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Basin stability for updating system uncertainties
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In this paper, we propose an application of the basin stability tool which allows us to update the information on
the system properties under parameter uncertainties. The concept is presented using a classical mechanical setup
of coupled pendula, exchanging the energy via the supporting structure. Depending on the support parameters,
the model can exhibit different types of coexisting synchronous patterns as well as remaining desynchronized.
We calculate basin stability maps of particular behaviors and combine them with prior parameter distributions
using Bayesian inference. The obtained posterior distributions, based on the attractor occurrence, update our
knowledge on the system properties in the terms of probabilities. We also underline the problem of evaluating
basin stability close to the existence borders, comparing the classical approach of fixed parameters with the
one involving variations. The differences between the estimation methods can have a crucial meaning for the
discussed application and should be considered carefully. The results presented in this paper uncover ways of
applying the basin stability concept, which can be used to study the properties of complex dynamical systems
from a probability perspective.
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I. INTRODUCTION

The concept of basin stability introduced by Menck
et al. [1] contributes to modern ways of investigating com-
plex dynamical systems. In its various applications, the tool
allows us to compare the probabilities of the occurrence be-
tween different attractors of multistable models, predict (and
possibly limit) rare solutions, or evaluate states robustness
to perturbations.

Among the variety of systems where basin stability has
been studied, one can indicate climate [2] and epidemic [3]
models, food chains [4], coupled oscillators [5–7], or delayed
dynamics [8], just to mention a few.

In Ref. [9], the authors discussed the concept from a
stochastic perspective, focusing on the vegetation-water sys-
tem subjected to Gaussian noise. The application of the basin
stability for studying transient phenomena can be found in
Ref. [10], where van Kan et al. applied it in the paradigmatic
Lorenz system to investigate the boundary crisis bifurcation.
The tool allows us to identify and quantify chimera states [11],
making it a good precursor for studying complex behaviours
in nonlinear systems.

A large portion of research in this topic refers to power
grids [12], where the stability of generator-consumer rela-
tion is crucial for the network to work properly (see, e.g.,
Ref. [13]). The results published so far include transient
problems [14,15], where the authors estimated the regions
of attraction through time-domain simulations. The phe-
nomenon of tripping time effects in heterogeneous networks
has been discussed in Ref. [16], while in Refs. [17,18] the
research is focused on limited-size models. The analysis of
correlations between basin stability and other grid measur-
able quantities can be found in Ref. [19], where Feld and
Hartmann exhibited that the tool can be effectively used to
analyze perturbations occurring within the system. The basin

stability concept evolved in time and allowed introducing vari-
ous related derivatives, e.g., finite–time [20] or multiple–node
[21] basin stabilities. In Ref. [22], Ji et al. investigated the
stochastic variation, applying it to study the dynamics under
the influence of random noise. The evolution of the tool un-
derlines that the measures based on the original basin stability
idea can be adopted to study the behaviors of complex systems
from a probability perspective.

The experimental confirmation of the concept has been
presented in Refs. [23,24], involving classical mechanical rigs
of coupled oscillators. The results show that the probability
approach can become a potential alternative to the bifurcation
analysis, leading to similar results. Also, the growing devel-
opment of machine-learning methods contributes to the field,
leading to faster and more efficient estimations using vector
machines [25,26] or neural networks [27]. The application of
modern classification methods can drastically reduce the time
required for the basin stability estimation, which can become
crucial for high-dimensional models with many coexisting
attractors where the computational cost of classical sampling
is significant. The application of the concept also has other
limits and constraints, e.g., when the geometry of the basins
become fractal or riddled; see Ref. [28] by Schultz et al.
for details.

As described above, the basin stability concept has been
applied and developed in various types of nonlinear problems,
showing that the occurrence of the attractors within a given
system can be discussed from a probability perspective. By
applying the tool in complex models, we can estimate random
appearances of crucial solutions and possibly control (or in-
duce) them. The problem is closely related to the parameters
of the considered system, since the coefficients determine the
regions where the attractors reside. However, the knowledge
on the parameters is not always fully known (especially in
real-life complex systems) and some prior assumptions on
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their distribution have to be stated. In such a scenario, we can
utilize the basin stability maps for updating our assumptions,
obtaining the posterior parameter distribution which involves
the probabilistic measures of possible solutions. Such an up-
date can be further used to determine the conditions that have
led to the occurrence of particular behaviors and predict it in
the future with higher accuracy. In this manner, the procedure
discussed in this paper uncovers another application of the
basin stability tool, exhibiting that it can be used to update
the information on system parameters and consequently
decrease the uncertainty level of the considered model.

II. THE PROCEDURE AND THE RESULTS

Let us consider a general system of ordinary differential
equations (ODEs) determined by vector field f ,

ẏ = f (y, γ ∗, t ), (1)

where y ∈ Y and γ ∗ ∈ �. Sets Y and � correspond to the
phase space and the parameters space, respectively, while
t � 0 denotes the dynamical time (the y variable evolves in
time, while the parameters vector γ ∗ is fixed). For clarity,
in this paper we focus on simple ordinary differential equa-
tions models for which the original basin stability tool has
been introduced [1]. However, since basin stability methods
and concepts have been successively developed in various
types of dynamical problems of different structures (e.g., the
ones including delays [8] or random noise [22]), the procedure
proposed in this paper could be translated into other models
governed by more complex equations.

The implementation of Eq. (1) can be realized in various
ways, depending on the nature of the considered dynamical
problem. In this paper, we study the example of classical me-
chanical setup which is shown in the upper part of Fig. 1. The
system is focused on pendula elements and, as we have shown
in previous works (see, e.g., Refs. [29,30]), it realizes typical
states found for coupled oscillators, including synchronization
patterns or chaotic motion. The pendula and their behaviors
are fundamental for the dynamics of various mechanisms and
machines, and their proper understanding contributes to mod-
ern mechanical engineering research. As we discuss in this
paper, the procedure of determining posterior parameter distri-
bution based on the basin stability concept can be effectively
applied for classical pendula schemes, leading to additional
ways of investigating more complex mechanical setups.

The system of three degrees of freedom shown in Fig. 1
includes the movable beam of mass Mx = 6.0 (kg) (dynamical
variable x ∈ R) which holds two identical pendula clocks of
masses m = 1.0 (kg) and lengths l = 0.24849 (m) (variables
ϕ1, ϕ2 ∈ (−π, π ]). The beam is connected with the unmov-
able support using the spring of stiffness kx and the damper
characterized by coefficient cx.

The dimensionless equations of motion of the discussed
model are given as follows:

ẍ + α2
x x + 2hxẋ + μ

2∑

i=1

(
ϕ̈i cos ϕi − ϕ̇2

i sin ϕi
) = 0

ϕ̈i + α2
ϕ sin ϕi + 2hϕϕ̇i + λẍ cos ϕi = M̂i. (2)

FIG. 1. The scheme of the discussed concept. The procedure
begins with the determination of the model of interest (see the upper
part of the figure; in this paper, we focus on the mechanical setup of
three degrees of freedom). Given the system, we can assume the prior
distribution of its parameters and calculate the basin stability maps of
possible attractors; see the middle part of the figure where the results
are presented for two–dimensional parameter vectors. Combining
prior PDF and basin stability in the presence of particular attractor,
we can finally calculate the posterior parameters distribution (as
shown in the lower part of the figure). The arrows indicate the route
within which the information on the system parameters is being
updated.

The equations given in (2) originate from the Lagrange
methodology and involve second-order ordinary differential
equations. By splitting the original variables x and ϕi into
the displacement (x1 = x, ϕi,1 = ϕi) and the velocity (x2 = ẋ,
ϕi,2 = ϕ̇i) components, we can easily transform model (2) into
the system of first-order ODEs:

ẋ1 = x2

ẋ2 = −α2
x x1 − 2hxx2 − μ

2∑

i=1

(
ϕ̇i,2 cos ϕi,1 − ϕ2

i,2 sin ϕi,1
)

ϕ̇i,1 = ϕi,2

ϕ̇i,2 = −α2
ϕ sin ϕi,1 − 2hϕϕi,2 − λẋ2 cos ϕi,1 + M̂i. (3)

In this case, the vector variable y in Eq. (1) equals y =
(x1, x2, ϕ1,1, ϕ1,2, ϕ2,1, ϕ2,2).

For the purpose of the research, we have fixed the following
parameters of system (2): μ = ml/(Mx + 2m) = 0.031061,
α2

ϕ = g/l = 39.47845, hϕ = cϕ/(2ml2) = 0.080975 (where
cϕ = 0.01 [Nms] is the linear damping of the pendula), and
λ = 1/l = 4.02431. The excitation of the system is induced
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by function M̂i = Mi
ext/(ml2), where Mi

ext describes the exter-
nal momentum driving the ith clock and is associated with the
escapement mechanism coefficients MF = 0.075 (nm) (the
moment of force) and ε = 5.0◦ (the escapement deactiva-
tion threshold). The considered mechanism can be classically
found in metronomes and clocks (see, e.g., Refs. [29,31] for
details) and strictly depends on the pendula position ϕi: when
the unit displacement exceeds the escapement deactivation
threshold ε, the mechanism turns off and there is no excitation
applied; otherwise, the unit is excited by constant moment of
force MF .

System (1) can possess various coexisting attractors
(the multistability property) which can appear or disappear
if the parameters are varied. From a technical point of view,
the qualitative changes are more crucial than the quantitative
ones, so in this paper we consider the family of solutions of
a particular type as one representative state (e.g., the in-phase
synchronization of the pendula, which remains stable for var-
ious parameters but involves different amplitudes).

Let A∗ be the attractor of system (1) (for fixed γ ∗). Accord-
ing to the original concept proposed in Ref. [28], the basin
stability of A∗ is defined as

SB(A∗ ) := μ(B(A∗)), (4)

where μ is the measure encoding the frequency of system per-
turbations (the basin stability of an attractor is the probability
measure of its basin of attraction). Since the attractor (its rep-
resentative state) can exist for various values of parameters,
a practical realization of the concept leads to basin stability
maps, where we determine the stability of the basins within
full � space.

To underline the variability of system parameters, we pro-
pose to express the basin stability in terms of conditional
probability, namely, let A denote the random variable that de-
termines the system attractor, while G is the random variable
(vector) describing the system parameters (G takes values in
�). We have

SB(A∗ ) = Pμ(A = A∗|G = γ ∗), (5)

where the probability of observing attractor A∗ is conditioned
on parameters vector γ ∗ (we calculate the probability of the
occurrence of A∗ knowing that the parameters are fixed at γ ∗).
Variables A and G are naturally dependent, since the basin
stability of any attractor highly depends on the parameter
values. The μ measure in formula (5) is used to determine
probabilities; in this paperm we consider it as the uniform one
for simplicity.

The distribution of G random variable depends on the type
of dynamical system. If the parameters can be precisely de-
termined, then G denotes a discrete, probability mass point
function. However, in many practical scenarios the shape of G
is not so explicit, e.g., due to limitations in measurements or
the possibility of rare and extreme events [32]. In such cases,
we can assume the prior parameters distribution of G (see the
left middle part in Fig. 1), which is based on the properties
of the considered model (the meaning of its parameters and
their possible values). On the other hand, using the classi-
cal methods of basin stability estimation [1,28], we can also
calculate the maps for possible system attractors, expressing

FIG. 2. The basin stability maps of system (2) in (η,
) pa-
rameter plane. Each subfigure corresponds to different oscillatory
patterns, including three synchronization scenarios, (a)–(c), and the
desynchronization case, (d), also enlarged for higher resolution. The
schemes of motion within the states are shown in the white insets,
where the pendula are marked in red and blue, while the beam is
shown in grey. The brighter the color, the higher the basin stability
of a particular state (the probability of the occurrence is denoted by
parameter p in the color bars)

them in the same � parameter space (see the right middle part
in Fig. 1). It should be noted that the results presented in the
figure are schematic and aimed to introduce the general idea of
the discussed procedure; the detailed example of application
can be found in Figs. 2 and 3.

Both prior parameter distribution and basin stability maps
depend on the type of the considered dynamical problem and
can be derived from the model, which is marked by the upper
arrows in Fig. 1. The scheme shown in the figure represents an
exemplary case of two-dimensional � parameter space and the
basin stability maps of two possible attractors. To distinguish
between the results, we have used different color scales which
indicate the density of distribution (the left middle panel) and
the basin stability maps (the probabilities of solution occur-
rence; the right middle panel).

Combining the prior distribution of G and the maps within
the formulation of basin stability (5), we can update the
knowledge on system properties under uncertainties; namely,
using Bayes’ theorem and the law of total probability, we have

pG(γ ∗|A = A∗) = Pμ(A = A∗|G = γ ∗)pG(γ ∗)

Pμ(A = A∗)

= SB(A∗ ) pG(γ ∗)∫
�

Pμ(A = A∗|G = γ ) pG(γ ) dγ
, (6)

where pG(γ ∗|A = A∗) is the posterior parameter distribution
of G [in the form of probability density function (PDF)],
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FIG. 3. The prior parameter distributions (left panel) and their
posterior counterparts (right panel) after updating the basin stability
maps of chosen attractors (the middle insets). In the upper row
[(a), (b)], we present the transformation of the Gaussian distribution
(parameters μη = 1.0, ση = 0.2, μ
 = 0.5, σ
 = 0.05, ρη
 = 0) in
the case of the in-phase synchronization occurrence (with the beam
in the in-phase to the pendula). The scenario of the exponential
distribution (with parameter λ = 1.5) and the antiphase pattern is
shown in the lower row [(c), (d)]. The brighter the color, the higher
the values of the probability density functions.

conditioned on the observance of particular A∗ attractor. The
shape of the posterior pG(γ ∗|A = A∗) is based on the form
of the prior assumption pG(γ ∗) and the basin stability map
of the chosen state: SB(A∗ ). This relation is shown in the
lower part of Fig. 1, where the left arrow corresponds to
the prior pG assumption, while the right one corresponds
to the basin stability map of the observed attractor (we can
examine how the distribution updates in various scenarios of
attractor occurrence). Combining both the prior probability
distribution and basin stability map, we obtain the posterior
distribution of the system parameters.

If the system is monostable within the � space,
then Pμ(A = A∗|G = γ ∗) = 1 = Pμ(A = A∗) and pG(γ ∗|A =
A∗) = pG(γ ∗), i.e., we get no new information from probabil-
ities. A similar case occurs when the model possesses various
solutions (depending on the parameter values), but there is no
coexistence between them; in such a scenario, the posterior
distribution is reduced to the region of existence of the A∗
state and scaled by the Pμ(A = A∗) probability. However, if
the model exhibits at least bistability between the solutions,
then formula (6) can be used to update system uncertainties.
In the most trivial case, when the prior pG(γ ∗) = const (the
uniform scenario), we can use the basin stability map itself to
collect the posterior distribution, since the presumed proba-
bility of the occurrence of every parameter is the same. When
considering more complex prior scenarios, the basin stability
map combines with the shape of pG(γ ∗), allowing us to gather
insights on the conditions leading to the state. In this sense, the

observance of the attractor updates the uncertainties related to
the distribution of parameters.

The whole procedure shown in Fig. 1 can be traced using
the arrows included. First, we determine the system of interest
(the upper part). Then, based on the model, we can assume
its prior parameter distribution (the left middle panel) and
calculate the basin stability maps of its possible attractors
(the right middle panel). Finally, relation (6) allows us to col-
lect the updated posterior distribution of the parameters (the
lower part), relaying the information from the prior parameter
assumption which is conditioned on the occurrence of the
particular attractor.

To study the tool for the model determined by Eq. (2),
we focus on its suspension properties. The main part of the
system—the beam with the hanged pendula—can be consid-
ered as a mechanical rig connected with the environment, i.e.,
there is some relation between the system and the external
environment, which is expressed by the suspension param-
eters: the spring stiffness kx and the damper coefficient cx

(see the scheme in the upper part in Fig. 1). The exact val-
ues of the parameters can be unknown but we may assume
their prior distributions based on various conditions (e.g., the
higher damping can be less probable than the lower one or the
distributions can be unimodal).

Referring to Eq. (2), the dimensionless parameters corre-
spond to the dimensional ones in the following way: α2

x =
kx/(Mx + 2m) and hx = cx/2(Mx + 2m). From a practical
point of view, we introduce two coefficients which qualita-
tively describe the vibrations conditions of the model. The
η parameter will denote the ratio between the oscillations
frequency of the beam with suspended pendula and the vibra-
tions frequency of the pendula themselves, i.e., η = αx/αϕ .
When η < 1.0, the beam-spring setup is above the resonance;
otherwise it is below. The second parameter, 
 = 2hxπ/αx,
describes the logarithmic decrement of the model. When 
 <

0.5, the beam-spring system is weakly damped, otherwise the
damping is strong. Both η and 
 coefficients will be varied
and considered uncertainties in the system [γ = (η,
); see
Eq. (1) for details]. The model shown in Fig. 1 can exhibit
different types of synchronization between the pendula and
the beam as well as remaining desynchronized. For each of the
possible states, we have calculated the basin stability maps,
which are presented in Fig. 2.

The construction of the maps is based on the discretiza-
tion of the parameters space � = {(η,
) : η ∈ [0.0, 2.0],
 ∈
[0.0, 1.0]}. The intervals for both coefficients have been
partitioned into 100 subintervals of equal size, resulting in
100 x 100 mesh in total. For each cell of the mesh, we have
performed a series of trials, varying uniformly both the initial
conditions of the system and the values of the parameters
within the cell (this approach differs from the classical one,
when the parameters are fixed—usually considered the center
point of the cell; see also the discussion in Figs. 4 and 5 for
details). By determining the result of each trial (the attractor to
which the system converged), we have estimated the stabilities
of the states and distinguished the regions of their more and
less probable occurrences. The results are based on 1000 trials
for each cell, i.e., 10 000 000 trials in total.

In Fig. 2(a), one can see the basin stability map of the
antiphase synchronization pattern which exists in the full
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FIG. 4. The estimations of basin stability of the desynchroniza-
tion solution using the classical approach of parameters fixed (the
solid curves) and the method of parameters varied (the dashed
curves). The orange and green patterns correspond to the parameters
from the hatched cells included in the inset, while the black ones
correspond to the full 3 x 3 matrix. Indicator j determines the size
of the parameter matrix which is centered around the grey point
(η∗,
∗) = (0.70875, 0.015), with lengths η̃ = 0.008 − j × 6.25 ×
10−5 and 
̃ = 0.0032 − j × 2.5 × 10−5. The basin stability for the
center has been estimated as p̂ = 0.272

FIG. 5. The comparison of basin stability between the classical
approach with parameters fixed (the left column) and the proposed
one with parameters varied (the middle column). The results shown
in the rows (a)–(c) correspond to different sizes of the parameters
matrix included in the inset of Fig. 4: (a) j = 0, (b) j = 60, and
(c) j = 90. Each of the matrices shown is centered around fixed
(η∗,
∗) = (0.70875, 0.015) point and contains the estimations of
the basin stability of the desynchronization solution within 3 x 3
regime mesh (the darker the color, the higher the probability; the
domains of the absence of the state are left blank). For easier ref-
erence to the cells within particular matrix, the rows and columns
are equipped with indices 0, 1, 2. The right column includes the
absolute difference between the results obtained using both methods
for comparison.

parameter range. The results included in the inset (see also
the ones in the other panels of Fig. 2) schematically show the
evolution of the pendula and the beam in time. The red and
blue curves denote the time plots of the pendula, which in the
considered case oscillate in the antiphase: ϕ1 = −ϕ2 (the inset
includes one full cycle of motion). Due to the stable balance
between the oscillators, the beam (shown in grey) does not
move: x = 0.

The color scale used to illustrate basin stability (marked
as parameter p) indicates the higher (lower) probabilities with
the brighter (darker) color. In this scenario, one can observe
the funnel centered around η = 0.8, where the antiphase pat-
tern is the most probable one (p ≈ 1). The lowest observed
basin stability (p ≈ 0.3) resides close to the resonance region:
η ≈ 1.0, when the damping is very small (
 ≈ 0).

System (2) also possesses two in-phase synchronization
solutions (when ϕ1 = ϕ2), which are discussed in Figs. 2(b)
and 2(c). The states can be distinguished by the behavior
of the beam in which oscillations have been magnified in
the insets for better visualization. In the Fig. 2(b) case, the
platform (grey) is oscillating in the in-phase to the synchro-
nized pendula (see the blue curve overlapping the red one
and the grey curve with the extremes on the same side as
for the pendula: sign(ϕi ) = sign(x)). In the Fig. 2(c) scenario,
the motion of the platform is realized in the antiphase to
the nodes—the extremes of the grey and the blue curves are
on opposite sides: sign(ϕi ) = −sign(x). Both patterns can be
also identified by their basin stability maps—the Fig. 2(b)
state (with the beam in) resides mainly above η > 0.8 (with
the highest probability p ≈ 0.7 for smaller 
 damping), while
the Fig. 2(c) state (with the beam anti) can be found below the
η < 0.8 threshold.

Apart from synchronous motion, the considered system
can also remain destabilized, which is possible within a very
small domain of parameters in Fig. 2(d). In this case, the
behavior of the pendula and the support becomes irregular
(as marked by the curves in the inset). Due to the size of
the region, we have recalculated it for higher resolution, as
shown in the white enlargement in the figure. The stripes of
existence of the irregular attractor indicate that the highest
basin stability does not exceed the p ≈ 0.37 border.

After collecting the basin stability maps of the states gen-
erated by model (2), we can apply the procedure discussed in
Fig. 1 for any presumed form of the prior parameters distribu-
tion. The examples of two possible scenarios are presented in
Fig. 3.

First, we consider the classical assumption of the normal
Gaussian distribution—the prior PDF is shown in Fig. 3(a).
The shape of the two-variate function describes the distribu-
tion of random vector G = (η,
), where the regions of higher
probability are marked with a brighter color (see the density
color scale included). In this case, the means for the vari-
ables are centered (μη = 1.0, μ
 = 0.5), with the standard
deviations equal to ση = 0.2 and σ
 = 0.05; for simplicity,
we consider the uncorrelated configuration, i.e., ρη
 = 0.
The Gaussian assumption for the parameters can be a good
starting point if the information on the system characteristics
is limited.

By applying the procedure described in Fig. 1, we can
update the prior probabilities shown in Fig. 3(a) based on
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the basin stability map of any attractor that occurred. The
transformation for the in-phase synchronization solution with
the beam in the in-phase to the pendula [see the map below the
arrow; also Fig. 2(b)] can be found in Fig. 3(b). The shape of
the posterior Gaussian probability density function underlines
how the prior distribution and the basin stability interplay. As
can be seen, the prior PDF has been truncated in the region
of the attractor absence (η < 0.8) and stretched to become
similar to the shape of the basin stability map. Moreover, even
though the synchronization pattern has the highest stability in
the lower domain of 
 values, the most probable parameters
should be assumed within higher damping—see the yellow
spot in Fig. 3(b)—due to the unimodal character of the prior
assumption [the centered peak in Fig. 3(a).

Understanding the nature of the parameters, one can eas-
ily combine various distributions into multivariate cases. In
Fig. 3(c), we present the scenario when the prior assumption
on the η characteristic is uniform, while the distribution of the

 one is (independently) considered exponential with the rate
of λ = 1.5; the PDF surface has been scaled to fit the bound-
aries shown in the figure (the total probability mass equal
to one). In this scenario, we assume that the lower damping
values are more expected to occur than the higher ones (see
the yellow color around 
 ≈ 0). The prior uncertainties are
updated using the antiphase synchronization pattern [see the
basin stability map below the arrow; also Fig. 2(a)], which
results in the posterior exponential probability surface pre-
sented in Fig. 3(d). As can be seen, the density has become
highly squeezed around η = 0.8, where the probability of the
attractor appearance is the highest (see the yellow funnel in
the basin stability map). However, the PDF flattens with the
increase of the damping (even though the pattern is possible
also for high 
 values), due to the prior assumptions on
the parameters.

The results discussed in Fig. 3 uncover the possibilities
for updating system uncertainties using formula (6) and the
basin stability concept. The proper estimation of the latter
one is crucial, since the case of zero stability (the absence
of the attractor for given parameters) excludes the point from
the posterior distribution. To underline this problem, we have
studied the system close to the ragged border of the existence
of desynchronization solution shown in Fig. 2(d) (see the
enlargement in the inset included). The results of our inves-
tigations are discussed in Figs. 4 and 5.

Let us focus on parameter point (η∗,
∗) =
(0.70875, 0.015) for which the desynchronized state is
possible. We have split the neighborhood of the considered
point (the parameter space) into a 3 x 3 matrix of cells,
schematically shown in the inset included in Fig. 4
(see the right lower corner). In this setup, the (η∗,
∗)
point (marked in grey) is always centered within the
middle cell, while the horizontal (vertical) length of the
mesh is equal to 2η̃/2
̃. The size of the matrix can be
manipulated (shortened) using indicator j ∈ {0, . . . , 127}
in the following way: η̃ = 0.008 − j · 6.25 × 10−5 and

̃ = 0.0032 − j · 2.5 × 10−5. The smaller the mesh (for
bigger j), the closer the cells are accumulated around the
(η∗,
∗) center; for j = 128, the matrix reduces to a singular
point. Investigating basin stability for the cells using different
j values, we can observe how the probabilities change when

the structure of the (desynchronization) attractor domain
is complex.

Using the classical approach, we approximate the basin
stability value within the map cell using fixed parameters
(typically, the ones from the cell center). The result of such a
procedure is marked by the green solid curve in Fig. 4, which
corresponds to points (η∗ + 2η̃/3,
∗)—see the green hyphen
in the matrix inset. When the mesh is big, the estimated
basin stability (parameter p) remains zero, as can be seen
for j � 64. Getting closer to the (grey) center, we observe
the spike of probability which converges to the p̂ = 0.272
limit as j → 128 [the basin stability of the (η∗,
∗) point,
marked by the grey horizontal line]. On the other hand, we
have approximated the probability within the map cell us-
ing different approaches of varied parameters, i.e., uniformly
randomizing parameters from the green hatched region for
each trial (see the inset in Fig. 4). The basin stability curve
corresponding to this method has been presented as the green
dashed one, and even for j = 0 it starts from a nonzero value.
In this scenario, the probability generally increases, indicating
that the desynchronized state can occur more often when we
reduce the size of the cell.

The comparison between the discussed methods underlines
that the one with parameters varied can become superior in
the presence of uncertainties. When the exact values of
the parameters are unknown, by varying them within the
map cell we limit the possibility of omitting the attractor
(which can happen when the parameters are fixed outside the
solution domain due to its complex structure). This problem
has been presented in Fig. 5, where in the left column
we present the results obtained for the classical approach
(parameters fixed), and in the middle one the results using
varied parameters; the absolute difference between the results
obtained using both methods is included in the right column
for comparison. Each of the matrices included in Fig. 5
corresponds to the 3 x 3 mesh shown in the inset of Fig. 4,
with different values of parameters η̃ and 
̃. The latter ones
are determined using the j index marked around each matrix
( j = 0, 60, 90) and the formulas η̃ = 0.008 − j · 6.25 × 10−5

and 
̃ = 0.0032 − j · 2.5 × 10−5; for example, the boxes
presented in Fig. 5 (b) for j = 60 correspond to the
parameter region (η,
) ∈ [0.70875 − (0.008 − 60 × 6.25 ×
10−5), 0.70875 + (0.008 − 60 × 6.25 × 10−5)] × [0.015 −
(0.0032 − 60 × 2.5 × 10−5), 0.015 + (0.0032 − 60 × 2.5 ×
10−5)], split into evenly partitioned 3 x 3 mesh. The
percentage results included in each cell denote the estimations
of the basin stability of the desynchronization solution within
chosen parameters regime. For easier comparison, the results
are accompanied with colors (shades of blue) where the
darker the color, the higher the probability (the scenarios
of zero basin stability have been left blank). Moreover, we
denote the grid elements using integer numbers (0, 1, 2 in the
horizontal and the vertical axis of the matrices) for simpler
reference in the text—see further description for details.

Starting from the largest matrix for j = 0—Fig. 5(a)—we
can already observe that the estimations for the (0, 1) and the
(2, 2) blocks highly differ. The classical method indicates the
attractor absence (the cells left blank), while the one using
variations, basins stabilities around 8 − 10% (which satisfies
typical confidence intervals for potential hypothesis testing).
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The attractor ragged domain intersects with the considered
cells, and when the parameters are uncertain (or become
perturbed), the state can spontaneously occur—we lose this
information using the classical approach of fixed parameters.
Reducing matrix size twice [Fig. 5(b) for j = 60], we can still
observe this problem: Here, for the (2, 1) cell (no attractor
vs p = 8.1%) but also for the (0, 0) block, where the prob-
abilities highly differ between the methods (0.3% vs 5.5%).
Decreasing the mesh further for j = 90 in Fig. 5(c), all the
basin stabilities become nonzero, but we can still notice some
significant discrepancies between the results, e.g., p = 0.9%
(left) and p = 6.6% (right) for the (2, 0) block.

The proposed method of parameter variation can also be-
come a good approximation for the classical approach when
the attractor exists everywhere within the map cell. This sce-
nario is presented in Fig. 4 for the block hatched in orange
and corresponds to the dashed curve of the same color. The
estimations of basin stability fluctuate around the original
p̂ = 0.272 value, starting below it (underestimation) but suc-
cessively converging as the j indicator increases. We have also
compared the approaches for the general case, i.e., using all
the cells from the considered parameter matrix. In this case,
the variation method randomly picks the coefficients from
the [η∗ − η̃, η∗ + η̃] × [
∗ − 
̃,
∗ + 
̃] domain, while the
classical way determines basin stability as the mean of nine
central points of the cells creating the matrix [e.g., for the
left upper block, the parameters are considered fixed at (η∗ −
2η̃/3,
∗ + 2
̃/3)]. The results are shown using the black
curves (classical method: solid; variation method, dashed) in
the inset in Fig. 4. As one can see, even though the estima-
tions for the separate cells differed previously (see Fig. 5 for
details), the averaged results are very similar and converge
to the limit with a similar slope. Naturally, the described
observance should not be generalized, as it highly depends
on the structure of the attractor existence region and the basin
stability distribution within it.

III. CONCLUSIONS

In conclusion, the procedure discussed in this paper allows
us to use the basin stability tool and fundamental probability
laws to update prior knowledge on the system parameters. As
we have shown, depending on the attractor that occurs, we can
obtain various transformations of the presumed distribution,
which is influenced by the structure of corresponding basin
stability map. The posterior result gives more insights on

the conditions leading to the occurrence of a particular state,
as it combines both the information on its stability and the
assumed distribution of coefficients. Using the Bayesian in-
ference, we can distinguish the regions in the parameter space
where particular types of solutions are more (or less) probable,
possibly controlling their occurrence with higher accuracy if
desired or required. The proposed procedure can also be used
to update our knowledge on the conditions that have led to
the appearance of a particular behavior (the domains with the
highest probability) and predict it in future.

To account for uncertainties, we also propose an approach
for practical evaluation of basin stability maps, involving the
variation of parameters. The method is robust on spontaneous
(small) inaccuracies in the system working conditions and can
be more appropriate (then the classical approach) when some
of the states are undesired and their occurrence should be
highly controlled in the terms of probability. The procedure
presented for the mechanical setup with various coexisting
synchronous patterns (also the desynchronized state) can be
applied to any multistable system with prior parameters as-
sumptions and basin stability maps of possible attractors. The
computational (numerical) effort required by the discussed
concept refers to the calculation of the basin stability maps
only. The maps should be determined for every possible state
of the system and their resolution should be sufficient to take
into account possible variations of parameters. When the basin
stabilities are already calculated, the procedure described in
Fig. 1 can be applied to any chosen prior parameter distribu-
tion. The computational cost of obtaining the posterior PDF
is limited, since the shape of the density function is always
modeled by formula (6). Assuming that the basin stability
maps for a chosen system are already given, one can examine
various prior parameters assumptions and obtain the posterior
probability functions without recalculating the basin stability
maps for every simulation.

For crucial models of complex phenomena, updating sys-
tem uncertainties using Bayesian inference can become an
essential key for understanding the occurrence of particular
behaviours and their further studies.
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