear scale, where the
parameters are given in (11): (a) Mean value of φ1 and (b) the maximum of absolute values of eigenvalues λi. The {solid, dashed} curves
represent the {stable, unstable} symmetric solutions, respectively. The green and blue curves represent stable asymmetric solutions, and the
filled black circles indicate the bifurcation points. The dashed black line in (b) represents a constant equal to 1.

014207-7



ZIGELMAN, BEN ZVI, AND OR PHYSICAL REVIEW E 110, 014207 (2024)

FIG. 9. Properties of the symmetric periodic solutions in case 6 as a function of actuation frequency ω, on log-linear scale, where the
parameters are given in (16): (a) Mean value of φ1 and (b) the trajectory net curvature κ̄ = 
θ/d . The {solid, dashed} curves represent the
{stable, unstable} symmetric solutions, respectively. The green and blue curves represent stable asymmetric solutions, and the filled black
circles indicate the bifurcation points.

multiple periodic solutions. It can be seen that there exist three
different frequency ranges: in the range of small and large fre-
quencies only stable symmetric periodic solution with φ̄i =0
exists, whereas in the intermediate range the symmetric so-
lution becomes unstable and a pair of stable asymmetric
periodic solutions emerge. At the two transition frequen-
cies we obtain supercritical pitchfork bifurcation [42]. Note
that this phenomenon is similar to the symmetry-breaking
bifurcation observed in swimming microorganisms and their
continuous theoretical models [2,28–32]. As already observed
in these works, this effect is tightly related to dynamic buck-
ling instability, which occurs when one joint (the active one)
has a very low stiffness.

We now analyze the influence of actuation frequency for
case 6 where the dimensionless stiffness of the active joint is
even smaller, namely, the input parameters are given by

τ1 = A1 sin (ωt ) − k1φ1, τ2 = −k2φ2,

k1 = 0.001, k2 = 1, A1 = 0.3, A2 = 0, ω ∈ [0, 55].
(16)

Figure 9(a) plots the mean value φ̄1 for the multiple pe-
riodic solutions as a function of actuation frequency ω. The
system displays similar bifurcation structure as previous case
shown in Fig. 8. Figure 9(b) plots the net curvature of periodic
solutions, defined as κ̄ = 
θ/d , as a function of frequency
ω, where 
θ = θ (t + tp) − θ (t ) is the net swimmer’s rota-
tion per cycle. Interestingly, it can be seen that the curvature
crosses zero and reverses its sign while varying ω. This means
that steering the swimmer’s trajectory following curved paths
in plane can be made possible under symmetric input, by
simply varying the actuation frequency.

Finally, we consider the effect of varying the dimensionless
stiffness k1 of the active joint, while k2 and the actuation
frequency ω are kept fixed. More specifically, we consider
input and parameter values given by

τ1 = A1 sin (ωt ) − k1φ1, τ2 = −k2φ2,

k2 = 1, ω = 5, A1 = 0.5, A2 = 0, k1 ∈ [0, 0.025].
(17)

FIG. 10. Mean value of the joint angle φ1 versus actuated joint’s dimensionless stiffness k1 for the input given in (17). The {solid, dashed}
curves represent the {stable, unstable} symmetric solutions, respectively. The green and blue curves represent stable asymmetric solutions, and
the filled black circle indicates the bifurcation point.
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FIG. 11. Stability limit curve of the symmetric periodic solution in k1-ω plane, where A1 = 0.5 and A2 = 0 are kept fixed. The blue dots
are the bifurcation points obtained by numerical simulation, and the solid blue line (obtained in Matlab by least-squares fitting to a six-order
polynomial) is to guide the eyes.

Figure 10 shows the mean joint angle φ̄1 in different periodic
solutions as a function of active joint’s stiffness k1. It can be
seen that for large k1, in the same order of k2, there exists
only stable symmetric solution with φ̄i = 0. When k1 is de-
creased below a critical value, a pitchfork bifurcation occurs
where a pair of asymmetric periodic solutions emerge, while
the symmetric solution becomes unstable, as demonstrated in
Figs. 5, 8, and 9. In the limit of k1 → 0, the mean values of
active joint’s angle in the asymmetric solution branches tend
to φ̄1 → ±π , a folded configuration, in agreement with the
simulation results of case 2, shown in Fig. 4.

From the stability analysis obtained by varying (k1, ω)
while keeping A1 = 0.5 and A2 = 0, we have numerically
produced a graph of stability limit curve of the symmetric
periodic solution φ̄i = 0 in k1-ω plane, which is shown in
Fig. 11. It is possible to conclude that in the region above the
limiting curve, single symmetric solution is stable, whereas
in the region below the limiting curve the symmetric solu-
tion is unstable and there exists a pair of stable asymmetric
solutions.

V. SIX-LINK SWIMMER

We now consider a six-link microswimmer, which is a
natural generalization of Purcell’s swimmer discussed above.
The six-link swimmer consists of six rigid links connected
by five rotational joints, as shown in Fig. 12. In this
case, the coordinates are decomposed into body variables
q = (x, y, θ )T , which describe the position and orientation
of the first link (referred hereafter as “head”), and shape
variables � = (φ1, φ2, φ3, φ4, φ5)T which are the five an-
gles at the joints between the corresponding neighboring
links. The vector of torques acting at the joints is denoted
as τ = (τ1, τ2, τ3, τ4, τ5)T . All of the assumptions that we
used for Purcell’s swimmer throughout this study, includ-
ing low Reynolds number, remain valid for the six-link
swimmer model. Thus, we use the natural generalization of
the problem in (3) and (4) to eight variables given in q
and � corresponding to the six-link swimmer. The dynamic

equations of motion for the six-link microswimmer model
with active-elastic joints were formulated using the general
scheme presented in Ref. [15], which is also similar to the
elastic multilink model studied in Ref. [35].

We simulated the dynamics of the six-link swimmer in
several cases. In the first case, which we denote by case 7,
the input parameters are

τi = Ai sin (ωt − (i − 1)ψ ) − kiφi, ω = 1,
(18)

Ai = 1, ki = 1, i = 1, . . . , 5, ψ = π/5,

with the initial conditions φi(0) = 0, i = 1, . . . , 5. In this
case, all joints have equal stiffnesses, and all are actuated
by periodic torque inputs with constant phase lag ψ between
consecutive joints. In Fig. 13 we show the joint angles φi(t ),
i = 1, . . . , 5 versus time and swimmer’s trajectory in the x-y
plane. It can be seen, that similarly to cases 1 and 2 in the
three-link swimmer (see Figs. 2 and 3), after an initial tran-
sient the solution converges to symmetric oscillations about
zero mean angles, φ̄i = 0, i = 1, . . . , 5, where the symme-
try implies straight-line swimming with net displacement per
cycle |d|. Moreover, it can be observed that the steady-state
oscillation amplitude of φi(t ) is minimal in the middle of
the swimmer (for i = 3) and increases towards both ends, the
head and tail joints.

FIG. 12. The six-link swimmer. Joint angles φi, i = 1, . . . , 5,
denote the relative angle between links i + 1 and i so that they are
positive in counterclockwise direction.
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FIG. 13. Simulations of six-link swimmer in case 7, as given in (18)—all five joints are actuated with equal actuation amplitudes, equal
stiffnesses, and phase difference of ψ = π/5 between the adjacent actuated angles. (a) Joint angles φi, i = 1, 2, . . . , 5, versus time t and (b) the
swimmer’s trajectory in the x-y plane. The stable periodic solution is indicated by maroon color in panel (b).

In Figs. 14(a) and 14(b) we show the net displacement per
cycle d and the mean speed per cycle V̄ in case 7 versus the
frequency ω for various phase differences ψ . In Figs. 14(a)
and 14(b) it can be seen that for all phase differences ψ the
net displacement decreases monotonically with increase of ω,
so that there does not exist an optimal frequency for which
maximal displacement is obtained, whereas there exists an
optimal frequency for which maximal mean speed is obtained.
This result is similar to Purcell’s swimmer with two actuated
joints (see Fig. 6, case 1, of the three-link swimmer).

An additional interesting observation is that d and V̄ are
not monotonic functions of the phase difference ψ . This fact
is further visualized in Fig. 14(c), which shows d as a function
of phase difference ψ for fixed frequency ω = 1. In particular,
it can be seen that the maximal displacement (for ω = 1) is
attained for ψ ≈ 0.385π and displacement crosses d = 0 and

changes sign for ψ ≈ 0.9055π . Note that based on our results
for Purcell’s swimmer, we are already familiar with the fact
that the displacement may change sign, as, e.g., was shown in
Fig. 7.

Next, we examine the case where all joints are passive
except the first one, which is actuated. Specifically, the input
parameters in case 8 are as follows:

τi = Ai sin (ωt ) − kiφi, ω = 1,

A1 = 1, A2 = A3 = A4 = A5 = 0, (19)

ki = 1, for i = 1, . . . , 5,

with the initial conditions φi(0) = 0, i = 1, . . . , 5. In
Fig. 15(a) we show the joint angles φi(t ), i = 1, . . . , 5 versus
time and in Figs. 15(b) and 15(c) we show the net displace-
ment |d| per cycle and mean speed |V̄ | versus ω. It can be

FIG. 14. Properties of the symmetric periodic solutions in case 7, as given in (18). (a) Displacement per cycle d and (b) mean speed V̄
versus ω, where the colors of the curves represent the results for various phase differences ψ , and (c) displacement per cycle d versus ψ for
ω = 1. The maximum and zero displacement in panel (c) are obtained for ψ ≈ 0.4π and ψ ≈ 0.9π , respectively. The black dashed line in
panel (c) denotes zero displacement.
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FIG. 15. Simulations of six-link swimmer in case 8, as given in (19)—only one joint is actuated and the rest of the joints are passive
(A1 = 1, Ai = 0 for i > 1), where the stiffnesses of all joints are equal (ki = 1). (a) Joint angles φi, i = 1, 2, . . . , 5, versus time t for ω = 1;
(b) displacement per cycle |d|; and (b) mean speed |V̄ | versus ω.

seen, that similarly to cases 1, 2, and 7 (see Figs. 2, 3 and
13), after an initial transient the solution converges to symmet-
ric oscillations about zero mean angles, φ̄i = 0, i = 1, . . . , 5.
Moreover, note that the oscillation amplitudes of the joints are
decreasing from head to tail. Furthermore, in this case there
exist two different optimal frequencies for which maximal
displacement or maximal mean speed are obtained. This result
is similar to Purcell’s swimmer with one actuated joint (see
Fig. 6, case 2, of the three-link swimmer).

Finally, similarly to Purcell’s swimmer we are interested
in the existence of asymmetric solutions and bifurcations. For
this reason, we consider an additional case, where in analogy
to Purcell’s swimmer we assume that the stiffness of the
actuated joint is much smaller than those of the passive joints
(but it does not vanish). Specifically, the input parameters in
case 9 are as follows:

τi = Ai sin (ωt ) − kiφi,

A1 = 1, A2 = A3 = A4 = A5 = 0, (20)

k1 = 0.01, k2 = k3 = k4 = k5 = 1,

where we consider two frequencies ω = 0.5 and ω = 1, with
the initial conditions φ1(0) = 1 [rad], φi(0) = 0, i = 2, . . . , 5.

In Fig. 16 we show the joint angles φi(t ), i = 1, . . . , 5
versus time and θ (t ) versus time for ω = 0.5. Again, it can
be seen, that similarly to cases 1, 2, 7 and 8 (see Figs. 2,
3, 13, and 15), after an initial transient the solution con-
verges to symmetric oscillations about zero mean angles,
φ̄i = 0, i = 1, . . . , 5, the head angle θ (t ) oscillates about a
constant value θ̄ indicating straight-forward net motion of the
swimmer, and again as in case 8 the amplitudes of the joint an-
gles decrease as we move from the head to the tail. However,
if we increase the frequency to ω = 1 [with keeping the rest
of parameters as in Eq. (20)], then we obtain a convergence to
asymmetric periodic solution as can be seen in Fig. 17, where

we show the joint angles φi(t ), i = 1, . . . , 5 versus time and
the head angle θ (t ) versus time for ω = 1. In particular, in
Fig. 17 it can be observed that after an initial transient the joint
angles φi(t ), i = 1, 2, 3 oscillate about nonzero mean values
φ̄i �= 0. Moreover, when ω = 1 the angle θ (t ) does not oscil-
late about a constant value θ̄ , but rather its mean per period
is a decreasing function of time, indicating net motion of the
swimmer along a curved arc (similarly to case 4 of Purcell’s
swimmer). Thus, Figs. 16 and 17 clearly indicate that in case
9 there exists a bifurcation in ω where for smaller values of
ω the symmetric periodic solution is stable, and for larger
values of ω the symmetric periodic solution becomes unstable
and stable asymmetric periodic solutions emerge. This result
was expected based on our results for Purcell’s swimmer, and
it emphasizes the fact that although a six-link swimmer is a
much more complicated creature with much richer variety of
dynamics, still our results for the simple three-link Purcell’s
swimmer provide us the intuition regarding some basic trends
of expected behavior and bifurcations.

VI. CONCLUSIONS

In this study we first analyzed the dynamics of a mi-
croswimmer model with three rigid links (Purcell’s swimmer),
which is actuated by a periodic torque input in one or two
joints, in parallel with torsional elasticity. Such mechanical
inputs can also be interpreted as using proportional feedback
in order to track periodic reference trajectories for the joint
angles. We have used numerical integration of the swimmer’s
dynamics and numerical calculation of Poincaré maps in or-
der to find steady-state periodic solutions and analyze their
stability.

Under sinusoidal torque inputs, the swimmer’s motion has
crucial dependence on input’s frequency, including frequen-
cies at which the swimmer reverses its direction of motion as
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FIG. 16. Simulations of six-link swimmer in case 9, as given in (20)—only one joint is actuated and the rest of the joints are passive
(A1 = 1, Ai = 0 for i > 1), where k1 = 0.01 is much smaller than the rest of the stiffnesses (ki = 1 for i > 1) for ω = 0.5. (a) Joint angles φi,
i = 1, 2, . . . , 5, versus time t , where in the inset we show zoom-in of the same plot (for joint angles φi, i = 2, . . . , 5). (b) The head angle θ

versus t . The steady-state periodic solution is symmetric about φ̄i = 0 and θ = const, leading to straight-line swimming.

well as optimal frequencies for maximizing the mean swim-
ming speed or net displacement per cycle, under symmetric
oscillations about the straightened configuration. In addition,
for cases where only one joint is active and its stiffness
is much smaller than that of other passive joint, the sys-
tem displays multiple periodic solutions, as well as stability
transitions, bifurcations, and symmetry-breaking of periodic
solutions on varying the actuation frequency and relative stiff-
ness at the joints. We also found cases where the swimmer’s
path curvature under asymmetric periodic solution reverses
its sign on varying the actuation frequency, which enables
steering of the swimmer by modulating only the actuation
frequency of a symmetric input. This phenomena, combined
with the pitchfork bifurcation of symmetry breaking, may
provide some possible simplified explanation to the way that
flagellated bacteria can manipulate their periodic actuation in
order to change their swimming direction and steering by ex-
ploiting buckling instability and symmetry breaking [31,32].
This may also have relations to vibrational stabilization of
flapping winged insects and microrobotic fliers [43], and

stability transitions in magnetically actuated microswimmers
[35,44], which are both based on parametric excitation.

Next, we extended our analysis to a six-link swimmer.
For several sets of input parameters that were simulated we
obtained a similar behavior to Purcell’s swimmer. The simi-
larity between the six-link swimmer and Purcell’s swimmer
includes reversing the direction of motion and existence of
stable asymmetric solutions when the stiffness of the actuated
joint is much smaller than those of the passive one, thus in
particular indicating the existence of symmetry-braking bifur-
cation due to dynamic buckling instability.

Some challenges still remain open for future extensions of
this research. First, experimental realization of the theoretical
findings in a robotic swimmer with mechanical actuation and
elasticity at the joints is an open challenging problem. Sec-
ond, the numerical analysis calls for further exploration by
applying asymptotic methods, aiming to obtain closed form
approximate expressions that reflect the parametric influence
on stability transitions and bifurcations, similar to the ap-
proach taken in Refs. [35,43–45]. In summary, it seems that

FIG. 17. Simulations of six-link swimmer in case 9, as given in (20)—only one joint is actuated and the rest of the joints are passive
(A1 = 1, Ai = 0 for i > 1), where k1 = 0.01 is much smaller than the rest of the stiffnesses (ki = 1 for i > 1) for ω = 1. (a) Joint angles φi,
i = 1, 2, . . . , 5, versus time t . The dashed red line represents mean value φ̄1 and in the inset we show zoom-in of the same plot (for joint
angles φi, i = 2, . . . , 5), where the dashed green and maroon lines represent mean values φ̄2 and φ̄3, respectively. (b) The head angle θ versus
t , showing oscillations about a constant-rate drift. The steady-state periodic solution is asymmetric about φ̄i = 0, leading to swimming on arc.
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Purcell’s simple model and analysis based on the seminal
work “Life at Low Reynolds Number” from 1977 [13], is still
alive and relevant nowadays and its results may be general-
ized to reflect interesting dynamic phenomena in swimming
microorganisms as well as artificial microrobots.
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