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Coupled unidirectional chaotic microwave graphs
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We experimentally investigate the undirected open microwave network � with internal absorption composed
of two coupled directed halves, unidirectional networks �+ and �−, corresponding to two possible directions of
motion on their edges. The two-port scattering matrix of the network � is measured and the spectral statistics
and the elastic enhancement factor of the network are evaluated. The comparison of the number of experimental
resonances with the theoretical one predicted by the Weyl’s law shows that within the experimental resolution
the resonances are doubly degenerate. This conclusion was also corroborated by the numerical calculations.
Though the network is characterized by the time-reversal symmetry, the missing level spectral statistics and
the elastic enhancement factor are rather close to the Gaussian unitary ensemble predictions in random matrix
theory. We used numerical calculations for the open nondissipative quantum graph possessing the same structure
as the microwave network � to investigate the doublet structures in the spectrum which otherwise would not be
experimentally resolved. We show that the doublet size distribution is close to the Poisson distribution.
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I. INTRODUCTION

From a mathematical point of view, a quantum graph
is a one-dimensional complex system with the Laplace op-
erator L(�) = − d2

dx2 defined in the Hilbert space of square
integrable functions [1–5]. The concept of quantum graphs
was introduced by Pauling [6] to model organic molecules.
Later, quantum graphs were applied in modeling and study-
ing a large variety of different systems and theories such as
quantum chaos, dynamical system theory, photonics crystals,
superconductivity theory, microelectronics, etc. [7–10].

A quantum graph consists of one-dimensional edges ei

which are connected at the vertices vi. The propagation of
a wave along an edge of the graph is described by the one-
dimensional Schrödinger equation. The boundary conditions
are implemented on the wave functions entering and leaving
the vertices. Commonly, the Neumann (N) and Dirichlet (D)
vertex boundary conditions are applied. The Neumann bound-
ary condition imposes the continuity of waves propagating in
the edges meeting at the vertex vi and vanishing of the sum of
outgoing derivatives at vi. The Dirichlet boundary condition
demands vanishing of the waves at the vertex. According to
Bohigas-Giannoni-Schmit conjecture [2,11–16], the spectral
properties of quantum systems underlying classically chaotic
dynamics can be modeled by appropriate Gaussian ensem-
bles of the random matrix theory (RMT). In this approach,
three main symmetry classes are distinguished: the Gaussian
orthogonal ensemble (GOE) and the Gaussian symplectic en-
semble (GSE) with time-reversal invariance (T invariance),
characterized, respectively, by the symmetry indices β = 1
and β = 4, and the Gaussian unitary ensemble (GUE) with
broken time-reversal invariance, β = 2. The Gaussian unitary
ensemble characterizes chaotic systems with any spin, while
the Gaussian orthogonal and symplectic ensembles describe
quantum and wave-dynamical chaos in systems with integer
and half-integer spins, respectively.

The experimental studies of complex quantum systems are,
in general, very complicated and challenging. This problem,
for a wide class of such systems, has been effectively re-
solved with the help of microwave networks. The one-to-one
equivalence of the stationary Schrödinger equation describ-
ing quantum graphs and the telegraph equation describing
microwave networks allows us to simulate quantum graphs
through the use of microwave networks [15,17].

A unique versatility of microwave networks as wave sim-
ulators stems from their being the only systems which allow
for simulation of quantum graphs whose properties are de-
scribed by all three symmetry classes GOE [15,16,18–24],
GUE [15,17,25–28], and GSE [29–31] in the framework of
RMT. The GSE systems can only be experimentally investi-
gated using microwave networks.

The other complex quantum systems can be simulated by
microwave flat billiards [32–50] and atoms excited in strong
microwave fields [51–61].

Quantum graphs with GUE properties can be simulated
experimentally by microwave networks with microwave cir-
culators [17,28]. Recently, Akila and Gutkin [62] theoretically
and numerically considered an undirected quantum graph �

composed of two unidirectional ones �+ and �− in which
the nearest-neighbor spacing distribution of the eigenvalues
shows close to GUE statistics. An experimental realization
of a single unidirectional graph has been recently presented
in Ref. [63]. The direction of the wave propagating through
the unidirectional network was controlled by applying mi-
crowave hybrid couplers and isolators [63]. Though the paper
mainly focused on the spectral statistics of the unidirectional
network some other characteristics of the network such as,
e.g., correlation functions and the distribution of the reflection
amplitude were also analyzed.

In this paper, we present the results of an experimental
study of the coupled unidirectional systems �+ and �− cor-
responding to the networks with two opposite directions of
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wave motion on their edges which together form the undi-
rected microwave network �. The network � is open and
characterized by internal absorption. The two-port scattering
matrices of different realizations of the network are measured
to evaluate the spectral statistics, the reflection coefficient, the
imaginary part of the Wigner reaction matrix, and the elastic
enhancement factor of the network.

The comparison of the number of experimentally observed
resonances with the theoretical one predicted by Weyl’s law
shows that approximately only half of the resonances have
been experimentally identified. Because the graphs �+ and
�−, for symmetry reasons, are closely doubly degenerate,
the resonances within the spectral resolution of the measure-
ments should be doubly degenerate. This conclusion was also
corroborated by the numerical calculations, which will be
discussed in detail in Sec. III C of the paper.

Though the networks are characterized by the time-
reversal symmetry, their missing level spectral statistics and
the enhancement factor obey the Gaussian unitary ensemble
predictions closer than the GOE ones. We performed the
numerical calculations for open quantum graphs simulating
microwave networks with no internal absorption to investigate
the doublets which were not experimentally resolved. We
show that the doublet size distribution is close to the Poisson
distribution.

One should point out that the previous experimental
studies, in which microwave simulators were applied, were
devoted to chaotic networks with the level spacing statistics
belonging either to GOE, GUE, or GSE statistics. In this
paper, the networks and graphs characterized by the structure
of nearly degenerate doublets are experimentally and numeri-
cally studied.

II. UNIDIRECTIONAL QUANTUM GRAPHS

In Ref. [62], the undirected quantum graph � composed of
two unidirectional graphs �+ and �− has been theoretically
and numerically considered. In this realization of the unidirec-
tional graphs, the following structure of the vertex scattering
matrices σ̂i has been proposed:

σ̂i =
[

0̂ Ûi

Û †
i 0̂

]
with ÛiÛ

†
i = Û †

i Ûi = 1, (1)

where 0̂ is the zero matrix with all the entries equal to zero and
Ûi is a square unitary matrix. Due to the off-diagonal structure
of σ̂i the transition from the graph �+ to �− and vice versa
is impossible and dynamics on �+ and �− are completely
decoupled. The splitting of � into �+ and �− is only possible
if the vertices have even degrees, e.g., in Ref. [62] the vertices
σ̂i with the valency vi = 4 have been considered.

The theoretical investigations of unidirectional quantum
graphs [62] dealt only with close nondissipative systems.
However, the real experimental systems are open and charac-
terized by internal absorption. In this paper, we use microwave
networks simulating quantum graphs to investigate properties
of coupled unidirectional graphs �+ and �−. The internal
coupling of the unidirectional graphs was enforced by the
T junctions, vertices with the valency vT = 3, which were
introduced to couple the microwave analyzer via the external

FIG. 1. The scheme of an undirected microwave network �

simulating an undirected quantum graph possessing two coupled
unidirectional graphs �+ (red arrows) and �− (blue arrows). The
network contains two T junctions (vertices 6 and 7), five microwave
hybrid couples (vertices No. 1–5) and two phase shifters: PS1 and
PS2. The network � was connected at T junctions via HP 85133-616
and HP 85133-617 flexible microwave cables (leads L∞

1 and L∞
2 ) to

the ports of the vector network analyzer Agilent E8364B to measure
the two-port scattering matrix Ŝ(ν ) of the network.

leads with the investigated network. Details of the experimen-
tal setup will be given in the next section.

III. COUPLED UNIDIRECTIONAL
MICROWAVE NETWORKS

The properties of the coupled unidirectional quantum
graphs were investigated experimentally using microwave
networks [15]. The scheme of an undirected microwave net-
work simulating an undirected quantum graph � composed
of two coupled unidirectional graphs �+ and �− is shown in
Fig. 1.

The network is constructed of SMA microwave cables and
microwave joints that act as edges and vertices of the simu-
lated quantum graph. A microwave cable consists of outer and
inner conductors of radius r1 = 0.15 cm and r2 = 0.05 cm,
respectively. The separation between two conductors is filled
with Teflon having the dielectric constant ε = 2.06. Five
microwave hybrid couplers (RF-Lambda RFHB02G08GPI),
vertices σ̂i with vi = 4, are used to obtain the undirected
network � with the coupled unidirectional networks �+ and
�−, denoted in Fig. 1 by red and blue arrows, respectively.

The T junctions play a double role. They couple the
network to the measuring system via HP 85133-616 and
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HP 85133-617 flexible microwave cables (leads L∞
1 and L∞

2 )
and, additionally, because they are undirected, the unidirec-
tional networks �+ and �− with each other.

The properties of the T junction with Neumann boundary
conditions are described by its scattering matrix:

σ̂T = 1

3

⎡
⎣−1 2 2

2 −1 2
2 2 −1

⎤
⎦. (2)

The coupling between the unidirectional networks �+ and
�− is possible because of backscattering, represented by the
diagonal elements in the σ̂T scattering matrix.

In the case of unidirectional vertices σ̂i (couplers RF-
Lambda RFHB02G08GPI), their scattering matrices in the
operating frequency range ν ∈ [2, 8] GHz are the following:

σ̂i = 1√
2

⎡
⎢⎢⎣

0 0 1 1
0 0 −1 1
1 −1 0 0
1 1 0 0

⎤
⎥⎥⎦. (3)

The diagonal elements of σ̂i matrices are zeros preventing
from backscattering and therefore also from coupling of the
unidirectional networks �+ and �−. The scattering matrix σ̂i

has a form of the scattering matrix presented in Definition (1)
with the unitary matrix Ûi defined as follows:

Ûi = 1√
2

[
1 1

−1 1

]
. (4)

To keep a one-to-one quantum-microwave vertex analogy
the microwave vertex scattering matrices σ̂v (ν) and σ̂v (ν0) at
frequencies ν and ν0 for Neumann boundary conditions [64]
should be related by the equation [4,28,65–67]

σ̂v (ν) = (ν + ν0)σ̂v (ν0) + (ν − ν0)Î

(ν + ν0)Î + (ν − ν0)σ̂v (ν0)
. (5)

Here, the matrix Î denotes the identity matrix of the dimension
of the vertex scattering matrices σ̂v (ν) and σ̂v (ν0).

It can be easily checked that for the components of the
microwave network presented in Fig. 1, namely, microwave
T junctions and couplers, the scattering matrices σ̂T and σ̂i

are unitary and Hermitian, fulfilling Eq. (5).
The lengths of edges of the quantum graph are equivalent

to the optical lengths of the edges of the microwave network,
i.e., lopt = √

εlph, where lph is the physical length of a network
edge. The total optical length Ltot of the network is 7.955 ±
0.012 m. The optical lengths of the edges of the network are
the following: l1 = 0.649 ± 0.001 m, l2 = 0.788 ± 0.001 m,
l3 = 1.142 ± 0.001 m, l4 = 0.382 ± 0.001 m, l5 = 0.513 ±
0.001 m, l6 = 0.435 ± 0.001 m, l7 = 0.787 ± 0.001 m,
l8 = 0.480 ± 0.001 m, l9 = 0.760 ± 0.001 m, l10 = 0.897 ±
0.001 m, l11 = 0.657 ± 0.001 m, l12 = 0.465 ± 0.001 m.

To obtain an ensemble of coupled unidirectional networks
�+ and �−, the lengths of two bonds of the undirected � net-
work were changed by using the phase shifters PS1 and PS2 in
such a way that the total optical length Ltot of the network was
kept constant. Due to the couplers’ frequency characteristics,
the experiment was performed within the frequency range
ν ∈ [2, 8] GHz. In this interval, according to the Weyl’s law in

each spectrum, one should expect ∼318 resonances, however,
due to the doublet structure of very closely degenerate res-
onances induced by the coupled unidirectional networks �+
and �−, in the experiment we observed at most half of them.
In practice, in each of applied 50 network realizations about
4% of resonances (not resolved doublets) were not detected.

In Fig. 2, we show a photograph of the experimental setup.
It consists of the microwave undirected network � connected
via HP 85133-616 and HP 85133-617 flexible microwave
cables to a vector network analyzer (VNA), Agilent E8364B,
to measure the two-port scattering matrix Ŝ(ν) of the network.
The inset shows an example of the modulus of the diagonal
scattering matrix element |S11(ν)| of the network measured
in the frequency range 5.24 − 5.74 GHz. Despite the coupled
unidirectional networks �+ and �−, experimental resonances
(local minima in |S11(ν)|, marked by vertical lines) remain
doubly degenerate within the experimental resolution.

A. Spectral statistics of the undirected microwave network �

The spectral properties of the undirected microwave net-
work � were investigated using the most common measures
of the short- and long-range spectral correlations: the nearest-
neighbor spacing distribution P(s) and the spectral rigidity
�3(L). To perform these analyses, the resonance frequencies
νi of the network were rescaled (unfolded) to eliminate system
specific properties. Since experimental resonances are doubly
degenerate, this can be done using Weyl’s formula for the
network with the total optical length L′

tot = Ltot/2. Then, the
unfolded eigenvalues determined from the resonance frequen-
cies νi are given by εi = Ltotνi/c, where c is the speed of light
in the vacuum.

The nearest-neighbor spacing distribution (NNSD) P(s) de-
scribes the distribution of the spacings between adjacent
eigenvalues si = εi+1 − εi in terms of their mean value 〈s〉,
while the spectral rigidity �3(L) corresponds to the least-
squares deviation of the integrated spectral density of the
unfolded εi from the straight line best fitting it in an interval
of length L [14].

The nearest-neighbor spacing distribution P(s) which takes
into account the incompleteness of a level sequence (missing
levels) is given by [68]

P(s) =
∞∑

n=0

(1 − φ)n p

(
n,

s

φ

)
. (6)

For complete sequences, φ = 1, P(s) = p(0, s), which for
GUE systems is well approximated by the Wigner surmise:

P(s) = 32

π2
s2 exp

(
− 4

π
s2

)
. (7)

For the fraction of observed levels φ < 1 the following
expression was used P(s) 	 p( s

φ
) + (1 − φ)p(1, s

φ
) + (1 −

φ)2 p(2, s
φ

), where [69]

p

(
n,

s

φ

)
= γ

(
s

φ

)μ

exp

(
−κ

(
s

φ

)2)
, (8)
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FIG. 2. A photograph of the experimental setup. It consists of the microwave undirected network � connected via HP 85133-616 and HP
85133-617 flexible microwave cables to a vector network analyzer (VNA), Agilent E8364B, to measure the two-port scattering matrix Ŝ(ν )
of the network. The inset shows an example of the modulus of the diagonal scattering matrix element |S11(ν )| of the network measured in the
frequency range 5.24 − 5.74 GHz. Due to the coupled unidirectional networks �+ and �−, every experimental resonance (marked by vertical
lines) remains doubly degenerate within the experimental resolution.

with μ = 7, 14 for n = 1, 2, respectively, and γ and κ deter-
mined from the normalization conditions:∫

p

(
n,

s

φ

)
ds = φ,

∫
sp

(
n,

s

φ

)
ds = φ2(n + 1). (9)

The spectral rigidity δ3(L) in the case of φ < 1 [68] is given
by

δ3(L) = (1 − φ)
L

15
+ φ2�3

(
L

φ

)
, (10)

where for φ = 1 the spectral rigidity �3(L) is defined by

�3(L) = L

15
− 1

15L4

∫ L

0
(L − x)3(2L2 − 9xL − 3x2)Y2(x)dx.

(11)

For GUE systems, the two-point cluster function Y2(x) =
( sin πx

πx )2 [14].
The results for the discussed spectral measures are pre-

sented in Fig. 3. The NNSD and spectral rigidity �3(L) for
the undirected microwave network � is displayed in panels
(a) and (b), respectively. In Fig. 3(a), the experimental NNSD

obtained using 7488 level spacings is presented by the green
histogram. The experimental results are compared with the
theoretical ones based on random matrix theory (RMT) for
complete series of resonances φ = 1 (GOE: black solid line;
GUE: blue solid line) and the incomplete GUE one, with the
fraction of observed levels φ = 0.96, 4% of missing reso-
nances, (red broken line), respectively. Figure 3(a) shows that
the experimental NNSD is shifted towards larger parameter

s in relation to the GUE distributions. The numerical anal-
ysis of a single unidirectional graph presented in Ref. [63]
showed that the departure of its spectral characteristics from
the GUE predictions was caused by not sufficiently complex
wave dynamics in this graph. Therefore, also in our case the
observed spectral deviation may be attributed to not suffi-
ciently complex wave dynamics in the coupled unidirectional
graphs �+ and �−. In Fig. 3(b), the spectral rigidity �3(L) for
the microwave network � is presented by green circles. The
experimental results are compared with the theoretical ones
based on RMT for a complete series of resonances φ = 1,
GOE—black solid line, GUE—blue solid line, and the incom-
plete series φ = 0.96 for GUE, red broken line, respectively.
The inspection of the results reveals that the experimental
results are close to the GUE missing level statistics with the
fraction φ = 0.96 of observed levels.

B. The elastic enhancement factor of the microwave network �

The measurement of the two-port scattering matix Ŝ of the
undirected network � allows for the evaluation of the elastic
enhancement factor [70,71]

WS =
√

var(S11)var(S22)

var(S12)
, (12)

where, e.g., var(S12) ≡ 〈|S12|2〉 − |〈S12〉|2 stands for the vari-
ance of the matrix element S12. The diagonal elements of
the scattering matrix Ŝ can be parameterized as Sii = √

Rieiθi ,
where Ri and θi are the reflection coefficient and the phase
measured at the ith port of the network.
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FIG. 3. (a) Experimental nearest-neighbor spacing distribution (green histogram) obtained for the undirected microwave networks � (see
Fig. 1). The experimental results are compared with the theoretical ones based on RMT for a complete series of resonances φ = 1 (GOE—black
solid line; GUE—blue solid line) and the incomplete one φ = 0.96, 4% of missing resonances, for GUE (red broken line), respectively. (b) The
spectral rigidity for the microwave network � is presented by green circles. The experimental results are compared with the theoretical ones
based on RMT for complete series of resonances φ = 1, GOE—black solid line, GUE—blue solid line, and the incomplete series φ = 0.96
for GUE, red broken line, respectively.

The elastic enhancement factor WS is parametrized by the
dimensionless parameter γ = 2π�W /�S , characterizing the
absorption strength [70,71], where �W and �S are the width
of resonances and the mean level spacing, respectively. It is
important to point out that system characteristics defined by
the scattering matrix are not sensitive on missing levels. It
was established for GOE (β = 1) and GUE (β = 2) systems
that the elastic enhancement factor for weak absorption γ � 1
approaches the limit of WS = 2/β + 1, while in the case of
strong absorption γ � 1 the limit is WS = 2/β.

Because the properties of the elastic enhancement factor
WS strongly depend on the T symmetry of the system, it can
be used as a sensitive measure of time invariance violation.

In such a situation, the effective parameter γ can be evalu-
ated using the distribution P(R) of the reflection coefficient
R. For systems without T invariance (β = 2), the analytic
expression for the distribution of the reflection coefficient R
is given by [71,72]

P(R) = 2

(1 − R)2
P0

(1 + R

1 − R

)
, (13)

where P0(x) is the probability distribution defined by

P0(x) = 1

2

[
A
(α(x + 1)

2

)β/2
+ B

]
exp

(
−α(x + 1)

2

)
, (14)

where α = γ β/2, A = eα − 1 and B = 1 + α − eα .
The probability distribution P0(x) can also be applied for

calculating the distribution of the imaginary part P(v) of the
diagonal elements of the Wigner’s K̂ matrix [70]:

P(v) =
√

2

πv3/2

∫ ∞

0
dqP0

[
q2 + 1

2

(
v + 1

v

)]
. (15)

The distribution P(v) is known in solid-state physics as the
local density of states [70].

For each realization of the network �, the absorption
strength γ = 1

2

∑2
i=1 γi was experimentally evaluated by

adjusting the theoretical mean reflection coefficient

〈R〉th =
∫ 1

0
dRRP(R) (16)

to the experimental one 〈Ri〉 obtained after eliminating the
direct processes [46,73,74]. Here the index i = 1, 2 denotes
port 1 or 2.

In Fig. 4, we show the experimental distributions P(R)
of the reflection coefficient R for the microwave network
� at three values of the absorption strength γ = 3.6 ± 0.6,

FIG. 4. Experimental distributions P(R) of the reflection coef-
ficient R for the microwave network � at γ = 3.6 ± 0.6 (black
open circles, frequency range ν ∈ [2, 4] GHz), γ = 4.6 ± 0.3 (red
open circles, ν ∈ [4, 6] GHz), and γ = 6.4 ± 0.3 (green open circles,
ν ∈ [6, 8] GHz). The theoretical distributions P(R) calculated from
Eq. (13) are marked by black (γ = 3.6), red (γ = 4.6), and green
(γ = 6.4) solid lines, respectively.
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FIG. 5. The elastic enhancement factor WS (black open circles)
evaluated experimentally for the undirected microwave network �

in the frequency range ν ∈ [2, 8] GHz. In this frequency range, the
averaged absorption strength parameter γ = 4.9 ± 0.4. The expected
theoretical values for GUE systems are marked by red solid line. The
black broken lines show the lowest WS = 1 and the highest WS =
2 theoretical limits of the elastic enhancement factor predicted for
GUE systems.

4.6 ± 0.3, and 6.4 ± 0.3. They are marked by black, red,
and green open circles, respectively. The measurements were
done in the frequency ranges ν ∈ [2, 4], [4, 6], and [6, 8] GHz,
respectively, and were averaged over 500 microwave network
realizations. The values of the absorption strength γ were
assigned to the experimental curves by fitting the theoretical
distributions P(R) calculated from Eq. (13) with the absorp-
tion coefficients γ = 3.6, 4.6, and 6.4, marked by black, red,
and green solid lines, respectively.

Figure 5 shows the elastic enhancement factor WS (black
open circles) evaluated experimentally for the undirected
mirowave network � in the frequency range ν ∈ [2, 8] GHz.
The experimental results were averaged in 1 GHz window
over 300 microwave network realizations. In this frequency
range, the averaged absorption strength parameter γ = 4.9 ±
0.4. The experimental results are compared to the expected
theoretical values of WS for GUE systems which are marked
by red solid line. The experimental elastic enhancement factor
is, on average, slightly higher that the theoretical one pre-
dicted for GUE systems. Also, this discrepancy is probably
caused by not sufficiently complex wave dynamics in the
microwave network �. The black broken lines in Fig. 5 show
the lowest WS = 1 and the highest WS = 2 theoretical limits
of the elastic enhancement factor predicted for GUE systems.

In Fig. 6, we show the experimental distribution P(v) of
the imaginary part of the diagonal elements of the Wigner’s
K̂ matrix for the microwave undirected network � at γ =
4.9 (black open circles), averaged over 500 microwave net-
work realizations, for the frequency range ν ∈ [2, 8] GHz.
The experimental results are compared with the theoretical
distribution P(v) evaluated from Eq. (15) for γ = 4.9 (red

FIG. 6. Experimental distribution P(v) of the imaginary part
of the diagonal elements of the Wigner’s K̂ matrix for the mi-
crowave undirected network � at γ = 4.9 ± 0.5 (black open circles,
frequency range ν ∈ [2, 8] GHz). The theoretical distribution P(v)
evaluated from Eq. (15) for γ = 4.9 is marked by red solid line.

solid line). The agreement between the experimental and the-
oretical results is good.

C. Numerical analysis of doublet properties

To numerically investigate the properties of doublets,
which were not experimentally resolved, the microwave undi-
rected network � was simulated in the calculations by the
open, dissipationless quantum graph �. The secular function
ξ , whose zeros define the spectrum of the graph, was ex-
pressed by using the method of pseudo-orbits [23,75–77]

ξ = det[Î2N − L̂ŜG], (17)

where Î2N is 2N × 2N identity matrix, N is the
number of the internal edges of the graph, and L̂ =
diag[exp(ikl1), ..., exp(iklN ), exp(ikl1), ..., exp(iklN )], l1...lN
are the lengths of the respective edges of the graph. The
ŜG matrix, called the bond-scattering matrix [75], contains
scattering conditions at the graph vertices. The full form of
the ŜG matrix is specified in the Appendix.

The nearest-neighbor spacing distribution P(s) and the
spectral rigidity �3(L) of the graph � consisting of the cou-
pled unidirectional graphs �+ and �− are shown in Figs. 7(a)
and 7(b), respectively. In this case, the unfolded eigenvalues
were determined from the resonance frequencies νi applying
the Weyl’s formula εi = 2Ltotνi/c, where Ltot is the total op-
tical length of the graph. The numerical calculations were
performed in the frequency range ν = [2, 8] GHz and were
averaged over 50 configurations of the graph �.

Because of the doublet structure of the spectra, the nearest-
neighbor spacing distribution P(s), prepared using 15 850
level spacings (green histogram), displays a large peak at
small values of the parameter s and is significantly different
from the Poisson (red dotted-dashed line), GOE (black dotted
line), and GUE (blue dashed line) distributions, respectively.
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FIG. 7. (a) The numerical nearest-neighbor spacing distribution P(s) (green histogram) and (b) the spectral rigidity �3(L) (green open
circles) calculated for the undirected graph �. The results in (a) and (b) are compared with the Poisson (red dotted-dashed line), GOE (black
dotted line), and GUE (blue dashed line) predictions, respectively. The inset in the (a) shows an example of the spectrum of the graph �

(coupled unidirectional graphs �+ and �−) calculated in the frequency range 3.0 − 3.3 GHz. The size of the doublets are specified in MHz.

The inset in Fig. 7(a) shows an example of the spectrum
of the undirected graph � (coupled unidirectional graphs �+
and �−) calculated in the frequency range 3.0 − 3.3 GHz.
Because the size of the doublets are very small, between
0.3 − 3.9 MHz, they are not resolved within the experimental
resolution (15 MHz) and are not observed experimentally.

The spectral rigidity �3(L) of the graph � (green circles)
presented in Fig. 7(b) due to the presence of doublets increases
faster for small L than the Poisson one (red dotted-dashed line)
and only for L > 8 slowly saturates at the value �3(L) ≈ 0.5
which is significantly higher than the GUE (blue dashed line)
and GOE (black dotted line) predictions for the presented
range of L � 20.

In Figs. 8(a) and 8(b), we show the nearest-neighbor spac-
ing distribution P(s) and the spectral rigidity �3(L) of the
graph � obtained under the assumption that the doublets are
not resolved and are treated as singlet states. In this case,

similarly to the experimental situation, we assumed that the
unfolded resonances were determined from Weyl’s formula
εi = Ltotνi/c.

In Fig. 8(a), the numerical distribution P(s) obtained for
graph � (green histogram) is compared with the distribution
P(s) evaluated for the simplified, closed graph �′, composed
of ten edges and five couplers (red histogram). Both distribu-
tions were made using 7900 level spacings. The graph �′ was
obtained from the graph �, presented in Fig. 1, by removing
two T junctions. The quantum graph �′ is characterized by
the spectrum of exactly doubly degenerate states. The two
above-mentioned distributions P(s) are compared with the
Poisson (red dotted-dashed line), GOE (black dotted line),
and GUE (blue dashed line) distributions, respectively. Both
numerical distributions P(s) are close to the GUE distribution,
however, they are slightly shifted towards larger values of
the level spacing s. Moreover, the distribution P(s) of the

FIG. 8. (a) The numerical nearest-neighbor spacing distribution P(s) evaluated from the spectra of the graph � (see Fig. 1) under the
assumption that the doublets are not resolved and are treated as singlet states (green histogram). The distribution P(s) evaluated for the
simplified closed graph �′ which was composed of ten edges and five couplers (red histogram). The graph �′ is characterized by the spectrum
of exactly doubly degenerate states. (b) The spectral rigidity �3(L) evaluated from the spectra of the graph � (green circles) is compared with
the one evaluated for the graph �′ (red circles). The results presented in panels (a) and (b) are compared with the Poisson (red dotted-dashed
line), GOE (black dotted line), and GUE (blue dashed line) predictions, respectively.
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FIG. 9. The doublet size distribution P(�) of the graph � (blue
histogram) consisting of the coupled unidirectional graphs �+ and
�−. The distribution P(�) is compared to the Poisson distribution
PPoisson = exp(−�) (red solid line).

simplified graph �′ is more localized around the center of the
GUE distribution than the one for the graph �, suggesting that
backscattering present at T junctions of the graph � causes
some additional deviations from the GUE distribution.

The spectral rigidity �3(L) presented in Fig. 8(b) shows
a significant deviation from the GUE prediction. Our re-
sults corroborate the observation reported in Ref. [63] that
the unidirectional graphs may not generate a wave dynam-
ics of sufficient complexity to accurately reproduce RMT
predictions.

In Fig. 9, we show the doublet size distribution P(�)
(blue histogram) of the graph � consisting of the coupled
unidirectional graphs �+ and �− (see Fig. 1). The doublet
size was normalized to the mean value 〈�〉 = 1. In the cal-
culation of the distribution P(�), 7900 doublets were used.
The distribution P(�) is compared to the Poisson distribution
PPoisson = exp(−�) (red solid line). Figure 9 demonstrates
that the distribution P(�) is close to the Poisson one.

IV. SUMMARY AND CONCLUSIONS

We experimentally investigated an undirected open mi-
crowave network � with internal absorption composed of two
coupled unidirectional networks �+ and �− corresponding
to two possible directions of motion on their edges. The
two-port scattering matrices of the network were measured.
The comparison of the number of experimental resonances
with the theoretical one predicted by Weyl’s law showed
that the resonances are doubly degenerate. Though the net-
works are characterized by the time-reversal symmetry, their
missing level nearest-neighbor spacing distribution P(s) and
the spectral rigidity �3(L) (φ = 0.96) do not obey the GOE
predictions. The missing level NNSD P(s) resembles shifted
towards larger values of mean-level spacing s GUE distri-
bution while the missing level spectral rigidity �3(L) is in
good agreement with the missing level prediction for GUE.

Furthermore, the distributions of the reflection coefficient and
the imaginary part of the Wigner’s reaction matrix as well as
the enhancement factor of the networks were evaluated. The
aforementioned characteristics of chaotic systems are defined
by the scattering matrix of the network. Therefore, they are
not sensitive on missing levels. The obtained results are close
to the GUE prediction, though the experimental enhancement
factor appears to be slightly above it. We used the numerical
calculations for open quantum graphs simulating microwave
networks with no internal absorption to investigate their spec-
tral statistics and doublets which were not experimentally
resolved. The numerically obtained spectral characteristics
show significant deviations from the GUE predictions. We
show that the doublet size distribution is close to the Poisson
distribution. Reported in this paper, discrepancies between the
experimental results and the GUE ones as well as between
the numerical results simulating the experimental ones and
the GUE predictions may be associated with the presence of
backscattering and not sufficiently complex wave dynamics
on the coupled unidirectional networks and graphs �+ and �−.
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APPENDIX: NUMERICAL CALCULATIONS

The resonance conditions for the unidirectional graphs can
be expressed using the method of pseudo-orbits [23,75–77],
by solving the equation

det[Î2N − L̂ŜG] = 0, (A1)

where Î2N is 2Nx2N identity matrix, N is the number of
the internal edges of the graph (N = 12), and L̂ = diag
[exp(ikl1), ..., exp(ikl12), exp(ikl1), ..., exp(ikl12)], l1...l12 are
the lengths of the respective arms, according to Fig. 1 in the
main text. The ŜG matrix, called the bond-scattering matrix
[75], contains scattering conditions at the network vertices
(see Fig. 1), i.e., five vertices with the valency vT = 4 and
the Neumann boundary conditions, ensuring that the graph �

contains two unidirectional graphs �+ and �−,

σ̂i = 1√
2

⎡
⎢⎢⎣

0 0 1 1
0 0 −1 1
1 −1 0 0
1 1 0 0

⎤
⎥⎥⎦, (A2)

and two T-junction vertices with the valency vT = 3 and with
the Neumann boundary conditions:

σ̂T = 1

3

⎡
⎣−1 2 2

2 −1 2
2 2 −1

⎤
⎦. (A3)

The backscattering introduced by the T junctions (presence
of the diagonal elements in σ̂T ) causes that the resonances of
the graphs �+ and �− are not doubly degenerate.

014206-8



COUPLED UNIDIRECTIONAL CHAOTIC MICROWAVE … PHYSICAL REVIEW E 110, 014206 (2024)

The matrix ŜG has a form

ŜG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 2
3 0 −1

3 0 0 0 0 0 0 0 0 0 0 0
1√
2

0 0 0 0 0 0 1√
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1√
2

0 0 0 0 0 0 1√
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 2
3 0 0 0 −1

3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1√

2
0 0 1√

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1√
2

1√
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1√
2

0 0 0 0 0 0 −1√
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1√
2

1√
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1√
2

1√
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1√
2

0 0 0 0 0 0 1√
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1√
2

−1√
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1√
2

0 0 1√
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1√
2

0 0 0 0 1√
2

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√
2

0 0 0 0 0 0 −1√
2

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1√
2

0 1√
2

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√
2

0 1√
2

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√
2

0 1√
2

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√
2

0 −1√
2

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√
2

0 0 0 0 0 0 1√
2

0 0 0 0 0 0 0 0 0 0 0 0 0 1√
2

0 0 0 0 −1√
2

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√
2

0 0 0 0 0 0 1√
2

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1√
2

0 0 0 0 0 0 1√
2

0 0 0 0 0 0 0 0 0 0 −1
3 0 2

3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1

3 0 0 0 2
3 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Phys. Rev. Lett. 74, 2666 (1995).
[70] Y. V. Fyodorov and D. V. Savin, JETP Lett. 80, 725 (2004).
[71] D. V. Savin, H. J. Sommers, and Y. V. Fyodorov, JETP Lett. 82,

544 (2005).
[72] C. W. Beenakker and P. W. Brouwer, Physica E 9, 463 (2001).
[73] Y. V. Fyodorov, D. V. Savin, and H.-J. Sommers, J. Phys. A:

Math. Gen. 38, 10731 (2005).
[74] U. Kuhl, M. Martínez-Mares, R. A. Méndez-Sánchez, and H.

-J. Stöckmann, Phys. Rev. Lett. 94, 144101 (2005).
[75] R. Band, J. M. Harrison, and C. H. Joyner, J. Phys. A: Math.

Theor. 45, 325204 (2012).
[76] J. Lipovský, Acta Phys. Pol. A 128, 968 (2015).
[77] J. Lipovský, J. Phys. Math. 49, 375202 (2016).

014206-10

https://doi.org/10.1103/PhysRevE.101.052320
https://doi.org/10.1088/0031-8949/2011/T143/014014
https://doi.org/10.1038/s41598-019-42123-y
https://doi.org/10.1103/PhysRevLett.117.144101
https://doi.org/10.1103/PhysRevE.102.052214
https://doi.org/10.1103/PhysRevLett.117.064101
https://doi.org/10.1103/PhysRevE.102.022309
https://doi.org/10.1103/PhysRevE.107.024203
https://doi.org/10.1103/PhysRevE.81.036205
https://doi.org/10.12693/APhysPolA.124.1045
https://doi.org/10.1103/PhysRevE.73.046208
https://doi.org/10.1103/PhysRevLett.64.2215
https://doi.org/10.1103/PhysRevLett.72.2175
https://doi.org/10.1103/PhysRevLett.78.2940
https://doi.org/10.1103/PhysRevE.57.304
https://doi.org/10.1103/PhysRevE.61.366
https://doi.org/10.1023/A:1017590503566
https://doi.org/10.1238/Physica.Regular.064a00192
https://doi.org/10.1103/PhysRevE.63.046208
https://doi.org/10.1103/PhysRevE.68.026208
https://doi.org/10.1103/PhysRevE.70.056209
https://doi.org/10.1103/PhysRevLett.94.014102
https://doi.org/10.1088/0305-4470/38/49/003
https://doi.org/10.1103/PhysRevE.72.066212
https://doi.org/10.1063/1.4915527
https://doi.org/10.1103/PhysRevLett.123.174101
https://doi.org/10.1103/PhysRevE.100.012210
https://doi.org/10.1016/0370-1573(91)90113-Z
https://doi.org/10.1103/PhysRevA.44.4521
https://doi.org/10.1103/PhysRevA.46.5836
https://doi.org/10.1103/PhysRevLett.71.3633
https://doi.org/10.1103/PhysRevLett.71.2895
https://doi.org/10.1016/0167-2789(94)00249-P
https://doi.org/10.1209/epl/i1996-00318-5
https://doi.org/10.1088/0022-3700/18/3/004
https://doi.org/10.1103/PhysRevLett.87.043002
https://doi.org/10.1103/PhysRevA.94.053416
https://doi.org/10.1088/1751-8113/48/34/345101
https://doi.org/10.1103/PhysRevE.106.014211
https://doi.org/10.1016/0034-4877(89)90023-2
https://doi.org/10.1088/0305-4470/32/4/006
https://doi.org/10.7494/OpMath.2010.30.3.295
https://doi.org/10.1016/j.physleta.2017.11.028
https://doi.org/10.1016/j.physletb.2004.05.065
https://doi.org/10.1103/PhysRevLett.74.2666
https://doi.org/10.1134/1.1868794
https://doi.org/10.1134/1.2150877
https://doi.org/10.1016/S1386-9477(00)00245-9
https://doi.org/10.1088/0305-4470/38/49/017
https://doi.org/10.1103/PhysRevLett.94.144101
https://doi.org/10.1088/1751-8113/45/32/325204
https://doi.org/10.12693/APhysPolA.128.968
https://doi.org/10.1088/1751-8113/49/37/375202

