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If a quantum system interacts with the environment, then the Hamiltonian acquires a correction known as the
Lamb-shift term. There are two other corrections to the Hamiltonian, related to the stationary state. Namely, the
stationary state is to first approximation a Gibbs state with respect to original Hamiltonian. However, if we have
finite coupling, then the true stationary state will be different, and regarding it as a Gibbs state to some effective
Hamiltonian, one can extract a correction, which is called “steady-state” correction. Alternatively, one can take
a static point of view, and consider the reduced state of total equilibrium state, i.e., system plus bath Gibbs
state. The extracted Hamiltonian correction is called the “mean-force” correction. This paper presents several
analytical results on second-order corrections (in coupling strength) of the three types mentioned above. Instead
of the steady state, we focus on a state annihilated by the Liouvillian of the master equation, labeling it as the
“quasi-steady state.” Specifically, we derive a general formula for the mean-force correction as well as the quasi-
steady state and Lamb-shift correction for a general class of master equations. Furthermore, specific formulas
for corrections are obtained for the Davies, Bloch-Redfield, and cumulant equation (refined weak coupling). In
particular, the cumulant equation serves as a case study of the Liouvillian, featuring a nontrivial fourth-order
generator. This generator forms the basis for calculating the diagonal quasi-steady-state correction. We consider
spin-boson model as an example, and in addition to using our formulas for corrections, we consider mean-force
correction from reaction-coordinate approach.
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I. INTRODUCTION

As is well known, when a system interacts with its environ-
ment, it not only undergoes dissipative but also experiences
the renormalization of Hamiltonian dynamics, leading to the
so-called Lamb-shift corrected Hamiltonian [1,2]. Further-
more, for finite coupling strength with a single heat bath,
the equilibrium state of the open system’s dynamics will
(assuming ergodicity [1,2]) deviate from the Gibbs state of
the noninteracting system Hamiltonian. Instead, it is widely
believed, and in many cases confirmed, that the appropriate
candidate for the steady state is the reduced state of the total
equilibrium, encompassing both the system and the environ-
ment (see Ref. [3] and references therein). Generally, this can
be regarded as a Gibbs state with respect to some effective
Hamiltonian, referred to as the “mean-force” Hamiltonian.
The state is called the “mean-force Gibbs” state. Similarly,
one can deduce a Hamiltonian from the true steady state
(referred to as the “steady-state Hamiltonian”), with the ex-
pectation that the two Hamiltonians, i.e., the mean-force and
the steady-state Hamiltonian, are equal (see, in this context,
Refs. [3–10]).

If the coupling with the environment is weak, albeit fi-
nite, then all the three Hamiltonians mentioned above.1 take
the form of the original (i.e., bare) Hamiltonians plus a

1i.e., Lamb-shift corrected, mean-force Gibbs-state Hamiltonian,
and the one deduced from the steady state.

correction term. Investigating these corrections is currently
the subject of intense research [3,9,11]. The primary challenge
in analyzing and comparing these corrections lies in the neces-
sity of employing approximations in description of an open
quantum system, resulting in more or less accurate master
equations (ME) [1,2]. In this context, our goal is to ensure
that these master equations yield a steady-state Hamiltonian as
close as possible to the mean-force Hamiltonian, particularly
up to the second order in coupling strength.

The objective of this paper is to present analytical re-
sults regarding the three types of corrections to the bare
Hamiltonian, up to second order (in coupling strength) for
a specific class of open system models (in a previous work
mostly the corrections to states have been provided, see, e.g.,
Refs. [6–10,12–14]). As previously mentioned, we are dealing
with three types of corrections: the Lamb-shift, mean-force,
and steady-state correction. However, obtaining the steady-
state correction is particularly challenging, so we opt for an
alternative approach. Specifically, we analyze the Hamiltonian
not derived from the steady state, but from a state annihilated
by the generator of the dynamics. Since this state is likely
to be equal to the true steady state (for instance, this holds
true for a time-independent Liouvillian), we refer to it as the
“quasi-steady” state, along with its corresponding Hamilto-
nian correction.

An important motivation for considering Hamiltonian cor-
rections instead states corrections is that the Hamiltonian
corrections might be useful for those looking at effective
Hamiltonian theories [15,16]. Our approach might help extend
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these effective Hamiltonians into the continuous frequency
regime, also it might prove useful in the context of the fluctu-
ation dissipation theorem where the mean-force Hamiltonian
is sometimes computed [17,18].

Here are our most general results that do not involve any
particular master equation. We derive:

(i) The general form of the second-order mean-force cor-
rection for an arbitrary open system, a result previously known
only for specific couplings. This form has also been indepen-
dently derived by G. Timofeev and A. Trushechkin [19].

(ii) The off-diagonal elements of the quasi-steady-state
correction for a relatively broad class of master equations ex-
pressed in terms of their Kossakowski matrix.

Additionally, our formulas for the above corrections ex-
plicitly reveal their relations with the Lamb-shift correction.

Next we focus on three major descriptions of open sys-
tems: Davies ME [20,21], Bloch-Redfield ME [22,23], and
cumulant equation (also known as refined weak coupling)
[24–26]. It is important to note that, unlike Bloch-Redfield,
both Davies and cumulant equations provide completely pos-
itive evolution. We demonstrate that for a general coupling,
the Bloch-Redfield and cumulant equations predict the off-
diagonal elements of a correction to the quasi-steady-state
Hamiltonian that coincide with those of the mean-force
(previously known only for specific models, as seen in
Refs. [6,8–10]). In contrast, the off-diagonal elements of
quasi-steady-state correction for the Davies equation aligns
with the nonstandard Lamb-shift correction, namely the one,
for which secular approximation is not done (indeed, to obtain
completely positive dynamics, is is enough to apply secular
approximation just to dissipative part).

Subsequently, we address the more intricate matter of di-
agonal elements, presenting a methodology for computing the
diagonal elements of the quasi-steady-state correction. Con-
sequently, we derive analytical formulas for these elements in
the case of a two-level system. Our findings indicate that for
the discussed master equations with Liouvillians defined up
to the second order (e.g., Davies and Bloch-Redfield master
equations), there is no correction to the diagonal elements.

However, such corrections do appear if we consider cu-
mulant equation. Namely we write it in the form of a master
equation, and truncate the Liouvillian up to fourth order. The
obtained correction exhibits a notable agreement (verified
numerically, see below) with the corresponding mean-force
correction. It is worth noting that still a discrepancy is here
expected, given that the cumulant equation neglects contribu-
tions from higher-order cumulants.

Last, we computed the derived corrections for the spin-
boson model. As we mentioned before, this provides us
with a direct verification of mean-force and quasi-steady-state
predictions. Moreover, we additionally involved the reaction
coordinate method [13,27,28] to verify numerically the ana-
lytical expression for the mean-force correction, which proves
the perfect agreement in the regime of validity of the method.

A few remarks are here in order. As usual, the obtained
corrections will be cut-off dependent and often diverge with
the growing cut-off frequency. This is actually ubiquitous in
the literature on the topic (see in this context Refs. [29,30]).
Secondly, we do not touch on the issue of renormalization:
The derivation of the master equation should be not be based

on bare Hamiltonian but should somehow involve the renor-
malized one (as advocated in Refs. [24,30]). We have not
followed this in the present paper to keep clear the main
message.

II. HAMILTONIAN CORRECTIONS

We consider a general Hamiltonian of the interacting sys-
tem S with the thermal reservoir R of the form:

H = H0 + HR + λHI , (1)

HI =
∑

α

Aα ⊗ Rα, (2)

where H0 is a bare Hamiltonian of the system, HR is free
Hamiltonian of the bath, Aα and Rα are interaction operators
(acting on the system and bath Hilbert spaces, respectively),
and λ is a coupling constant. In the following, we define a
Gibbs state of the thermal reservoir γR = Z−1

R e−βHR at inverse
temperature β, where ZR = Tr[e−βHR ]. Additionally, we con-
sider the operators evolving in the interaction picture A(t ) =
ei(H0+HR )t Ae−i(H0+HR )t , and we use an abbreviation 〈A〉γR =
Tr[AγR]. We assume that that bath operators are centralized,
i.e., 〈Rα〉γR = 0.

The main object of interest of this article are three differ-
ent second-order corrections to the bare Hamiltonian of the
system H0 in the weak-coupling limit (i.e., λ � 1). Namely,
the corrections related to the following three Hamiltonians:
Lamb-shift HLS, quasi-steady state Hst and the mean-force
Hmf . Due to centralization of the bath operators, the leading
order of the perturbation calculus is λ2. In accordance, the
corrections are given by the relations

Hcor − H0 = λ2H (2)
cor + . . . , (3)

which we represent by means of jump operators:

H (2)
cor (t ) =

∑
ω,ω′

∑
α,β

ϒ
(cor)
αβ (ω,ω′, t )A†

α (ω)Aβ (ω′), (4)

where cor indicates Lamb-shift (LS), quasi-steady-state (st),
or mean-force (mf) correction, respectively, and the jump
operators are given by:

Aα (ω) =
∑

ε′−ε=ω

	(ε)Aα	(ε′). (5)

where 	(ε) is the projector on the subspace with energy ε,
such that H0 = ∑

ε ε 	(ε).
Remark. We need to justify that in (4) only pair of jump

operators are enough. For instance, the operators of the form
A†

α (ω)Aβ (ω′) may not span the whole space of the system.
Of course this need not lead to violation of (4); however,
at least it means that justification is needed. As we will see
in Appendix B 3, Eqs. (B26)–(B29), that for the mean-force
corretion this is true by definition. In the case of the Lamb shift
correction it is also true for all the models of open systems
that we consider (Redfield, GKLS-Davies, and the cumulant
equations). Finally, for the quasi-steady-state correction it is
not clear whether the ansatz of (4) is general enough. It is
for sure correct if we assume that H0 is Bohr nondegenerate,
which implies that operators A†

α (ω)Aβ (ω′) indeed span the full
space of system operators.
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A. Lamb-shift correction

We start with the Lamb-shift correction H (2)
LS , which is

defined according to the Liouvillian of the master equation in
the Schrödinger picture of the following general form:

Lt [ρ] = i
[
ρ, H0 + λ2H (2)

LS (t )
]

+ λ2
∑
ω,ω′

∑
αβ

Kαβ (ω,ω′, t )Dαβ (ω,ω′)[ρ] + O(λ4),

(6)

where

Dαβ (ω,ω′)[ρ] = Aβ (ω′)ρA†
α (ω) − 1

2 {A†
α (ω)Aβ (ω′), ρ}. (7)

K is the so-called Kossakowski matrix and for a while we do
not determine it: For particular choice of K and ϒ (LS) we will
obtain a given master equation, such as the Bloch-Redfield
or Davies one. Notice that the Liouvillian in Eq. (6) leads to
a completely positive dynamics if the matrix Kαβ (ω,ω′, t ) is
positive semidefinite. Later, we consider the long-time limits
(assuming they exist), when t → ∞, for which we use the
abbreviations:

ϒ
(LS)
αβ (ω,ω′) ≡ lim

t→∞ ϒ
(LS)
αβ (ω,ω′, t ), (8)

Kαβ (ω,ω′) ≡ lim
t→∞ Kαβ (ω,ω′, t ). (9)

The Lamb-shift correction introduces a renormalization of
the bare Hamiltonian H0 of the open system due to the finite-
strength coupling with the environment. The correction affects
the Hamiltonian part of the evolution.

B. Mean-force correction

Let us then introduce the mean-force Hamiltonian Hmf ,
defined according to the marginal Gibbs state of the global
equilibrium, i.e.,

ρmf = e−βHmf

TrS[e−βHmf ]
= TrR[e−βH ]

TrSR[e−βH ]
. (10)

The mean-force Gibbs state refers to the local equilibrium of
the open system corresponding to the global equilibrium of
the full system (i.e., open system plus the environment). The
definition solely relies on static equilibrium and hence is not
related to the dynamics.

Concerning the mean-force Hamiltonian Hmf , one should
notice that Eq. (10) does not specify uniquely its ground-state
energy, since the equation is invariant under the transforma-
tion Hmf → Hmf + δ for arbitrary real constant δ. Commonly,
this constant is fixed by the convention [3–10]:

TrSR[e−βH ] = TrS[e−βHmf ]TrR[e−βHR ], (11)

such that we have the following relation:

Hmf = − 1

β
log

[
TrR[e−βH ]

ZR

]
, (12)

where ZR = TrR[e−βHR ]. Another way of fixing the gauge is
to demand that Hmf is traceless:

Tr(Hmf ) = 0. (13)

The latter gauge will be convenient, when extracting mean-
force correction Hamiltonian numerically from a state (e.g.,
steady state of dynamics), as we do in (91), while the former is
more convenient, while deriving mean-force correction from
the definition, as in Theorem 1.

In this paper, we concentrate solely on the second-order
mean-force correction H (2)

mf , defined via the expansion:

Hmf = H0 + λ2H (2)
mf + . . . , (14)

where the zeroth-order term is fixed by putting λ = 0 (in the
gague fixed by condition of traceless Hmf ).

C. Quasi-steady-state correction

The last correction is defined with respect to the so-called
quasi-steady Gibbs state:

� ∝ e−βHst , (15)

which is defined as the fixed point of the Liouvillian in the
long-time limit:

lim
t→∞Lt [�] ≡ L∞[�] = 0. (16)

Contrary to static mean-force state, � corresponds the dynam-
ical equilibrium, defined according to particular Liouvillian in
the long-time limit. In analogy to the mean-force and Lamb-
shift, we are interested in the leading-order correction defined
by the expansion:

Hst = H0 + λ2H (2)
st + . . . . (17)

Then, to derive a solution for the correction H (2)
st , we adapt the

perturbative method. We expand the generator of the master
equation:

L∞[�] = L(0)
∞ [�] + λ2L(2)

∞ [�] + λ4L(4)
∞ [�] + . . . , (18)

and, similarly, we expand the postulated stationary state, i.e.,

� = �0 + λ2�2 + λ4�4 . . . , (19)

where by using the Dyson series for the lowest orders we get:

�0 = e−βH0 , (20)

�2 = −e−βH0

∫ β

0
dt etH0 H (2)

st e−tH0 . (21)

A solution to Eq. (16) can be now constructed by requir-
ing that in each order of coupling strength λ, the action of
generator L∞ on the state should vanish. Then we obtain the
following set of equations:

L(0)
∞ [�0] = 0, (22)

L(0)
∞ [�2] + L(2)

∞ [�0] = 0, (23)

L(0)
∞ [�4] + L(2)

∞ [�2] + L(4)
∞ [�0] = 0, (24)

. . . .

However, one should note that this is a stronger condition
than (16).

Our main goal is to solve the following equations to
find the solution for the quasi-steady-state correction H (2)

st .
However, as it was highlighted in Ref. [6], the second-order
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equation (23) only provides the solution for off-diagonal
terms of the correction, whereas the solution for the diagonal
part involves the fourth-order equation (24). In the following
Sec. IV B 1, we present the general solution for off-diagonal
elements for the Liouvillian (6) and we provide some general
methods for solving the diagonal part from the fourth-order
equation (see Sec. IV B 2). In accordance, we derive explicit
formulas of the quasi-steady-state correction for specific types
of Liouvillians introduced in Sec. III.

Two additional remarks have to be mentioned. First, the
zeroth-order term H0 in Eq. (17), leading to �0 ∝ e−βH0 , is
consistent with Eq. (22) for the Liouvillian L(0)

∞ = i[·, H0].
However, unlike in the mean-force correction, we cannot ob-
tain that �0 ∝ e−βH0 by setting λ = 0. Indeed, doing so we
are left with the mentioned L(0)

∞ = i[·, H0], and we see that
L(0)

∞ (�0) has many solutions. Hence, later we will provide
the additional condition for a master equation, namely the
detailed balance condition. Then �0 can be obtained from
higher-order steady state by letting λ to zero.

Second, in a manner similar to the mean-force correction,
Eq. (15) determines Hst up to a gauge.

III. MODELS OF OPEN SYSTEMS

In this section, we introduce three specific Liouvillians
used in the modeling of quantum open systems: the Liouvil-
lians of Davies ME, Bloch-Redfield ME, and the cumulant
equation. The first two are interconnected through the so-
called secular approximation, which ensures that Davies ME
is completely positive. Later, we will specifically elucidate
how this impacts the quasi-steady-state correction. On the
other hand, the cumulant equation restores the positivity of the
map by incorporating higher-order generators into the Liou-
villian. This presents an interesting case study for addressing
diagonal corrections that involve fourth-order generators.

1. Bloch-Redfield and Davies master equations

Let us start with the most known master equations, i.e., the
Bloch-Redfield and the Davies master equations. In general,
for the Bloch-Redfield ME we define a time-dependent Kos-
sakowski matrix and Lamb-shift coefficient [see Eq. (6)]:

Kαβ (ω,ω′, t ) = 
t
αβ (ω′) + 
t

βα (ω)∗ ≡ γ t
αβ (ω,ω′), (25)

ϒ
(LS)
αβ (ω,ω′, t ) = 1

2i

[

t

αβ (ω′) − 
t
βα (ω)∗

] ≡ St
αβ (ω,ω′),

(26)

where


t
αβ (ω) =

∫ t

0
ds eiωs〈Rα (s)Rβ (0)〉γR . (27)

However, in this paper we are mostly interested in the long-
time limit of the Liouvillian, based on which we define
the quasi-steady-state correction. For Bloch-Redfield ME we
have:

LR
∞ = i[·, H0] + λ2

∑
ω,ω′

∑
αβ

(iSαβ (ω,ω′)[·, A†
α (ω)Aβ (ω′)]

+ γαβ (ω,ω′)Dαβ (ω,ω′)), (28)

where

Sαβ (ω,ω′) = lim
t→∞St

αβ (ω,ω′) γαβ (ω,ω′) = lim
t→∞ γ t

αβ (ω,ω′)

(29)

It is well known that the Bloch-Redfield equation, in general,
does not preserve the positivity of the state since γαβ (ω,ω′)
is not a positive semidefinite matrix. Commonly, this issue
is solved by applying the so-called secular approximation,
which leads to the Davies master equation in the GKSL form.
In accordance, applying the secular approximation, we obtain
the Kossakowski matrix for the Davies dynamics:

γαβ (ω,ω′)
sec. approx.−−−−−−→ γαβ (ω)δω,ω′ , (30)

Sαβ (ω,ω′)
sec. approx.−−−−−−→ Sαβ (ω)δω,ω′ , (31)

where

γαβ (ω) ≡ γαβ (ω,ω) =
∫ +∞

−∞
ds eiωs〈Rα (s)Rβ (0)〉γR , (32)

is the Fourier transform of the autocorrelation function, and

Sαβ (ω) ≡ Sαβ (ω,ω) = P 1

2π

∫ +∞

−∞
d�

γαβ (�)

ω − �
, (33)

where P denotes the principal value integral. We also have the
following relation:

lim
t→∞ 
t

αβ (ω) ≡ 
αβ (ω) = 1
2γαβ (ω) + iSαβ (ω). (34)

Finally, the Davies generator is given by:

LD
∞ = i[·, H0] + λ2

∑
ω

∑
αβ

(iSαβ (ω)[·, A†
α (ω)Aβ (ω)]

+ γαβ (ω)Dαβ (ω,ω)). (35)

However, we want to notice that to restore the positivity of the
Bloch-Redfield master equation, it is enough to do the secular
approximation only for the dissipative part. For this reason, we
additionally consider a so-called nonsecular Davies defined
as:

LD,ns
∞ = i[·, H0] + λ2

∑
ω,ω′

∑
αβ

(iSαβ (ω,ω′)[·, A†
α (ω)Aβ (ω′)]

+ δω,ω′γαβ (ω)Dαβ (ω,ω)). (36)

In the following, we will also use the representation of the
(time-dependent) Redfield generator in the interaction picture
given by the expression:

L̃R
t = λ2

∑
ω,ω′

∑
αβ

(
iS̃t

αβ (ω,ω′)[·, A†
α (ω)Aβ (ω′)]

+ γ̃ t
αβ (ω,ω′)Dαβ (ω,ω′)

)
, (37)

with the following definitions:

γ̃ t
αβ (ω,ω′) = ei(ω−ω′ )tγ t

αβ (ω,ω′), (38)

S̃t
αβ (ω,ω′) = ei(ω−ω′ )tSt

αβ (ω,ω′). (39)

2. Cumulant equation (refined weak-coupling)

Let us now introduce the cumulant equation [24–26]. Un-
like the previous models of open system, which are in the form
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of differential equations, the cumulant equation is introduced
as the dynamical map (which does not involve the Markovian
approximation):

ρ̃(t ) = eK̃ (2)
t ρ̃(0), (40)

where

K̃ (2)
t [ρ(0)]

= −λ2
∫ t

0
dt1

∫ t1

0
dt2TrR([HI (t1), [HI (t2), ρS (0) ⊗ ρR]])

(41)

is the generator of the map in the interaction picture, such that
ρ̃(t ) = eiH0tρ(t )e−iH0t .

It has been showed that cumulant equation is an al-
ternative way to describe non-Markovian dynamics in the
weak-coupling regime. Its essential feature is the GKSL form
of the K̃ (2)

t superoperator. In this way, the cumulant equa-
tion defines one parameter family of CPTP dynamical maps.
This feature of the cumulant equation is its advantage over the
Bloch-Redfield equation, for which the fundamental property
of completely positive evolution is not satisfied.

Since the Lamb-shift and quasi-steady-state corrections are
defined according to the generator of the master equations,
from the dynamical map (40) we derive the corresponding
differential equation, namely

d

dt
ρ̃(t ) =

[(
d

dt
eK̃ (2)

t

)
e−K̃ (2)

t

]
ρ̃(t ). (42)

This defines the Liouvillian of the cumulant equation in the
interaction picture:

L̃C
t =

(
d

dt
eK̃ (2)

t

)
e−K̃ (2)

t (43)

= d

dt
K̃ (2)

t + 1

2

[
K̃ (2)

t ,
d

dt
K̃ (2)

t

]
+ . . . . (44)

Interestingly, we have revealed that the cumulant superopera-
tor K̃ (2)

t is very much related to the Bloch-Redfield generator
(in the interaction picture) by the following relation:

dK̃ (2)
t

dt
= L̃R

t . (45)

Finally, applying (45) and transforming it to the Schrödinger
picture, we get

LC
t [ρ] =LR

t [ρ] + 1

2

∫ t

0
ds e−iH0t

([
L̃R

s , L̃R
t

]
[eiH0tρe−iH0t ]

)
× eiH0t + O(λ6). (46)

We see that up to the second order the Liouvillian of the
cumulant is equal to the Bloch-Redfield one. Nevertheless,
cumulant equation provides nontrivial higher-order generators
that in principle leads to different predictions of quasi-steady-
state diagonal correction.

IV. RESULTS

In this section, we derive formulas for different corrections
and reveal their mutual relations. In the following, we will
provide an explicit expression for all of the corrections (4).

The coefficients of the corrections will be written in the uni-
versal integral form given by:

ϒ
(cor)
αβ (ω,ω′) = 1

2π
P
∫ +∞

−∞
d� Dcor (ω,ω′,�) γαβ (�),

(47)

where γαβ (�) is the relaxation rate defined by equation (32).
P denotes the principal value integral. We provide the kernel
Dcor (ω,ω′,�) for a particular corrections and Liouvillians,
which are finally summarised in Table I.

A. Mean-force correction

We are ready to state our first main result regarding the
mean-force correction.

Theorem 1. In the gauge (11), the mean-force correction is
given by

H (2)
mf (t ) =

∑
ω,ω′

∑
α,β

ϒ
(mf )
αβ (ω,ω′, t )A†

α (ω)Aβ (ω′), (48)

with the coefficients:

ϒ
(mf )
αβ (ω,ω′) = 1

2π

∫ +∞

−∞
d� Dmf (ω,ω′,�)γαβ (�), (49)

Dmf (ω,ω′,�) = 1

ω′ − �
− (ω − ω′)(eβ(ω−�) − 1)

(ω − �)(ω′ − �)(eβ(ω−ω′ ) − 1)
,

(50)

or, equivalently, in terms of the Sαβ (ω) function (33), it takes
the form:

ϒ
(mf )
αβ (ω,ω′) = 1

eβω − eβω′ {eβωSαβ (ω′) − eβω′Sαβ (ω)

+ eβ(ω+ω′ )[Sβα (−ω′) − Sβα (−ω)]}. (51)

Remark. What is interesting about the expression (49) is
that despite of its form, it does not exhibit any poles, which is
quite unusual for a Lamb-shift correction. Thus, the principal
value integral is not needed in this case [cf. Eq. (47)].

Proof. The sketch of the proof is as follows. To solve
Eq. (10) we write the exponents from both sides of the equality
in terms of the Dyson series, which formally can be expressed
via the time-ordering operator T as:

e−βHmf ≡ e−β(H0+δHmf ) = e−βH0T e− ∫ β

0 dt δĤmf (t ), (52)

e−βH ≡ e−β(H0+HR+λHI ) = e−β(H0+HR )T e−λ
∫ β

0 dt ĤI (t ), (53)

where we put δHmf = Hmf − H0 and we define an imaginary-
time-dependent operators Â(t ) = et (H0+HR )Ae−t (H0+HR ). Con-
sequently, using gauge (11) the equality (10) can be rewritten
in the form:

TrR
[
T
(
e− ∫ β

0 dt δĤmf (t ) − e−λ
∫ β

0 dt ĤI (t )
)
γR

] = 0. (54)

where γR is the Gibbs state with respect to HR. Note that this is
exact for arbitrary coupling strength λ. Then, considering the
weak-coupling limit (λ � 1), we expand the above equality
and obtain, within the second order, the following condition
for the mean-force correction:∫ β

0
dt Ĥ (2)

mf (t ) = −
∫ β

0
dt

∫ t

0
ds〈ĤI (t )ĤI (s)〉γR . (55)
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TABLE I. Explicit kernels Dcor (ω,ω′, �) according to the representation (47) for all Hamiltonian corrections, i.e., cor = LS (Lamb-shift)
(6), cor = mf (mean-force) (14), and cor = st (quasi-steady state) (20). Lamb-shift and quasi-steady-state correction have been calculated
according to the following Liouvillians: Davies (35), (nonsecular) Davies (36), Bloch-Redfield (28) and cumulant (46).

Davies Davies (nonsecular) Bloch-Redfield Cumulant

DLS(ω,ω,�) 1
ω−�

DLS(ω,ω′, �) 0 1
2 ( 1

ω−�
+ 1

ω′−�
) + i

4 (δ(� − ω) − δ(� − ω′))

Dst (ω,ω,�) 0 General form not derived here

Dst (ω,ω′,�) 0 DLS(ω,ω′, �) Dmf (ω,ω′, �)

Dmf (ω,ω,�) 1−eβ(ω−�)+β(ω−�)
β(ω−�)2

Dmf (ω,ω′, �) 1
ω′−�

− (ω−ω′ )(eβ(ω−�)−1)
(ω−�)(ω′−�)(eβ(ω−ω′ )−1)

After substituting the representation of the mean-force Hamil-
tonian given by Eq. (4) and the interaction term (2) with
the definition of jump operators (5), we are able to calcu-
late the coefficients ϒ

(mf )
αβ (ω,ω′) (see the detailed proof in

Appendix B). �
Theorem 1 is the first derivation in the literature of the

second-order mean-force Hamiltonian for a general weak-
coupling of the form (1) (this was independently done in
Ref. [19]; the expression for the correction to mean-force
Gibbs state has been given earlier in Refs. [3,9,10]). One
observes that the coefficients are symmetric in ω’s, i.e.,
ϒ

(mf )
αβ (ω,ω′) = ϒ

(mf )
αβ (ω′, ω), which together with S∗

αβ (ω) =
Sβα (ω), ensures the hermiticity of the Hamiltonian.

According to this expression, let us compare the dynam-
ical Hamiltonian with the mean-force. Using Eq. (34), we
write down the Lamb-shift correction in terms of γαβ (ω) and
Sαβ (ω), such that for the Bloch-Redfield ME we get:

ϒ
(LS)
αβ (ω,ω′)

= 1

2
[Sαβ (ω) + Sαβ (ω′)] + i

4
[γαβ (ω) − γαβ (ω′)],

whereas for the Davies equation the off-diagonal elements
vanish (due to the secular approximation). It is seen that
the mean-force correction is different than the Lamb-shift
one; in particular, the Lamb-shift correction has nonzero anti-
Hermitian part (in indices α, β) in contrast to the Hermitian
coefficients of the mean-force. Indeed, γαβ (ω) and Sαβ (ω) are
Hermitian matrices, and therefore the second term of Lamb-
shift correction is non-Hermitian, while there is no such term
in mean-force correction.

B. Quasi-steady-state correction

In this section, we propose the general formulas for
quasi-steady-state correction in terms of the coefficients
ϒ

(st)
αβ (ω,ω′):

H (2)
st (t ) =

∑
ω,ω′

∑
α,β

ϒ
(st)
αβ (ω,ω′, t )A†

α (ω)Aβ (ω′). (56)

First, we consider a problem of specifying the off-diagonal
contribution to the Hamiltonian H (2)

st (in terms of the coef-
ficients ϒ

(st)
αβ (ω,ω′) for ω �= ω′), and later the diagonal one

[given by ϒ
(st)
αβ (ω,ω)].

We start with off-diagonal elements, because (as indicated
in Ref. [6]) the first nontrivial correction for diagonal states
one can get only in the fourth order. So we start with simpler
case of off-diagonal elements.

1. Off-diagonal elements

To derive a solution for off-diagonal elements of the
Hamiltonian H (2)

st , one needs to specify the solution of the
second-order equation [see Eq. (23)]:

L(0)
∞ [�2] + L(2)

∞ [�0] = 0. (57)

To provide of such a solution we propose the following repre-
sentation:

L(k)
∞ [ρl ] = e−βH0

∑
α,β

∑
ω,ω′

g(kl )
αβ (ω,ω′)Aα (ω)Aβ (ω′), (58)

for l + k = 2, i.e., k = 0, l = 2 and k = 2, l = 0 (see
Appendix C 2). Our methodology is based on replacing the
equation for operators (57) by the algebraic equation, which
is stated in the following Lemma:

Lemma 1. Equation (23) can be rewritten as:∑
α,β

∑
ω,ω′

(
g(02)

αβ (ω,ω′) + g(20)
αβ (ω,ω′)

)
Aα (ω)Aβ (ω′) = 0, (59)

which, in particular, is satisfied if:

g(02)
αβ (ω,ω′) + g(20)

αβ (ω,ω′) = 0 (60)

for all ω,ω′ and α, β.
Next, we specify the explicit formula for coefficients of the

most common models of master equations.
Lemma 2. For the general form of the second-order Liou-

villian (6):

g(02)
αβ (ω,ω′) = −i(ω + ω′)ϒ (st)

αβ (−ω,ω′)α(ω + ω′), (61)

g(20)
αβ (ω,ω′) = iϒ (LS)

αβ (−ω,ω′)(1 − e−β(ω+ω′ ) )

+ eβωKβα (−ω′,−ω)

− 1
2 Kαβ (−ω,ω′)(e−β(ω+ω′ ) + 1), (62)

where α(ω) = ∫ β

0 dt e−tω.
Finally, combining together those two Lemmas, we pro-

pose the following theorem:
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Theorem 2. The second-order equation (23) is satisfied by
the state � ∝ e−β(H0+λ2H (2)

st +... ) if

(i) Kαβ (ω,ω) = Kβα (−ω,−ω)eβω, (63)

(ii) ϒ
(st)
αβ (ω,ω′)

= ϒ
(LS)
αβ (ω,ω′) + i

eβω − eβω′

×
[

Kβα (−ω,−ω′)eβ(ω+ω′ ) − 1

2
Kαβ (ω′, ω)(eβω + eβω′

)

]
(64)

for ω �= ω′.
The condition (63) is the so-called detailed-balance rela-

tion, which is satisfied for all considered here Liouvillians
(i.e., for Davies, Bloch-Redfield, and cumulant). Then let
us compare the mean-force correction with the quasi-steady-
state correction for specific choices of Kossakowski matrix
Kαβ (ω,ω′) and Lamb-shift ϒ

(LS)
αβ (ω,ω′). First, let us observe

that (see proof in Appendix C 2 a):
Corollary 2.1. If Kαβ (ω,ω′) = γαβ (ω,ω′) and

ϒ
(LS)
αβ (ω,ω′) = Sαβ (ω,ω′), then for ω �= ω′:

ϒ
(st)
αβ (ω,ω′) = ϒ

(mf )
αβ (ω,ω′). (65)

Remark. Note that this relation is gauge independent, as
the gauge only affects diagonal corrections.

As it follows from Eq. (28) and (46) this is the case for
the Bloch-Redfield and the truncated cumulant Liouvillian.
However, if the secular approximation is applied for the Kos-
sakowski matrix, then we get:

Corollary 2.2. If Kαβ (ω,ω′) = γαβ (ω)δω,ω′ , then for
ω �= ω′:

ϒ
(st)
αβ (ω,ω′) = ϒ

(LS)
αβ (ω,ω′). (66)

This is the case for the so-called nonsecular Davies
(36). However, commonly the secular approximation is also
applied for the Lamb-shift term, such that for the stan-
dard Davies equation, the off-diagonal elements vanish, i.e.,
ϒ

(st)
αβ (ω,ω′) = ϒ

(LS)
αβ (ω,ω′) = 0 for ω �= ω′).

Comparing Corollaries 2.1 and 2.2 we see an interesting
interplay between all three corrections. The specific (nondi-
agonal) form of the Lamb-shift and Kossakowski matrix for
the Bloch-Redfield generator (and second-order contribution
to cumulant as well) provides a coincidence of the mean-force
and quasi-steady-state correction for off-diagonal elements. In
particular, these nonzero values results in the “steady-state
coherences” of the equilibrium density matrix � discussed
in Refs. [8,31,32]. On the contrary, by applying the secular
approximation (i.e., making the Kossakowski matrix diagonal
in ω’s), the off-diagonal elements of the quasi-steady-state
correction rather coincide with the Lamb-shift one.

2. Diagonal elements

To provide the diagonal part of the correction H (2)
st

[given by the coefficients ϒ
(st)
αβ (ω,ω)], the fourth-order equa-

tion must be solved (24), i.e.,

L(0)
∞ [�4] + L(2)

∞ [�2] + L(4)
∞ [�0] = 0. (67)

Contrary to the solution for off-diagonal terms, it is much
more complex problem. For that reason and the clarity of
presentation, we simplify the model, such that throughout
of this section the interaction Hamiltonian is given by HI =
A ⊗ R (i.e., we replace the sum (2) by a single term, which
can be generalized by adding the corresponding indices). Ac-
cordingly, we also simplify notation, such that ϒ

(cor)
αβ ≡ ϒcor.

Then, similarly to the second order [see Eq. (58)], we start
with writing the action of the generators in the basis of jump
operators:

L(n)
∞ [�l ] = e−βH0

∑

ω

gnl (
ω)A(
ω), (68)

where l + n = 4, 
ω = (ω1, ω2, ω3, ω4) and A(
ω) ≡
A(ω1)A(ω2)A(ω3)A(ω4). The fourth-order equation (67)
takes then the following form:∑


ω
(g04(
ω) + g22(
ω) + g40(
ω))A(
ω) = 0, (69)

from which one can further derive the set of equations (for
each k): ∑


ω
(g22(
ω) + g40(
ω))	kA(
ω)	k = 0, (70)

where 	k = 	(εk ) is a projector into subspace with energy εk

[see Eq. (5)]. Disappearance of the g04 term comes from the
specific form of the L(0)

∞ = i[H0, ·], namely∑

ω

g04(
ω)	kA(
ω)	k = ieβεk 	k[H0, �4]	k = 0. (71)

Furthermore, we propose the following Lemma proved in
Appendix C 3:

Lemma 3. 	(εk )A(
ω)	(εk ) �= 0 only if 
ω belongs to the
set, denoted by G(|k〉 → |k〉), of all four-tuples of the form:


ω = (
εm1 − εk, εm2 − εm1 , εm3 − εm2 , εk − εm3

)
. (72)

Finally, since the operators 	kA(
ω)	k are linearly inde-
pendent (for different k), the following proposition follows:

Proposition 1. Equation (70) is satisfied if and only if for
each k, such that 	kA(
ω)	k �= 0, we have:∑


ω∈G(|k〉→|k〉)

[g22(
ω) + g40(
ω)] = 0. (73)

Equations (73) provide necessary conditions for the co-
efficients ϒst (ω,ω′) (encoded in the function g22) to be a
solution of the quasi-steady state. For the general form of
the second-order Liouvillian (6) the function g22 is explicitly
given by:

g22(
ω) = ϒst (−ω3, ω4)α(ω3 + ω4)

× [
iϒLS(−ω1, ω2) + 1

2 K (−ω1, ω2)
]

− ϒst (−ω1, ω2)α(ω1 + ω2)

× [
iϒLS(−ω3, ω4) − 1

2 K (−ω3, ω4)
]

− e−βω1ϒst (−ω2, ω3)α(ω2 + ω3)K (−ω4, ω1)
(74)

where α(ω) = ∫ β

0 dt e−tω.
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From Eqs. (73) one can get a solution for diagonal elements
of the quasi-steady-state correction ϒst (ω,ω), for a particular
form of the function g40 (derived from the fourth-order Liou-
villian L(4)

∞ ). For Bloch-Redfield and Davies master equation,
the Liouvillian is only defined up to the second order, which
trivially implies g40(
ω) = 0. On the contrary, the cumulant
equation provides the fourth-order Liouvillian in the form:

L(4)
t [ρ] = 1

2

∫ t

0
ds e−iH0t

([
L̃R

s , L̃R
t

]
(eiH0tρe−iH0t )

)
eiH0t . (75)

The relevant coefficients g40 can be derived from the pro-
jection of the Eq. (68), i.e.,

	kL(4)
∞ [�0]	k = e−βεk

∑

ω

g40(
ω)	kA(
ω)	k, (76)

where according to (75):

	kL(4)
∞ [�0]	k = 1

2
lim

t→∞

∫ t

0
ds 	k

([
L̃R

s , L̃R
t

]
[�0]

)
	k . (77)

The explicit form of the function g40 for the cumulant is
provided in the Appendix, Eq. (C86).

Let us remark, that the limits of such expressions as
L(n)

∞ [�l ] may not exist (due to oscillating phases). However
after sandwiching them with 	k [as in (77), the limit already
exists}.

Let us note, that for Davies (secular) equation, the diagonal
correction vanishes for simple reason; namely the full genera-
tor annihilates Gibbs state according to bare Hamiltonian (i.e.,
LD

∞[�0] = 0).
In the next subsection, we apply the proposed results for

the two-level system, where we derive a diagonal quasi-
steady-state correction for considered here Liouvillians (i.e.,
Davies, Bloch-Redfield, and cumulant). For Davies equa-
tion we confirm the above remark, obtaining vanishing
correction. We will also get vanishing correction for Bloch-
Redfield, but we do not know whether it holds in general, like
in Davies case.

C. Two-level system

Let us consider a two-level system with the bare Hamil-
tonian H0 = −ω0

2 σz coupled to the thermal bath via a single
interaction term HI = A ⊗ R, where A = 
r · 
σ , 
r = (x, y, z),
and 
σ = (σx, σy, σz ) are the Pauli matrices. Then, we define

�off
cor (ω) ≡ ϒcor (ω, 0) − ϒcor (0,−ω), (78)

�diag
cor (ω) ≡ ϒcor (−ω,−ω) − ϒcor (ω,ω), (79)

such that the correction H (2)
cor in the Pauli basis is given by:

Tr
[
H (2)

cor σx
] = xz �off

cor (ω0), (80)

Tr
[
H (2)

cor σy
] = yz �off

cor (ω0), (81)

Tr
[
H (2)

cor σz
] = x2 + y2

2
�diag

cor (ω0). (82)

Without loss of generality, we have introduced a gauge
TrH (2)

cor = 0 since, as we discussed in Sec. II, all corrections
are defined up to an arbitrary constant.

For the Liouvillian (6), the off-diagonal term �off
cor (ω) can

be calculated from Eq. (64), which for particular choices of
master equations is given by Corollaries 2.1 and 2.2. Fur-
thermore, for diagonal elements we provide the following
Proposition:

Proposition 2. For the Liouvillian (6), obeying the detailed
balance condition: K (ω,ω) = eβωK (−ω,−ω), diagonal ele-
ments of the two-level system quasi-steady-state correction
are given by:

(i) for g40(
ω) = 0 (Davies and Bloch-Redfield):

�
diag
QSS(ω) = 0, (83)

(ii) for g40(
ω) of the cumulant Liouvillian (75):

�
diag
QSS(ω) = �

diag
MF (ω) + S (−ω) − S (ω). (84)

For more details refer to Appendix C. We see that for
the two-level system the absence of higher-order Liouvillians
(g40 = 0) results in no correction to the diagonal of the quasi-
steady state. On the contrary, Liouvillian of the cumulant
truncated to the fourth order provides a nontrivial correction
given by Eq. (84). Since we expect that proper thermalization
should result in mean-force Hamiltonian, one can interpret
S (−ω) − S (ω) as the error. In the next section, we ana-
lyze numerically this discrepancy for a particular spin-boson
model. Notice also that S (ω) = ϒLS(ω,ω) (for cumulant,
Bloch-Redfield, and Davies).

We summarize all of the explicit formulas for the two-level
system in Table II.

V. SPIN-BOSON MODEL: NUMERICAL STUDY

Let us now apply our results to the well-known spin-boson
model. We consider a qubit coupled to a bosonic bath with the
Hamiltonian:

H = −ω0

2
σz +

∑
k

�ka†
kak + 
r · 
σ

∑
k

λk (ak + a†
k ), (85)

where ak and a†
k are the bosonic annihilation and creation

operators with a spectral density:

J (ω) =
∑

k

λ2
kδ(ωk − ω). (86)

By extending a domain of the spectral density, such that
J (−ω) = −J (ω), one can prove that:

γ (�) = 2πJ (�)

1 − e−β�
. (87)

In accordance, for a spin-boson model (85), all of the correc-
tions can be calculated as the integral over spectral density,
namely

ϒ
(cor)
αβ (ω,ω′) = P

∫ +∞

−∞
d�

Dcor (ω,ω′,�)

1 − e−β�
J (�) (88)

[cf. the general formula given by Eq. (47)].

A. Reaction coordinate

In this section, we further analyze the spin-boson model by
using the reaction coordinate (rc) method [27,28]. In particu-
lar, via the rc mapping we are able to extract the second-order
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TABLE II. The relevant kernels Dcor (ω,ω′, �) for a two-level system according to the Pauli representation (80). See a detailed description
in Table I.

Davies Davies (nonsecular) Bloch-Redfield Cumulant

DLS(−ω,−ω, �) − DLS(ω,ω,�) 2ω

�2−ω2

DLS(ω, 0, �) − DLS(0, −ω,�) 0 − ω

�2−ω2 + i
4 [δ(� − ω) + δ(� + ω) − 2δ(�)]

Dst (−ω,−ω, �) − Dst (ω,ω,�) 0 1−e−β(ω+�)

β(ω+�)2 − 1−eβ(ω−�)

β(ω−�)2

Dst (ω, 0, �) − Dst (0, −ω,�) 0 DLS(ω, 0,�) − DLS(0,−ω, �) Dmf (ω, 0, �) − Dmf (0,−ω, �)

Dmf (−ω,−ω, �) − Dmf (ω,ω,�) 1−e−β(ω+�)

β(ω+�)2 − 1−eβ(ω−�)

β(ω−�)2 + 2ω

�2−ω2

Dmf (ω, 0, �) − Dmf (0, −ω,�) ωe−β�[ω(eβω+1)(eβ�−1)−�(eβω−1)(eβ�+1)]
�(eβω−1)(�−ω)(ω+�)

correction to the mean-force Hamiltonian. For this reason, we
can numerically verify our analytical formula with predictions
that comes from rc. Additionally, since the “extraction” of the
second order into a single rc mode depends highly on the form
of the spectral density, we will also discuss a validity regime
of the rc method.

Let us concentrate on spectral density given by the form
[27]:

J (�) = λ2 4γ�ω2
rc(

ω2
rc − �2

)2 + (2πγ�ωrc)2
. (89)

The parameter γ regulates the width of the spectral density
J (ω), which is centered at the frequency ωrc. This indicates
that in the case of narrowly peaked spectral densities, i.e.,
when γ � 1, the mode with frequency ωrc predominates in
the environment. Consequently, that specific mode, i.e., the
so-called reaction coordinate with bosonic operators b, b†, is
incorporated into the effective Hamiltonian (after the Bogoli-
ubov transformation):

H ′ = −ω0

2
σz + ωrcb†b + λ
r · 
σ (b + b†), (90)

that describes the composite “spin-reaction coordinate” sys-
tem [13,27,28]. After transformation the system is coupled
to the effective environment with Ohmic spectral density
Jrc(�) = γ�e− �

� (in the limit � → ∞). In other words, after
the reaction coordinate transformation, the system described
by the Hamiltonian H ′ is coupled to the environment via
constant γ . Indeed, by decreasing γ , the reaction coordi-
nate dominates more and more, which results in smaller and
smaller effective coupling with the rest of the modes.

Then, according to the definition (10), the mean-force state
is given by:

ρmf ∝ TrR[e−βH ] ∝ Trrc[e−βH ′
] + O(γ ). (91)

Here we have traced over “reaction coordinate” system, called
rc, represented by the mode b. Consequently, for sufficiently
small γ , one can approximate the mean-force state via the
effective Hamiltonian H ′.

The resulting state depends on all orders of λ, and we want
to extract just second-order correction. In general, for a state
of the form

ρλ = e−βH

Z , (92)

where

H = H0 + λ2H (2) + λ4H (4) + . . . , (93)

we can extract second-order correction via the formula:

H (2) = lim
λ→0

1

λ2

[
1

β

(
1

d
Tr[log(ρλ)] − log(ρλ)

)
− H0

]
, (94)

where d is the dimension of the system Hilbert space and we
have used gauge Tr[H] = 0.

B. Numerical simulation

We numerically computed the relevant coefficients
�off

cor (ω0) and �
diag
cor (ω0), given by Eqs. (78) and (79), for the

general spin-boson model given by Hamiltonian (85). Correc-
tions have been computed according to expression (88) for the
spectral density given by Eq. (89) with the specific form of the
kernels summarized in Table II.

Additionally, the mean-fore correction has been com-
puted independently based on reaction coordinate method,
expressed in Eq. (91) and (94). Since the mean-force state,
calculated from the effective Hamiltonian H ′, is approximated
up to terms of the order O(γ ), we provide a simulation for two
regimes: γ = 0.001 and γ = 0.01. According to Eq. (91), the
reaction coordinate Gibbs state should converge to the exact
mean-force correction when γ → 0, which is confirmed by
the presented simulation in Fig. 1.

VI. CONCLUSIONS

We have presented several results of independent sig-
nificance. Firstly, we derived the general formula for the
(second-order) mean-force Hamiltonian, along with the quasi-
steady-state Hamiltonian for the canonical class of Liouvil-
lians (i.e., with the leading order expressed in GKLS form for
a general Kossakowski matrix). Subsequently, we discussed
the relationships among different corrections (mean-force,
quasi-steady state, and Lamb-shift). Finally, we applied our
findings to the most well-known descriptions of open systems,
specifically examining the extent to which the Bloch-Redfield,
Davies, and cumulant equations satisfy the condition of con-
verging to equilibrium. We emphasize that the corrections to
Hamiltonians derived in this paper hold greater significance
than corrections to states because they can be independently
applied to various renormalization procedures (cf. Ref. [30]).
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FIG. 1. In the figure we present the coefficients �off
cor (ω) and �diag

cor (ω) that compose different Hamiltonian corrections [Eqs. (78) and
(79)], computed for the spin-boson model [Eq. (85)] for the spectral density Eq. (89) and for ωrc = 20ω0. As we proved (see Corollary 2.1),
the off-diagonal correction of the mean-force coincide with the quasi-steady-state correction of the Bloch-Redfield and cumulant equation.
However, for the diagonal case the cumulant quasi-steady-state correction is much closer to the mean-force than the Bloch-Redfield one,
which is zero for all values of βω0. The discrepancy between cumulant and mean-force for the diagonal correction is precisely given by the
Lamb-shift correction [see Eq. (84)], which for the particular spectral density is small. We also calculate the mean-force correction based
on the reaction coordinate Gibbs state [Eqs. (91) and (94)]. From Eq. (91) the reaction coordinate Gibbs state should converge to the exact
mean-force correction when γ → 0. As expected, we observe a very good agreement for γ = 0.001, whereas some discrepancy is present for
γ = 0.01. This validates our analytical formulas for the mean-force correction and shows the limits of the reaction coordinate method.

Our findings align with prior observations [3,5,9], affirm-
ing that the leading-order term of the Liouvillian should adopt
the Bloch-Redfield form to yield the correct off-diagonal
quasi-steady-state correction. The cumulant equation (if writ-
ten in the form of master equation) meets this condition but
it goes further by providing nontrivial higher-order gener-
ators (by definition absent in the Bloch-Redfield equation).
Our analysis demonstrates that this feature offers an accurate
approximation of the diagonal elements of the correction, co-
inciding pretty well with those of the mean-force, in contrast
to the Bloch-Redfield (or Davies) master equation.

This may appear contradictory to the findings in Ref. [25],
where it is asserted that the dynamics governed by the cu-
mulant equation converges to the dynamics governed by
the Davies equation in the long-time limit, implying that
the stationary state should be the Gibbs state of the bare
Hamiltonian. However, our result specifically addresses the
second-order correction, and therefore, mathematically, it
does not contradict the aforementioned conclusion. It is

noteworthy that by collecting of all orders in the cumulant
Liouvillian, it ensures the positivity of the dynamics. This
suggests a nuanced trade-off between positivity and thermal-
ization towards the mean-force Gibbs state in the cumulant
description. Truncating the Liouvillian to a specific order ap-
proximates the mean-force state but compromises positivity
and vice versa.

Let us finally remark to what extent one could carry out
similar research for nonequilibrium scenario, i.e., the system
interacting with more than one bath. Specifically, it has been
shown that the nonequilibrium steady state can be represented
as a generalized Gibbs state (defined for an effective temper-
ature) [33–35], providing a natural framework to generalize
the Hamiltonian corrections in the out-of-equilibrium regime.
However, unlike the single bath scenario, in this case, the
limit of vanishing coupling does not restore an equilibrium
state with respect to the bare Hamiltonian (i.e., the canonical
ensemble), which may substantially distinguish the potential
corrections from those provided in this paper.
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APPENDIX A: PRELIMINARIES

We consider the system and bath Hamiltonian:

H = H0 + HR + λHI , (A1)

such that H0 and HR are the free Hamiltonians of the system
and the bath, respectively, and HI is the interaction Hamilto-
nian. Except for Secs. B 1 and B 2, where we do not assume
any particular form of the interaction term, throughout the
paper we consider the following explicit form:

HI =
∑

α

Aα ⊗ Rα. (A2)

We introduce the time-dependent operators:

Aα (t ) = eiH0t Aαe−iH0t , Rα (t ) = eiHRt Rαe−iHRt . (A3)

and jump operators (acting on the system Hilbert space):

Aα (ω) =
∑

ε′−ε=ω

	(ε)Aα	(ε′), (A4)

where 	(ε) is a projector on subspace with energy ε, such
that H0 = ∑

ε ε 	(ε). These obey the following commutation
relation:

[Aα (ω), H0] = ωAα (ω), (A5)

as well as the relations:

A†
α (ω) = Aα (−ω),

∑
ω

Aα (ω) = Aα. (A6)

From this follows also

Aα (ω)ecH0 = ecωecH0 Aα (ω), (A7)

where c is the complex number, such that, in particular, the
time-dependent operator is given by:

Aα (t ) =
∑

ω

e−iωt Aα (ω). (A8)

Finally, we consider the Bloch-Redfield master equation in
the Schrödinger picture:

d

dt
ρ(t ) = Lt [ρ(t )] = i[ρ(t ), H0

+
∑
ω,ω′

∑
α,β

Sαβ (ω,ω′, t )A†
α (ω)Aβ (ω′)] (A9)

+
∑
ω,ω′

∑
α,β

γαβ (ω,ω′, t )

×
(

Aβ (ω′)ρ(t )A†
α (ω) − 1

2
{A†

α (ω)Aβ (ω′), ρ(t )}
)

,

(A10)

where ρ is the system density matrix and Lt is the generator,
with

γαβ (ω,ω′, t ) = 
αβ (ω′, t ) + 
∗
βα (ω, t ), (A11)

Sαβ (ω,ω′, t ) = 1

2i
[
αβ (ω′, t ) − 
∗

βα (ω, t )], (A12)


αβ (ω, t ) =
∫ t

0
ds eiωs〈Rα (s)Rβ (0)〉γR . (A13)

In the interaction picture (with respect to the bare Hamiltonian
H0), the Bloch-Redfield equation takes the following form:

d

dt
ρ̃(t ) = L̃t [ρ̃(t )]

= i

⎡
⎣ρ̃(t ),

∑
ω,ω′

∑
α,β

S̃αβ (ω,ω′, t )A†
α (ω)Aβ (ω′)

⎤
⎦ (A14)

+
∑
ω,ω′

∑
α,β

γ̃αβ (ω,ω′, t )

×
(

Aβ (ω′)ρ̃(t )A†
α (ω) − 1

2
{A†

α (ω)Aβ (ω′), ρ̃(t )}
)

,

(A15)

where ρ̃(t ) = eiH0tρ(t )e−iH0t , and

γ̃αβ (ω,ω′, t ) = ei(ω−ω′ )tγαβ (ω,ω′, t ), (A16)

S̃αβ (ω,ω′, t ) = ei(ω−ω′ )tSαβ (ω,ω′, t ). (A17)

Additionally, we also use the abbreviation

Sαβ (ω) = lim
t→∞Sαβ (ω,ω, t ),

γαβ (ω) = lim
t→∞ γαβ (ω,ω, t ). (A18)

From the definition it is seen that γαβ (ω) is the Fourier trans-
form of the autocorrelation function, i.e.,

γαβ (ω) = 
αβ (ω) + 
∗
βα (ω) (A19)

=
∫ ∞

0
ds eiωs〈Rα (s)Rβ (0)〉γR

+
∫ ∞

0
ds e−iωs〈Rβ (s)Rα (0)〉∗γR

(A20)

=
∫ ∞

0
ds eiωs〈Rα (s)Rβ (0)〉γR

+
∫ ∞

0
ds e−iωs〈Rα (−s)Rβ (0)〉γR (A21)

=
∫ +∞

−∞
ds eiωs〈Rα (s)Rβ (0)〉γR (A22)

from which it follows that γαβ (ω) obeys the detailed balance
condition, i.e.,

γαβ (ω) = γβα (−ω)eβω. (A23)

Using the inverse Fourier transform for the autocorrelation
function and the Sokhostki-Plemelj identity in the form:∫ ∞

0
ds e±iωs = 1

π
δ(ω) ± iP 1

ω
, (A24)
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we shall represent 
αβ (ω) as the principal value integral:


αβ (ω) =
∫ ∞

0
ds eiωs〈Rα (s)Rβ (0)〉γR

= 1

2π

∫ +∞

−∞
d� γαβ (�)

∫ ∞

0
ds ei(ω−�)s, (A25)

= 1

2
γαβ (ω) + P 1

2π

∫ +∞

−∞
d�

iγαβ (�)

ω − �
. (A26)

According to this, and since the γ ∗
αβ (ω) = γβα (ω), we

have

Sαβ (ω) = 1

2i
[
αβ (ω) − 
∗

βα (ω)]

= P 1

2π

∫ +∞

−∞
d�

γαβ (�)

ω − �
. (A27)

APPENDIX B: MEAN-FORCE HAMILTONIAN

We search for the solution for the mean-force Hamiltonian
Hmf from the equation:

e−βHmf = 1

ZR
TrR[e−βH ], (B1)

where Hmf = H0 + δHmf and ZR = Tr[e−βHR ]. Notice, that
we used here the following gauge, i.e.,

Tr[e−βH ] = Tr[e−βHmf ]Tr[e−βHR ], (B2)

that fixes the ground-state energy of the mean-force
Hamiltonian.

1. Dyson series

In the following section, we use an abbreviation Â(t ) =
et (H0+HR )Ae−t (H0+HR ). We start with the left-hand side of
the Eq. (B1), which we represent by the formal Dyson
form:

e−βHmf = e−βH0 eβH0 e−βHmf = e−βH0T e− ∫ β

0 dt δĤmf (t ), (B3)

which gives us the series expansion:

T e− ∫ β

0 dt δĤmf (t ) = 1 −
∫ β

0
dt1 δĤmf (t1)

+
∫ β

0
dt1

∫ t1

0
dt2 δĤmf (t1) δĤmf (t2) + . . . .

(B4)

Similarly, for the right-hand side, we have

e−βH = e−βH0T e−λ
∫ β

0 dt ĤI (t ), (B5)

such that

T e−λ
∫ β

0 dtĤI (t ) = 1 − λ

∫ β

0
dt1 ĤI (t1)

+ λ2
∫ β

0
dt1

∫ t1

0
dt2 ĤI (t1) ĤI (t2) + . . . .

(B6)

Finally, one can write

1

ZR
TrR[e−βH ] = 1

ZR
TrR[e−βH0T e−λ

∫ β

0 dt ĤI (t )]

= e−βH0 TrR[T e−λ
∫ β

0 dt ĤI (t )γR], (B7)

where γR = e−βĤR

ZR
is the Gibbs state of the bath. In analogy, we

have:

e−βHmf = e−βH0 TrR[T e− ∫ β

0 dt δĤmf (t )γR], (B8)

such that Eq. (B1) can be written as:

TrR[T (e− ∫ β

0 dt δĤmf (t ) − e−λ
∫ β

0 dt ĤI (t ) )γR] = 0 (B9)

or in the series form as:

∞∑
k=1

(−1)k
∫ β

0
dt1

∫ t1

0
dt2· · ·

∫ tk−1

0
dtk

× (δĤmf (t1) δĤmf (t2) . . . δĤmf (tk )

− λk〈ĤI (t1) ĤI (t2) . . . ĤI (tk )〉γR ) = 0, (B10)

where 〈·〉γR = TrR[ · γR].

2. Weak coupling

Now let us assume that λ � 1, and we expand:

Ĥmf = Ĥ0 + λĤ (1)
mf + λ2Ĥ (2)

mf + . . . , (B11)

such that δĤmf = λĤ (1)
mf + λ2Ĥ (2)

mf + . . . .
Then, we collect terms in the same order of λ appearing in

Eq. (B10), i.e.,

λ :
∫ β

0
dt1Ĥ (1)

mf (t1) =
∫ β

0
dt1〈ĤI (t1)〉γR (B12)

λ2 : −
∫ β

0
dt1Ĥ (2)

mf (t1) +
∫ β

0
dt1

∫ t1

0
dt2 Ĥ (1)

mf (t1) Ĥ (1)
mf (t2) =

∫ β

0
dt1

∫ t1

0
dt2

〈
ĤI (t1) ĤI (t2)

〉
γR

(B13)

λ3 : −
∫ β

0
dt1Ĥ (3)

mf (t1) +
∫ β

0
dt1

∫ t1

0
dt2

(
Ĥ (1)

mf (t1)Ĥ (2)
mf (t2) + Ĥ (2)

mf (t1)Ĥ (1)
mf (t1)

)
−

∫ β

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 Ĥ (1)

mf (t1) Ĥ (1)
mf (t2) Ĥ (1)

mf (t3) =
∫ β

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3〈ĤI (t1) ĤI (t2) ĤI (t3)〉γR

. . . . (B14)
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In general for the nth order we have
n∑

m=1

(−1)m
∑

k1,...,km∈Cm
n

∫ β

0
dt1· · ·

∫ tm−1

0

× dtm Ĥ (k1 )
S (t1) Ĥ (k2 )

S (t2) . . . Ĥ (km )
S (tm)

= (−1)n
∫ β

0
dt1· · ·

∫ tn−1

0
dtn〈ĤI (t1) . . . ĤI (tn)〉γR

where Ck
n is set of the kth-order composition of the number n,

e.g., C3
4 = {(2, 1, 1), (1, 2, 1), (1, 1, 2)}.

3. Derivation of general formulas for corrections
to the mean-force Hamiltonian

a. First-order correction

Let us first solve the equation for the first-order correction,
i.e., ∫ β

0
dt1Ĥ (1)

mf (t1) =
∫ β

0
dt1〈ĤI (t1)〉γR

=
∑

α

∫ β

0
dt1Âα (t1)〈R̂α (t1)〉γR . (B15)

Furthermore, since 〈R̂α (t1)〉γR = 〈Rα〉γR (due to commutation
of the Gibbs state γR with the free Hamiltonian HR), we get
the solution:

H (1)
mf =

∑
α

〈Rα〉γR Aα. (B16)

From now on, we assume that bath operators are centralized
such that 〈Rα〉γR = 0, which implies H (1)

mf = 0.

b. Second-order correction

In this section we provide general formula for second-order
correction for mean-force Hamiltonian. Remarkably the ex-
pression does not exhibit any poles, in contrast to Lamb-shift
correction. Yet we also decompose it into bricks that are used
also to build the Lamb-shift corrections, which do exhibit
poles, and require principal value to be well defined.

Theorem 3. The explicit form of second-order correction
for mean-force Hamiltonian is the following:

H (2)
mf =

∑
ω,ω′

ϒ
(mf )
αβ (ω,ω′)A†

α (ω)Aβ (ω′), (B17)

where

ϒ
(mf )
αβ (ω,ω′) = 1

2π

∫ +∞

−∞
d� Dmf (ω,ω′,�) γαβ (�),

Dmf (ω,ω′,�) = 1

ω′ − �
− (ω − ω′)(eβ(ω−�) − 1)

(ω − �)(ω′ − �)(eβ(ω−ω′ ) − 1)

(B18)

The coefficients ϒαβ (ω,ω′) can be also expressed in terms of
the imaginary part of 
αβ (ω) [see Eq. (A27)] as follows:

ϒ
(mf )
αβ (ω,ω′) = 1

eβω − eβω′ {eβωSαβ (ω′) − eβω′Sαβ (ω)

+ eβ(ω+ω′ )[Sβα (−ω′) − Sβα (−ω)]}. (B19)

Remark. From (B19) one sees that ϒ
(mf )
αβ is symmetric, i.e.,

ϒ
(mf )
αβ (ω,ω′) = ϒ

(mf )
αβ (ω′, ω). This can be also seen by writing

Dmf (ω,ω′,�) in explicitly symmetric form

Dmf (ω,ω′,�) = 1

2

(eβω − eβω′
)(ω + ω′ − 2�) + (ω − ω′)(eβω + eβω′ − 2eβ(ω+ω′−�) )

(eβω − eβω′ )(ω − �)(ω′ − �)
(B20)

Proof. We shall first prove that Eq. (B19) comes from (B18). We shall use Eq. (A27), i.e.,

Sαβ (ω) = 1

2π

∫ +∞

−∞
d�

γαβ (�)

ω − �
, (B21)

from which we also derive

−Sβα (−ω) = 1

2π

∫ +∞

−∞
d�

γβα (�)

ω + �
= 1

2π

∫ +∞

−∞
d�

γβα (−�)

ω − �
= 1

2π

∫ +∞

−∞
d�

γαβ (�)e−β�

ω − �
, (B22)

where we used the detailed balance condition (A23). Thus, to express ϒ
(mf )
αβ in terms of Sαβ we have to write Dmf in terms of

1/(ω − �) or 1/(ω′ − �). Using

ω − ω′

(ω′ − �)(ω − �)
= 1

ω′ − �
− 1

ω − �
(B23)

we thus get

Dmf (ω,ω′,�) = 1

eβ(ω−ω′ ) − 1

[
eβ(ω−ω′ ) − 1

ω′ − �
− eβ(ω−�)

(
1

ω′ − �
− 1

ω − �

)
+ 1

ω′ − �
− 1

ω − �

]
(B24)

= 1

eβω − eβω′

[
eβω

ω′ − �
− eβω′

ω − �
− eβ(ω+ω′−�)

(
1

ω′ − �
− 1

ω − �

)]
. (B25)

Rearranging it a bit, and using (B21) and (B22) we obtain (B19).
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Let us now prove the expression (B18). We start with
second-order equation with centralized bath operators, i.e.,

∫ β

0
dtĤ (2)

mf (t ) = −
∫ β

0
dt

∫ t

0
ds〈ĤI (t )ĤI (s)〉γR . (B26)

Next, we put the representation (B17) and according to the
relation (A7), we have

Ĥ (2)
mf (t ) =

∑
ω,ω′

ϒ
(mf )
αβ (ω,ω′)etH0 A†

α (ω)Aβ (ω′)e−tH0

=
∑
ω,ω′

ϒ
(mf )
αβ (ω,ω′)et (ω−ω′ )A†

α (ω)Aβ (ω′). (B27)

Then, the left-hand side of Eq. (B26) is equal to:

∫ β

0
dt Ĥ (2)

mf (t )

=
∑
ω,ω′

A†
α (ω)Aβ (ω′)

(
ϒ

(mf )
αβ (ω,ω′)

∫ β

0
dt et (ω−ω′ )

)
,

(B28)

whereas the right-hand side is given by:

−
∫ β

0
dt

∫ t

0
ds

〈
ĤI (t )ĤI (s)

〉
γR

= −
∫ β

0
dt

∫ t

0
ds Âα (t )Âβ (s)〈R̂α (t ) R̂β (s)〉

= −
∑
ω,ω′

∫ β

0
dt

∫ t

0
ds etω−sω′

A†
α (ω)Aβ (ω′)〈R̂α (t − s) R̂β〉

= −
∑
ω,ω′

A†
α (ω)Aβ (ω′)

∫ β

0
dt et (ω−ω′ )

∫ t

0
ds esω′ 〈R̂α (s)R̂β〉,

(B29)

where in the last line we change a variables s → t − s. Next,
according to Eq. (A19), let us observe that

〈R̂α (it )R̂β〉 = 〈Rα (t )Rβ〉 = 1

2π

∫ +∞

−∞
d� e−i�t γαβ (�),

(B30)

such that

〈R̂α (t )R̂β〉 = 1

2π

∫ +∞

−∞
d� e−�t γαβ (�). (B31)

Finally, the right-hand side is equal to:

−
∫ β

0
dt

∫ t

0
ds〈ĤI (t )ĤI (s)〉γR = −

∑
ω,ω′

A†
α (ω)Aβ (ω′)

(
1

2π

∫ +∞

−∞
d� γαβ (�)

∫ β

0
dt et (ω−ω′ )

∫ t

0
ds es(ω′−�)

)
. (B32)

Equating left-hand side=right-hand side, we get

∑
ω,ω′

[
ϒ

(mf )
αβ (ω,ω′)

∫ β

0
dt et (ω−ω′ ) + 1

2π

∫ +∞

−∞
d� γαβ (�)

∫ β

0
dt et (ω−ω′ )

∫ t

0
ds es(ω′−�)

]
A†

α (ω)Aβ (ω′) = 0, (B33)

which is solved by

ϒ
(mf )
αβ (ω,ω′) = − 1

2π

∫ +∞

−∞
d� γαβ (�)

×
∫ β

0 dt et (ω−ω′ )
∫ t

0 ds es(ω′−�)∫ β

0 dt et (ω−ω′ )
. (B34)

We thus obtain

Dmf (ω,ω′,�) = −
∫ β

0 dt
∫ t

0 ds et (ω−ω′ )es(ω′−�)∫ β

0 dt et (ω−ω′ )
, (B35)

what is readily integrated [see (B25)]. Then the integrated
form of ϒ

(mf )
αβ (ω,ω′) is obtained with relation in (B21). �

APPENDIX C: STEADY-STATE CORRECTION

1. General method

We look for a solution of the equation:

L[�] = 0, (C1)

where L is the generator of the master equation and � is its
stationary state. We expand the generator and steady state in
the series, i.e.,

L[ρ] = L0[ρ] + λ2L2[ρ] + λ4L4[ρ] + . . . , (C2)

� = �0 + λ2�2 + λ4�4 + . . . , (C3)

such that we have the following set of equations (for each
order in λ):

L0[�0] = 0, (C4)

L0[�2] + L2[�0] = 0, (C5)

L0[�4] + L2[�2] + L4[�0] = 0, (C6)

. . . . (C7)

Hence we postulate the stationary state (in the Gibbs form):

� = e−β(H0+λ2H (2)
st +λ4H (4)

st +... ) = �0 + λ2�2 + λ4�4 + . . . ,

(C8)
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such that

�0 = e−βH0 , (C9)

�2 = −e−βH0

∫ β

0
dt etH0 H (2)

st e−tH0 , (C10)

�4 = − e−βH0

∫ β

0
dt etH0 H (4)

st e−tH0

+ e−βH0

∫ β

0
dt1

∫ t1

0
dt2 et1H0 H (2)

st e−t1H0 et2H0 H (2)
st e−t2H0 .

(C11)

In the following, we use the summation convention, i.e., the
repeating indices are summed up. We start with representation
of the second-order correction in the basis of jump operators:

H (2)
st = ϒ

(st)
αβ (ω,ω′)A†

α (ω)Aβ (ω′). (C12)

Note that contrary to mean force correction, the above form
assumes that Bohr spectrum is nondegenerate. Indeed, then
pairs of jump operators span linearly all the space of operators
of the system. In accordance, we have the following expres-
sion for �2, i.e.,

�2 = −e−βH0ϒ
(st)
αβ (ω,ω′)

∫ β

0
dt etH0 A†

α (ω)Aβ (ω′)e−tH0

= −ϒ
(st)
αβ (ω,ω′)α(ω′ − ω)e−βH0 A†

α (ω)Aβ (ω′), (C13)

where we define:

α(ω) =
∫ β

0
dt e−tω =

{
1−e−βω

ω
, ω �= 0

β, ω = 0.
(C14)

In general, we are going to transform the operator equa-
tions (C5) and (C6) into the algebraic ones. For this we define:

Lk[�l ] = g(kl )
αβ (ω1, ω2)e−βH0 Aα (ω1)Aβ (ω2) (C15)

for the second order (such that k + l = 2), and

Lk[�l ] = g(kl )
αβγ δ (ω1, ω2, ω3, ω4)e−βH0 Aα (ω1)Aβ (ω2)

× Aγ (ω3)Aδ (ω4) (C16)

for k + l = 4. In accordance, for the second-order equa-
tion (C5), we have[

g(02)
αβ (ω1, ω2) + g(20)

αβ (ω1, ω2)
]
e−βH0 Aα (ω1)Aβ (ω2) = 0,

(C17)

whereas for the fourth order:[
g(04)

αβγ δ (ω1, ω2, ω3, ω4) + g(22)
αβγ δ (ω1, ω2, ω3, ω4)

+ g(40)
αβγ δ (ω1, ω2, ω3, ω4)

]
e−βH0 Aα (ω1)Aβ (ω2)

× Aγ (ω3)Aδ (ω4) = 0. (C18)

In the following, we will also use the commutation rela-
tions:

[Aα (ω), H0] = ωAα (ω), (C19)

from which we get:

Aα (ω)e−βH0 = e−βωe−βH0 Aα (ω). (C20)

The commutation relation (C19) can be further generalize for
the product of jump operators, i.e.,[

Aα1 (ω1)Aα2 (ω2) . . . Aα2 (ω2), H0
]

= (ω1 + ω2 + · · · + ωn)Aα1 (ω1)Aα2 (ω2) . . . Aα2 (ω2).
(C21)

Notice also that A†
α (ω) = Aα (−ω).

2. Second-order equation

In the following, we solve Eq. (C17) for a master equation of the form:

L0[ρ] = i[ρ, H0] (C22)

L2[ρ] =
∑
α,β

∑
ω,ω′

[
ϒ

(LS)
αβ (ω,ω′)[ρ, A†

α (ω)Aβ (ω′)] + Kαβ (ω,ω′)
(

Aβ (ω′)ρA†
α (ω) − 1

2
{A†

α (ω)Aβ (ω′), ρ}
)]

. (C23)

We observe that the zeroth-order equation, i.e., [�0, H0] = 0 is obviously satisfied for a choice �0 = e−βH0 .
Let us then calculate the coefficients g(02)

αβ and g(20)
αβ for the second-order equation. We start with:

L0[�2] = i[�2, H0] = −iϒ (st)
αβ (ω1, ω2)α(ω1 + ω2)[e−βH0 A†

α (ω)Aβ (ω2), H0] (C24)

= −i(ω1 + ω2)ϒ (st)
αβ (−ω1, ω2)α(ω1 + ω2)e−βH0 Aα (ω1)Aβ (ω2), (C25)

where we used Eq. (C21), such that

g(02)
αβ = −i(ω1 + ω2)ϒ (st)

αβ (−ω1, ω2)α(ω1 + ω2). (C26)

Next, we shall calculate:

L2[�0] = iϒ (LS)
αβ (ω1, ω2)[�0, A†

α (ω1)Aβ (ω2)] + Kαβ (ω1, ω2)
(
Aβ (ω2)�0A†

α (ω1) − 1
2 {A†

α (ω1)Aβ (ω2), �0}
)

= iϒ (LS)
αβ (ω1, ω2)[e−βH0 , A†

α (ω1)Aβ (ω2)] + Kαβ (ω1, ω2)
(
Aβ (ω2)e−βH0 A†

α (ω1) − 1
2 {A†

α (ω1)Aβ (ω2), e−βH0}). (C27)

First, let us rewrite the Hamiltonian part in the form:

iϒ (LS)
αβ (ω1, ω2)[e−βH0 , A†

α (ω1)Aβ (ω2)] = iϒ (LS)
αβ (ω1, ω2)(e−βH0 A†

α (ω1)Aβ (ω2) − A†
α (ω1)Aβ (ω2)e−βH0 ) (C28)

= iϒ (LS)
αβ (ω1, ω2)(1 − e−β(ω2−ω1 ) )e−βH0 A†

α (ω1)Aβ (ω2), (C29)
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and then the dissipative part as follows

Kαβ (ω1, ω2)
(
Aβ (ω2)e−βH0 A†

α (ω1) − 1
2 {A†

α (ω1)Aβ (ω2), e−βH0}) (C30)

= Kαβ (ω1ω2)
(
Aβ (ω2)e−βH0 A†

α (ω1) − 1
2 A†

α (ω1)Aβ (ω2)e−βH0 − 1
2 e−βH0 A†

α (ω1)Aβ (ω2)}), (C31)

= Kαβ (ω1ω2)
(
e−βωe−βH0 Aβ (ω2)A†

α (ω1) − 1
2 e−β(ω−ω2 )e−βH0 A†

α (ω1)Aβ (ω2) − 1
2 e−βH0 A†

α (ω1)Aβ (ω2)
)
, (C32)

= (
eβω1 Kβα (−ω2,−ω1) − 1

2 Kαβ (ω1, ω2)(e−β(ω2−ω1 ) + 1)
)
e−βH0 A†

α (ω1)Aβ (ω2). (C33)

Finally, we get

g(20)
αβ (ω1, ω2) = iϒ (LS)

αβ (−ω1, ω2)(1 − e−β(ω1+ω2 ) ) + eβω1 Kβα (−ω2,−ω1) − 1
2 Kαβ (−ω1, ω2)(e−β(ω1+ω2 ) + 1). (C34)

Now, we postulate the solution

g(02)
αβ (ω1, ω2) + g(20)

αβ (ω1, ω2) = 0, (C35)

for each ω1, ω2 and α, β. First, for ω1 = ω2 ≡ ω, we have

eβωKβα (−ω,−ω) − Kαβ (ω,ω) = 0, (C36)

such that the coefficient Kαβ (ω,ω) has to satisfy the detailed balance condition. Furthermore, for ω1 �= ω2 we get

iϒ (st)
αβ (−ω1, ω2)(e−β(ω1+ω2 ) − 1) − iϒ (LS)

αβ (−ω1, ω2)(e−β(ω1+ω2 ) − 1)

+ e−βω1 Kβα (−ω2, ω1) − 1
2 Kαβ (−ω1, ω2)(eβ(ω1+ω2 ) + 1) = 0. (C37)

This can be further simplified to:

ϒ
(st)
αβ (ω1, ω2) = ϒ

(LS)
αβ (ω1, ω2) + i

eβω1 − eβω2

[
eβ(ω1+ω2 )Kβα (−ω2,−ω1) − 1

2
Kαβ (ω1, ω2)(eβω1 + eβω2 )

]
. (C38)

a. Solutions for the Bloch-Redfield master equation and for secular approximation

For the Bloch-Redfield master equation, we have:

ϒ
(LS)
αβ (ω,ω′) = 1

2i
[
αβ (ω′) − 
∗

βα (ω)], (C39)

Kαβ (ω,ω′) = 
αβ (ω′) + 
∗
βα (ω). (C40)

Next, we put:


αβ (ω) = 1
2γαβ (ω) + iSαβ (ω), (C41)

such that

ϒ
(LS)
αβ (ω,ω′) = 1

2i

[
1

2
γαβ (ω′) + iSαβ (ω′) − 1

2
γαβ (ω) + iSαβ (ω)

]
, (C42)

= 1

4i
[γαβ (ω′) − γαβ (ω)] + 1

2
[Sαβ (ω′) + Sαβ (ω)], (C43)

and

Kαβ (ω,ω′) = 1
2γαβ (ω′) + iSαβ (ω′) + 1

2γαβ (ω) − iSαβ (ω), (C44)

= 1
2 [γαβ (ω′) + γαβ (ω)] + i[Sαβ (ω′) − Sαβ (ω)]. (C45)

Let us put above expression into Eq. (C38) and collect all of the terms with Sαβ :

1

2
(Sαβ (ω′) + Sαβ (ω)) − 1

eβω − eβω′

(
eβ(ω+ω′ )(Sβα (−ω) − Sβα (−ω′)) − 1

2
(Sαβ (ω′) − Sαβ (ω))(eβω + eβω′

)

)
, (C46)

= 1

eβω − eβω′

[
eβω − eβω′

2
(Sαβ (ω′) + Sαβ (ω)) − eβω + eβω′

2
(Sαβ (ω) − Sαβ (ω′)) − eβ(ω+ω′ )(Sβα (−ω) − Sβα (−ω′))

]
,

(C47)

= 1

eβω − eβω′ [eβωSαβ (ω′) − eβω′Sαβ (ω) + eβ(ω+ω′ )(Sβα (−ω′) − Sβα (−ω))]. (C48)
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Next, we collect all of the terms with γαβ , i.e.,

1

4i
(γαβ (ω′) − γαβ (ω)) + i

eβω − eβω′

(
eβ(ω+ω′ ) 1

2
(γαβ (−ω) + γαβ (−ω′)) − 1

4
(γαβ (ω′) + γαβ (ω))(eβω + eβω′

)

)
, (C49)

= i

4

(
−γαβ (ω′) + γαβ (ω) + 1

eβω − eβω′ (2(eβω′
γαβ (ω) + eβωγαβ (ω′)) − (γαβ (ω′) + γαβ (ω))(eβω + eβω′

))

)
, (C50)

= i

4

(
−γαβ (ω′) + γαβ (ω) + 1

eβω − eβω′ (2eβω′
γαβ (ω) + 2eβωγαβ (ω′) − γαβ (ω′)(eβω + eβω′

) − γαβ (ω)(eβω + eβω′
))

)
,

(C51)

= i

4

(
−γαβ (ω′) + γαβ (ω) + 1

eβω − eβω′ (eβω′
γαβ (ω) + eβωγαβ (ω′) − eβω′

γαβ (ω′) − eβωγαβ (ω))

)
= 0. (C52)

One sees that only terms Sαβ survives. Moreover, these are exactly equal to the expression for a mean-force Hamiltonian given
by Eq. (B19), such that for the Bloch-Redfield or cumulant master equation we have simply:

ϒ
(st)
αβ (ω,ω′) = ϒ

(mf )
αβ (ω,ω′), (C53)

for ω �= ω′.
Let us observe that if we apply the so-called secular approximation before (see (28)) for γαβ coefficients, i.e.,

γαβ (ω,ω′)
sec. approx−−−−−→ γαβ (ω)δω,ω′ , (C54)

then

eβ(ω+ω′ )γβα (−ω′,−ω) − 1
2γαβ (ω,ω′)(eβω + eβω′ = δω,ω′ (e2βωγβα (−ω) − eβωγαβ (ω)) = 0. (C55)

due to the detailed balance condition. Finally, for such master equation, for ω �= ω′, we have

ϒ
(st)
αβ (ω,ω′) = ϒ

(LS)
αβ (ω,ω′). (C56)

3. Fourth-order equation

Now, we are going to solve the fourth-order equation (C18). For simplicity, we assume that the interaction term is given by
HI = A ⊗ R, such that we drop the indices, i.e.,

(g04(ω1, ω2, ω3, ω4) + g22(ω1, ω2, ω3, ω4) + g40(ω1, ω2, ω3, ω4))e−βH0 A(ω1)A(ω2)A(ω3)A(ω4) = 0, (C57)

where g(kl )
αβγ δ ≡ gkl . According to the Proposition 1 in Sec. IV B 2, the above equation is satisfied if and only if the following set

of equations is satisfied: ∑
(ω1,ω2,ω2,ω4 )∈G(|k〉→|k〉)

(g22(ω1, ω2, ω3, ω4) + g40(ω1, ω2, ω3, ω4)) = 0, (C58)

where G(|k〉 → |k〉) denotes the set of all four-tuples,

(ω1, ω2, ω2, ω4) = (εl − εk, εm − εl , ε j − εm, εk − ε j ). (C59)

a. g22 function

We consider the term:

L2[�2] =
∑

ω1,ω2,ω3,ω4

g22(ω1, ω2, ω3, ω4)A(ω1)A(ω2)A(ω3)A(ω4), (C60)

where

�2 = α(ω3 + ω4)ϒst (−ω3, ω4)�0A(ω3)A(ω4) (C61)

L2[ρ] = −iϒLS(−ω1, ω2)[A(ω1)A(ω2), ρ] + K (−ω1, ω2)
(
A(ω2)ρA(ω1) − 1

2 {A(ω1)A(ω2), ρ}) (C62)

Then, we have:

L2[�2] = iϒLS(−ω1, ω2)ϒst (−ω3, ω4)α(ω3 + ω4)A(ω1)A(ω2)�2A(ω3)A(ω4) (C63)

− iϒLS(−ω1, ω2)ϒst (−ω3, ω4)α(ω3 + ω4)�2A(ω3)A(ω4)A(ω1)A(ω2) (C64)
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+ 1
2 (ϒst (−ω3, ω4)α(ω3 + ω4)K (−ω1, ω2)A(ω1)A(ω2)�2A(ω3)A(ω4)) (C65)

−ϒst (−ω3, ω4)α(ω3 + ω4)K (−ω1, ω2)A(ω2)�2A(ω3)A(ω4)A(ω1) (C66)

+ 1
2 (ϒst (−ω3, ω4)α(ω3 + ω4)K (−ω1, ω2)�2A(ω3)A(ω4)A(ω1)A(ω2)), (C67)

which we may rewrite as:

L2[�2] = (−iϒLS(−ω1, ω2)ϒst (−ω3, ω4)α(ω3 + ω4)+ 1
2 (ϒst (−ω3, ω4)α(ω3 + ω4)K (−ω1, ω2))

)
e−βH0 A(ω3)A(ω4)A(ω1)A(ω2)

+ (
iϒLS(−ω1, ω2)e−β(ω2+ω1 ) + 1

2 (K (−ω1, ω2)e−β(ω2+ω1 ) )
)
ϒst (−ω3, ω4)α(ω3 + ω4)e−βH0 A(ω1)A(ω2)A(ω3)A(ω4)

− ϒst (−ω3, ω4)α(ω3 + ω4)K (−ω1, ω2)e−βω2 e−βH0 A(ω2)A(ω3)A(ω4)A(ω1). (C68)

Since all ωi’s are mute indices, we change them such that one obtains:

g22(ω1, ω2, ω3, ω4) = ϒst (−ω3, ω4)α(ω3 + ω4)
(
iϒLS(−ω1, ω2) + 1

2 K (−ω1, ω2)
)

− ϒst (−ω1, ω2)α(ω1 + ω2)
(
iϒLS(−ω3, ω4) − 1

2 K (−ω3, ω4)
)

− e−βω1ϒst (−ω2, ω3)α(ω2 + ω3)K (−ω4, ω1). (C69)

b. g40 function (cumulant equation)

We consider the fourth-order generator of the cumulant in the Schrödinger picture:

L(4)
t [ρ] = 1

2

∫ t

0
ds e−iH0t

[
L̃R

s , L̃R
t

]
[eiH0tρe−iH0t ]eiH0t . (C70)

Acting on �0 that commutes with H0, this simplifies to:

L(4)
t [�0] = 1

2

∫ t

0
ds e−iH0t

[
L̃R

s , L̃R
t

]
[�0]eiH0t . (C71)

We then define

L(4)
t [�0] =

∑
ω1,ω2,ω3,ω4

g40(ω1, ω2, ω3, ω4, t )e−βH0 A(ω1)A(ω2)A(ω3)A(ω4). (C72)

To get an expression for g40, we first compute the action of L̃R
s L̃R

t on �0, i.e.,

L̃R
s L̃R

t [�0] =
∑

ω1,ω2,ω3,ω4

f (ω1, ω2, ω3, ω4)e−βH0 A(ω1)A(ω2)A(ω3)A(ω4), (C73)

where

f (ω1, ω2, ω3, ω4, t, s)

= S̃ (−ω1, ω2, s)S̃ (−ω3, ω4, t )e−β(ω1+ω2 ) − S̃ (−ω1, ω2, s)S̃ (−ω3, ω4, t )e−β(ω1+ω2+ω3+ω4 ) (C74)

+ i

2
S̃ (−ω1, ω2, s)γ̃ (−ω3, ω4, t )e−β(ω1+ω2 ) + i

2
S̃ (−ω1, ω2, s)γ̃ (−ω3, ω4, t )e−β(ω1+ω2+ω3+ω4 ) (C75)

−iS̃ (−ω1, ω2, s)γ̃ (−ω4, ω3, t )e−β(ω1+ω2+ω3 ) + S̃ (−ω1, ω2, t )S̃ (−ω3, ω4, s)e−β(ω1+ω2 ) (C76)

−S̃ (−ω1, ω2, t )S̃ (−ω3, ω4, s) + i

2
S̃ (−ω1, ω2, t )γ̃ (−ω3, ω4, s)e−β(ω1+ω2 ) − i

2
S̃ (−ω1, ω2, t )γ̃ (−ω3, ω4, s) (C77)

−iS̃ (−ω2, ω3, t )γ̃ (−ω4, ω1, s)e−β(ω1+ω2+ω3 ) + iS̃ (−ω2, ω3, t )γ̃ (−ω4, ω1, s)e−βω1 (C78)

− i

2
S̃ (−ω3, ω4, s)γ̃ (−ω1, ω2, t )e−β(ω1+ω2 ) − i

2
S̃ (−ω3, ω4, s)γ̃ (−ω1, ω2, t ) + iS̃ (−ω3, ω4, s)γ̃ (−ω2, ω1, t )e−βω1

(C79)

− i

2
S̃ (−ω3, ω4, t )γ̃ (−ω1, ω2, s)e−β(ω1+ω2 ) + i

2
S̃ (−ω3, ω4, t )γ̃ (−ω1, ω2, s)e−β(ω1+ω2+ω3+ω4 ) (C80)

+1

4
γ̃ (−ω1, ω2, s)γ̃ (−ω3, ω4, t )e−β(ω1+ω2 ) + 1

4
γ̃ (−ω1, ω2, s)γ̃ (−ω3, ω4, t )e−β(ω1+ω2+ω3+ω4 ) (C81)

−1

2
γ̃ (−ω1, ω2, s)γ̃ (−ω4, ω3, t )e−β(ω1+ω2+ω3 ) + 1

4
γ̃ (−ω1, ω2, t )γ̃ (−ω3, ω4, s)e−β(ω1+ω2 ) (C82)

+1

4
γ̃ (−ω1, ω2, t )γ̃ (−ω3, ω4, s) − 1

2
γ̃ (−ω2, ω1, t )γ̃ (−ω3, ω4, s)e−βω1 (C83)
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−1

2
γ̃ (−ω2, ω3, t )γ̃ (−ω4, ω1, s)e−β(ω1+ω2+ω3 ) − 1

2
γ̃ (−ω2, ω3, t )γ̃ (−ω4, ω1, s)e−βω1 (C84)

+γ̃ (−ω3, ω2, t )γ̃ (−ω4, ω1, s)e−β(ω1+ω2 ). (C85)

Consequently, we have

g40(ω1, ω2, ω3, ω4, t ) = 1

2
ei(ω1+ω2+ω3+ω4 )t

∫ t

0
ds ( f (ω1, ω2, ω3, ω4, t, s) − f (ω1, ω2, ω3, ω4, s, t )). (C86)

The above expression, in general would not have well defined limit for t → ∞. However, we will need the xxx

4. Proof of Proposition 1

We consider diagonal elements of the Eq. (70), such that we obtain the following set of equations∑

ω

(g04(
ω) + g22(
ω) + g40(
ω))e−βεk 〈k| A(ω1)A(ω2)A(ω3)A(ω4) |k〉 = 0. (C87)

for k = 0, 1, 2, . . . . We see that since for arbitrary ρ we have:∑

ω

g04(
ω) 〈k| e−βH0 A(ω1)A(ω2)A(ω3)A(ω4) |k〉 (C88)

= 〈k|L(0)
∞ [ρ] |k〉 = 〈k| [H0, ρ] |k〉 = 0, (C89)

so our condition is now just ∑

ω

(g22(
ω) + g40(
ω))e−βεk 〈k| A(ω1)A(ω2)A(ω3)A(ω4) |k〉 = 0. (C90)

Moreover, one observes that 〈k| A(ω1)A(ω2)A(ω3)A(ω4) |k〉 is nonzero only if
∑

k ωk = 0. Consequently, let us denote by
G(|k〉 → |k〉) the set of all four-tuples 
ω of the form:


ω = (εl − εk, εm − εl , ε j − εm, εk − ε j ), (C91)

form which follows Eq. (73).

5. Two-level system

Now we shall specialize to the case of a two-level system. We then have k = 0, 1 and ε1 − ε0 = ω0, such that

G(|0〉 → |0〉) ={(0, 0, 0, 0), (ω0,−ω0, 0, 0), (ω0, 0,−ω0, 0), (ω0, 0, 0,−ω0), (C92)

(0, ω0,−ω0, 0), (0, ω0, 0,−ω0), (0, 0, ω0,−ω0), (ω0,−ω0, ω0,−ω0}). (C93)

The set G(|1〉 → |1〉) is the same but with changed sign of the qubit frequency ω0 → −ω0. Then, according to Eq. (C69), one
can first observe that the coefficient g22 summed over first seven four-tuples vanishes, i.e.,

g22(0, 0, 0, 0) + g22(ω0,−ω0, 0, 0) + g22(ω0, 0,−ω0, 0) + g22(ω0, 0, 0,−ω0)

+ g22(0, ω0,−ω0, 0) + g22(0, ω0, 0,−ω0) + g22(0, 0, ω0,−ω0) = 0, (C94)

whereas for the last one we have

g22(ω0,−ω0, ω0,−ω0) = β(ϒst (−ω0,−ω0)K (−ω0,−ω0) − e−βω0ϒst (ω0, ω0)K (ω0, ω0)). (C95)

If additionally K (ω,ω) obeys the detailed balance condition, then

g22(ω0,−ω0, ω0,−ω0) = βe−βω0 (ϒst (−ω0,−ω0) − ϒst (ω0, ω0))K (ω0, ω0). (C96)

a. Second-order master equation

Now, since for arbitrary master equation of the form (6), which is up to second order in λ, we also have g40 = 0. From this
we conclude that Eq. (C18) is satisfied if

ϒst (ω0, ω0) = ϒst (−ω0,−ω0). (C97)

Since for a two-level system, in general we have

〈0| H (2)
st |0〉 = ϒst (0, 0) + ϒst (ω0, ω0), 〈1| H (2)

st |1〉 = ϒst (0, 0) + ϒst (−ω0,−ω0). (C98)
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Thus, applying the condition (C97), we finally get:

〈0| H (2)
st |0〉 = 〈1| H (2)

st |1〉 = ϒst (ω0, ω0). (C99)

b. Cumulant equation

To solve the Eq. (C18) for the cumulant master equation we need to additionally calculate the term involving the coefficient
g40. Putting the expression (C86), we observe that, similarly to the summation of g22, the sum over first seven tuples vanishes,
such that we obtain a very simple expression

lim
t→∞

∑
(ω1,ω2,ω2,ω4 )∈G(|0〉→|0〉)

g40(ω1, ω2, ω2, ω4, t ) = g40(ω0,−ω0, ω0,−ω0), (C100)

where

g40(ω0,−ω0, ω0,−ω0) = 1

2
e−βω0 (1 + eβω0 )γ (ω0)

∫ ∞

0
ds (e−βω0γ (ω0, s) − γ (−ω0, s)). (C101)

Since, the leading order of the cumulant master equation is the Bloch-Redfield generator, we also have

g22(ω0,−ω0, ω0,−ω0) = βe−βω0 (ϒst (−ω0,−ω0) − ϒst (ω0, ω0))γ (ω0). (C102)

Finally, we need to solve

g22(ω0,−ω0, ω0,−ω0) + g40(ω0,−ω0, ω0,−ω0) = 0, (C103)

which gives us

ϒst (ω0, ω0) − ϒst (−ω0,−ω0) = 1

2β
(1 + eβω0 )

∫ ∞

0
ds (e−βω0γ (ω0, s) − γ (−ω0, s)) (C104)

= 1

2β

∫ ∞

0
ds (γ (ω0, s) + e−βω0γ (ω0, s) − γ (−ω0, s) − eβω0γ (−ω0, s)) (C105)

= 1

2β

∫ ∞

0
ds (γ (ω0, s) − eβω0γ (−ω0, s)) − 1

2β

∫ ∞

0
ds (γ (−ω0, s) − e−βω0γ (ω0, s)). (C106)

The above formula does not yet allow to determine ϒst (ω,ω), since it is a difference of such quantities. However this
indeterminacy is just a shift of the Hamiltonian by a constant, and therefore it is irrelevant. Actually this is just the gauge
that has to be chosen at some point. We just can consider the simplest choice

ϒst (ω,ω) = 1

2β

∫ ∞

0
ds (γ (ω, s) − eβωγ (−ω, s)). (C107)

In the end, we want to compare the steady-state correction with the mean-force one. The diagonal part of the mean-force
coefficients is given by:

ϒmf (ω,ω) = 1

2π

∫ +∞

−∞
d� Dmf (ω,ω,�)γ (�), (C108)

where

Dmf (ω,ω,�) = − 1

β

∫ β

0
dt

∫ t

0
ds es(ω−�) = 1 − eβ(ω−�) + β(ω − �)

β(ω − �)2
. (C109)

Let us then represent a function γ (ω, t ) in a similar way. From the definition, we have:

γ (ω, t ) = 
(ω, t ) + 
(ω, t )∗ =
∫ t

−t
ds eiωs〈R(s)R〉, (C110)

such that by substituting

〈R(s)R〉 = 1

2π

∫ ∞

−∞
d� e−i�sγ (�), (C111)

we get

γ (ω, t ) =
∫ t

−t
ds eiωs〈R(s)R〉 = 1

2π

∫ ∞

−∞
d� γ (�)

∫ t

−t
ds ei(ω−�)s = 1

π

∫ ∞

−∞
d�

γ (�)

ω − �
sin[(ω − �)t]. (C112)

014144-20



CORRECTIONS TO THE HAMILTONIAN INDUCED BY … PHYSICAL REVIEW E 110, 014144 (2024)

Accordingly, the steady-state coefficient is given by:

ϒst (ω,ω) = 1

2πβ

∫ ∞

−∞
d� γ (�)

∫ ∞

0
dt

(
sin[(ω − �)t]

ω − �
− eβω sin[(ω + �)t]

ω + �

)
. (C113)

Now, let us observe that since the function γ (�) satisfies the detailed-balance condition, i.e., γ (�) = eβ�γ (−�), then one may
write: ∫ ∞

−∞
d� γ (�)

sin[(ω + �)t]

ω + �
=

∫ ∞

−∞
d� eβ�γ (−�)

sin[(ω + �)t]

ω + �
=

∫ ∞

−∞
d� γ (�)e−β� sin[(ω − �)t]

ω − �
. (C114)

Applying this to the previous equation, we get

ϒst (ω,ω) = 1

2πβ

∫ ∞

−∞
d� γ (�)

1 − eβ(ω−�)

ω − �

∫ ∞

0
dt sin[(ω − �)t]. (C115)

Finally, we represent the integral over sine as the Cauchy principal value, i.e., by using the Sokhotski-Plemelj formula (A24),
we may write ∫ ∞

0
dt sin[(ω − �)t] = P 1

ω − �
, (C116)

such that

ϒst (ω,ω) = P 1

2πβ

∫ ∞

−∞
d� γ (�)

1 − eβ(ω−�)

(ω − �)2
. (C117)

Let us then back to the mean-force representation. The formula Dmf (ω,ω,�) given by Eq. (C109) has no poles, nevertheless,
it can be split into two principal value integrals:

ϒmf (ω,ω) = 1

2πβ

∫ +∞

−∞
d� γ (�)

1 − eβ(ω−�) + β(ω − �)

(ω − �)2
(C118)

= P 1

2πβ

∫ +∞

−∞
d� γ (�)

1 − eβ(ω−�)

(ω − �)2
+ P 1

2π

∫ +∞

−∞
d� γ (�)

1

ω − �
. (C119)

The first integral is precisely the representation of the steady-state corrections, whereas the second term is the previously defined
function S (ω) (A27).

Finally, we have proved the following identity for the cumulant equation (for the two-level system):

ϒmf (ω,ω) = ϒst (ω,ω) + S (ω). (C120)

APPENDIX D: CUMULANT EQUATION

Consider a system interacting with a thermal reservoir which Hamiltonian is given by:

H = H0 + HR + λHI (D1)

Let us also consider the Born Approximation such that ρ(0) = ρS (0) ⊗ ρR where ρR is a stationary state of the environment. In
the interaction picture the reduced state at time t is:

ρS (t ) = TrR(U (t, t0)ρS (t0) ⊗ ρR(t0)U †(t, t0)). (D2)

One may expand the evolution operator in the interaction picture U (t, 0) = T e−i
∫ t

0 HI (t ′ )dt ′
and rearrange terms (of the same

power of HI ) to obtain:

ρS (t ) = ρS (0) −λ2 T
2

∫ t

0
dt1

∫ t

0
dt2TrR([HI (t1), [HI (t2), ρS (0) ⊗ ρR]])︸ ︷︷ ︸

K̃ (2)
t

+O(λ3). (D3)

The terms O(H3
I ) can be neglected for weak coupling or short times. We already considered the initial state of the bath to be

thermal ρB(0) = ρβ = e−βHB/Tre−βHB and the bath operators to be centralized. Let us know focus on the second term, let us
apply time-ordering explicitly so that:

K̃ (2)
t = −λ2

2

∫ t

0
dt1

∫ t

0
dt2θ (t1 − t2)TrR([HI (t1), [HI (t2), ρS (0) ⊗ ρR]])

− λ2

2

∫ t

0
dt1

∫ t

0
dt2θ (t2 − t1)TrR([HI (t2), [HI (t1), ρS (0) ⊗ ρR]]). (D4)
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Let us know expand the double commutators:

K̃ (2)
t = − λ2

2

∫ t

0
dt1

∫ t

0
dt2θ (t1 − t2)TrR[HI (t1)HI (t2)ρS (0)ρR − HI (t1)ρS (0)ρRHI (t2) − HI (t2)ρS (0)ρRHI (t1)

+ ρS (0)ρRHI (t1)HI (t2)] − λ2

2

∫ t

0
dt1

∫ t

0
dt2θ (t2 − t1)TrR[HI (t2)HI (t1)ρS (0)ρR − HI (t2)ρS (0)ρRHI (t1)

− HI (t1)ρS (0)ρRHI (t2) + ρS (0)ρRHI (t2)HI (t1)].

From here it can be seen that we have three kind of terms, namely H2
I ρ, HIρHI , ρH2

I . Let us consider each of those independently,

HIρHI :
λ2

2

∫ t

0
dt1

∫ t

0
dt2(θ (t1 − t2) + θ (t2 − t1))TrR[HI (t1)ρS (0)ρRHI (t2) + HI (t2)ρS (0)ρRHI (t1)] (D5)

= λ2

2

∫ t

0
dt1

∫ t

0
dt2TrR[HI (t1)ρS (0)ρRHI (t2) + HI (t2)ρS (0)ρRHI (t1)] (D6)

= λ2
∫ t

0
dt1

∫ t

0
dt2TrR[HI (t1)ρS (0)ρRHI (t2)], (D7)

where in the last step we used a change of variables on the second term, such that t1 ↔ t2. Next, we consider the other two
missing terms

H2
I ρ : −λ2

2

∫ t

0
dt1

∫ t

0
dt2(θ (t1 − t2)TrR[HI (t1)HI (t2)ρS (0)ρR] + θ (t2 − t1)TrR[HI (t2)HI (t1)ρS (0)ρR]) (D8)

= −λ2

2

∫ t

0
dt1

∫ t

0
dt2(θ (t1 − t2)TrR[[HI (t1), HI (t2)]ρS (0)ρR] + TrR[HI (t2)HI (t1)ρS (0)ρR]) (D9)

ρH2
I : −λ2

2

∫ t

0
dt1

∫ t

0
dt2(θ (t1 − t2)TrR[ρS (0)ρRHI (t2)HI (t1)] + θ (t2 − t1)TrR[HI (t1)HI (t2)ρS (0)ρR]) (D10)

= −λ2

2

∫ t

0
dt1

∫ t

0
dt2(θ (t1 − t2)TrR[ρS (0)ρR[HI (t2), HI (t1)]] + TrR[ρS (0)ρRHI (t1)HI (t2)]). (D11)

In both cases the step taken from one line to the other was summing a zero so that the terms could be recast in that form, they
were ± 1

2

∫ t
0 dt1

∫ t
0 dt2θ (t1 − t2)TrR[HI (t2)HI (t1)ρS (0)ρR] in the first case and ± 1

2

∫ t
0 dt1

∫ t
0 dt2θ (t1 − t2)TrR[ρS (0)ρRHI (t1)HI (t2)]

in the second one. Regrouping all terms we have

K̃ (2)
t = λ2

∫ t

0
dt1

∫ t

0
dt2

(
TrR[HI (t1)ρS (0)ρRHI (t2)] − 1

2
(TrR[ρS (0)ρRHI (t1)HI (t2)] + TrR[HI (t2)HI (t1)ρS (0)ρR])

)

− λ2

2

∫ t

0
dt1

∫ t

0
dt2θ (t1 − t2)(TrR[[HI (t1), HI (t2)]ρS (0)ρR] − TrR[ρS (0)ρR[HI (t1), HI (t2)]]) (D12)

= λ2
∫ t

0
dt1

∫ t

0
dt2

(
TrR[HI (t1)ρS (0)ρRHI (t2)] − 1

2
(TrR[ρS (0)ρRHI (t1)HI (t2)] + TrR[HI (t2)HI (t1)ρS (0)ρR])

)
− iλ2[�(t ), ρS (0)], (D13)

where

�(t ) = 1

2i

∫ t

0
dt1

∫ t

0
dt2θ (t1 − t2)TrR[[HI (t1), HI (t2)]ρR] (D14)

= 1

2i

∫ t

0
dt1

∫ t

0
dt2sgn(t1 − t2)TrR[HI (t1)HI (t2)ρR], (D15)

where we used θ (x) = 1+sgn(x)
2 . Now, if we expand the interaction Hamiltonian in the interaction picture

HI = ∑
w,k eiwt Ak (w)Bk = ∑

w,k e−iwt A†
k (w)Bk , then

�(t ) = 1

2i

∑
w,w′

∑
αβ

∫ t

0
dt1

∫ t

0
dt2sgn(t1 − t2)ei(wt1−w′t2 )A†

α (w)Aβ (w′)〈Bα (t1)Bβ (t2)〉R

=
∑
w,w′

∑
αβ

�(w,w′, t )A†
α (w)Aβ (w′). (D16)
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So we obtain:

K̃ (2)
t [ρS (0)] = −i

∑
w,w′

∑
αβ

�(w,w′, t )[A†
α (w)Aβ (w′), ρS (0)] + ξαβ (w,w′, t )

(
Aβ (w′)ρS (0)A†

α (w) − 1

2
{A†

α (w)Aβ (w′), ρS (0)}
)
,

where

ξαβ (w,w′, t ) =
∫ t

0
dt1

∫ t

0
dt2ei(wt1−w′t2 )〈Rα (t1)Rβ (t2)〉. (D17)

We may rewrite this in terms of previously obtained quantities as:

ξαβ (w,w′, t ) =
∫ t

0
ds

∫ t

0
dωei(ws−w′ω)〈Rα (s)Rβ (w)〉 (D18)

=
∫ t

0
ds

∫ t

s
dωei(ws−w′ω)〈Rα (s)Rβ (w)〉 +

∫ t

0
ds

∫ s

0
dωei(ws−w′ω)〈Rα (s)Rβ (w)〉 (D19)

=
∫ t

0
dω

∫ ω

0
dsei(ws−w′ω)〈Rα (s)Rβ (w)〉 +

∫ t

0
ds

∫ s

0
dωei(ws−w′ω)〈Rα (s)Rβ (w)〉 (D20)

=
∫ t

0
ds

∫ s

0
dωei(wω−w′s)〈Rα (w)Rβ (s)〉 +

∫ t

0
ds

∫ s

0
dωei(ws−w′ω)〈Rα (s)Rβ (w)〉 (D21)

=
∫ t

0
ds

∫ s

0
dωei(wω−w′s)〈Rα (w − s)Rβ〉 +

∫ t

0
ds

∫ s

0
dωei(ws−w′ω)〈Rα (s − w)Rβ〉 (D22)

=
∫ t

0
ds

∫ s

0
dξei((w−w′ )s−wξ )〈Rα (−ξ )Rβ〉 +

∫ t

0
ds

∫ s

0
dξei((w−w′ )s+ξw′ )〈Rα (ξ )Rβ〉 (D23)

=
∫ t

0
dsei(w−w′ )s(
∗

βα (w, s) + 
αβ (w′, s)) (D24)

=
∫ t

0
dsei(w−w′ )sγαβ (w,w′, s) =

∫ t

0
dsγ̃αβ (w,w′, s). (D25)

Now, we can notice that the derivative of such coefficient corresponds to:

d

dt
ξαβ (w,w′, t ) = ei(w−w′ )tγ (w,w′, t ) = γ̃ (w,w′, t ). (D26)

Furthermore, from Ref. [30] we know that:

d

dt
�αβ (w,w′, t ) = ei(w′−w)t

2i
(
αβ (w′, t ) − 
∗

βα (w, t )) = ei(w′−w)t Sαβ (w,w′, t ) = S̃αβ (w,w′, t ). (D27)

One may then rewrite K̃ (2)
t as:

K̃ (2)
t [ρ] = λ2

∫ t

0
ds

∑
ω,ω′

∑
αβ

(
iS̃αβ (ω,ω′, s)[ρ, A†

α (ω)Aβ (ω′)] + γ̃αβ (ω,ω′, s)

(
Aβ (ω′)ρA†

α (ω) − 1

2
{A†

α (ω)Aβ (ω′), ρ}
))

.

(D28)

APPENDIX E: COMPARISON WITH LAMB-SHIFT HAMILTONIAN AND THE STEADY STATE - QUBIT CASE

In this section we consider the particular case of a qubit coupled to a bosonic bath given by

H = ω0

2
σz +

∑
k

�ka†
kak + S

∞∑
k=1

λk (ak + a†
k ), (E1)

where we take S to be a general interaction operator in the Pauli basis:

S = xσx + yσy + zσz. (E2)

This form of Hamiltonian with y = 0 has been studied previously in Ref. [8], where it was reported that such Hamiltonian
have steady-state coherences. In this section, we see that the general framework presented here agrees with that result. Using
Eq. (B17) and this interaction, the second-order correction to the Hamiltonian takes the form:

H (2)
cor =

[
z2ϒcor (0, 0) + (x2 + y2)ϒcor (ω,ω) (x − iy)z(ϒcor (0,−ω) − ϒcor (ω, 0))

(x + iy)z(ϒcor (0,−ω) − ϒcor (ω, 0)) z2ϒcor (0, 0) + (x2 + y2)ϒcor (−ω,−ω)

]
, (E3)
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where cor indicates the Lamb-shift (LS), steady-state (st), or mean-force (m f ) correction. We can rewrite this correction as a
linear combination of the Pauli Matrices such that:

H (2)
cor = A1 + Bσx + Cσy + Dσz, (E4)

A = z2ϒcor (0, 0) + x2 + y2

2
(ϒcor (ω,ω) + ϒcor (−ω,−ω)), (E5)

B = xz(ϒcor (0,−ω) − ϒcor (ω, 0)), (E6)

C = yz(ϒcor (0,−ω) − ϒcor (ω, 0)), (E7)

D = x2 + y2

cor2
(ϒcor (ω,ω) − ϒcor (−ω,−ω)). (E8)

We can see how the different approaches differ qualitatively by looking at the structure of the different ϒcor (ω,ω′) given by
each approach. It is important to remark that any approach that performs the secular approximation will have both B and C equal
to zero, meaning the correction will be diagonal and as such won’t be able to describe the off-diagonal elements of the steady
states accordingly. While nonsecular approaches such as the Bloch-Redfield equation, will have nondiagonal corrections, leading
to a more appropriate description of the off-diagonal elements of the correction as well as steady-state coherences. Let us for
a moment recall the structure of the Bloch-Redfield coefficients which are given by (C43), simply substituting the appropriate
frequencies for the qubit leads to:

ϒLS(0,−ω) − ϒLS(ω, 0) = S (−ω) − S (ω)

2
+ i

γ (0) − (γ (ω) + γ (−ω))

4
(E9)

and

ϒLS(ω,ω) + ϒLS(−ω,−ω) = S (ω) + S (−ω), (E10)

ϒLS(ω,ω) − ϒLS(−ω,−ω) = S (ω) − S (−ω). (E11)

Let us now compare this coefficient with the one obtained with the mean force approach. We will only be considering the
off-diagonal of the correction:

K (ω) = ϒmf (0,−ω) − ϒmf (ω, 0) = 1

2π

∫ +∞

−∞
d�γ (�)C(ω,�), (E12)

where

C(ω,�) =
(

ω2(1 − e−β�) coth
[

βω

2

] + (1 + e−β�)�ω

�(�2 − ω2)

)
. (E13)

Additionally, our coefficients satisfy detailed balance conditions such that:

γ (−�) = γ (�)e−β�, C(ω,−�) = C(ω,�)eβ�. (E14)

Using those we see that γ (−�)C(ω,−�) = γ (�)C(ω,�) and

K (ω) = 1

π

∫ +∞

0
d� γ (�)C(ω,�). (E15)

Let us now separate γ (�) into its symmetric and antisymmetric parts:

γs(�) = 1
2 (γ (�) + γ (−�)) = 1

2 (1 + e−β�)γ (�), (E16)

γa(�) = 1
2 (γ (�) − γ (−�)) = 1

2 (1 − e−β�)γ (�). (E17)

Then we may write:

K (ω) = 2

π

∫ +∞

0
d�

(
ω2γa(�) coth

[
βω

2

] + γs(�)�ω

�(�2 − ω2)

)
. (E18)
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As mentioned before the system with y = 0 had been previously considered in Ref. [8]. Let us now compare our results to those
previously available in the literature. Their effective Hamiltonian is given by:

HS =
[
λ2 f 2

1 ϒst (0, 0) − 1
2

(
ω − 2λ2 f 2

2 ϒst (ω,ω)
)

λ2 f1 f2K (ω)

λ2 f1 f2K (ω) λ2 f 2
1 ϒst (0, 0) + 1

2

(
ω − 2λ2 f 2

2 ϒst (ω,ω)
)
]
. (E19)

The couplings in this notation are x = f2, z = f1 and y = 0. It is also putted ω′ = ω − 2λ2 f 2
2 ϒ(ω,ω) and E0 = λ2 f 2

1 ϒ(0, 0)
such that:

HS =
[

E0 − ω′
2 λ2 f1 f2K (ω)

λ2 f1 f2K (ω) E0 + ω′
2

]
. (E20)

Then we may find that

〈σx〉 = Tr[σxe−βHS ]

Tr[e−βHS ]
= −x

tanh[
√

x2 + z2β]√
x2 + z2

, (E21)

where x = λ2 f1 f2K (ω) and z = ω′
2 , and we expand it up to the second order of λ, i.e.,

〈σx〉 = −2x

ω′ tanh

[
βω

2

]
+ O(λ3). (E22)

In Ref. [8] the authors also put ω′ = ω, such that

〈σx〉 = −4λ2 f1 f2

πω

∫ +∞

0
d�

(
γs(�)ω tanh

[
βω

2

]
�2 − ω2

+ ω2γa(�)

�(�2 − ω2)

)
. (E23)

Now let us compare γa,s(�) with the correlation function for a bosonic bath:

f (t ) =
∫ ∞

0
d� J (�)

(
coth

[
β�

2

]
cos(�t ) − i sin(�t )

)
. (E24)

f (t ) = 1

2

∫ +∞

−∞
d� e−i�tγ (�) = 1

2

∫ +∞

−∞
d� γ (�)(cos(�t ) − i sin(�t )) (E25)

= 1

2

∫ +∞

0
d� (γs(�) + γa(�))(cos(�t ) − i sin(�t )) + 1

2

∫ +∞

0
d� (γs(�) − γa(�))(cos(�t ) + i sin(�t )) (E26)

= 1

π

∫ +∞

0
d� (γs(�) cos(�t ) − iγa(�) sin(�t )) = 1

π

∫ +∞

0
d� γa(�)

(
γs(�)

γa(�)
cos(�t ) − i sin(�t )

)
(E27)

= 1

π

∫ +∞

0
d� γa(�)

(
1 + e−β�

1 − e−β�
cos(�t ) − i sin(�t )

)
= 1

π

∫ +∞

0
d�γa(�)

(
coth

[
β�

2

]
cos(�t ) − i sin(�t )

)
(E28)

According to this, we have the following relations:

γa(�) = πJ (�) = πωa(�), γs(�) = πJ (�) coth

[
β�

2

]
= πωs(�) (E29)

and the final result becomes

〈σx〉 = −4λ2 f1 f2

ω

∫ +∞

0
d�

(
ωs(�)ω tanh

[
βω

2

]
�2 − ω2

− ω2ωa(�)

�(�2 − ω2)

)
. (E30)

On the other hand, in Ref. [8] we have

〈σx〉 = 2λ2 f1 f2

ω
[�s(ω) tanh

[
βω

2

]
+ �a(ω) − �a(0)], (E31)

where

�s(ω) =
∫ ∞

0
d� ωs(�)

(
1

� + ω
− 1

� − ω

)
= −2

∫ ∞

0
d�

ωs(�)ω

�2 − ω2
, (E32)
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�a(ω) =
∫ ∞

0
d� ωa(�)

(
1

� + ω
+ 1

� − ω

)
= 2

∫ ∞

0
d�

ωa(�)�

�2 − ω2
, (E33)

�a(ω) − �a(0) = 2
∫ ∞

0
d� ωa(�)

�2 − (�2 − ω2)

�(�2 − ω2)
= 2

∫ ∞

0
d�

ωa(�)ω2

�(�2 − ω2)
, (E34)

such that (E31) is equal to (E30).

APPENDIX F: BLOCH-REDFIELD MASTER EQUATION (DERIVATION)

We shall derive the Bloch-Redfield master equation in terms of γ̃ (A16) and S̃ (A17) coefficients starting from the von
Neumann equation:

L̃R
t [ρ̃(t )] = −

∫ t

0
ds TrR[HI (t ), [HI (s), ρ̃(t ) ⊗ γR]], (F1)

which is derived according to the Born-Markov approximation. We expand commutators and put an explicit form of the
interaction Hamiltonian (A2):

L̃R
t [ρ̃(t )] = −

∫ t

0
ds TrR[HI (t ), [HI (s), ρ̃(t ) ⊗ γR]] =

∫ t

0
dsTrR([HI (s)ρ̃(t ) ⊗ γR, HI (t )] − [ρ̃(t ) ⊗ γR HI (s), HI (t )])

=
∫ t

0
dsTrR[HI (s)ρ̃(t ) ⊗ γRHI (t ) − ρ̃(t ) ⊗ γRHI (s)HI (t ) − HI (t )HI (s)ρ̃(t ) ⊗ γR + HI (t )ρ̃(t ) ⊗ γRHI (s)]

=
∑
α,β

∫ t

0
ds[Aα (s)ρ̃(t )Aβ (t )〈Rβ (t )Rα (s)〉γR + Aβ (t )ρ̃(t )Aα (s)〈Rα (s)Rβ (t )〉γR

− ρ̃(t )Aα (s)Aβ (t )〈Rα (s)Rβ (t )〉γR − Aβ (t )Aα (s)ρ̃(t )〈Rβ (t )Rα (s)〉γR ]

=
∑
α,β

∫ t

0
ds[〈Rα (t )Rβ (s)〉γR (Aβ (s)ρ̃(t )Aα (t ) − Aα (t )Aβ (s)ρ̃(t ))] + H.c.

After introducing the jump operators (A4), we get

L̃R
t [ρ̃(t )] =

∑
ω,ω′

∑
α,β

∫ t

0
ds e−i(ω′s+ωt )〈Rα (t )Rβ (s)〉γR (Aβ (ω′)ρ̃(t )Aα (ω) − Aα (ω)Aβ (ω′)ρ̃(t )) + h.c. (F2)

=
∑
ω,ω′

∑
α,β

∫ t

0
ds ei(ωt−ω′s)〈Rα (t )Rβ (s)〉γR (Aβ (ω′)ρ̃(t )A†

α (ω) − A†
α (ω)Aβ (ω′)ρ̃(t )) + h.c. (F3)

=
∑
ω,ω′

∑
α,β


̃αβ (ω,ω′, t )(Aβ (ω′)ρ̃(t )A†
α (ω) − A†

α (ω)Aβ (ω′)ρ̃(t )) + H.c., (F4)

where we put the definition:


̃αβ (ω,ω′, t ) ≡
∫ t

0
ds ei(ωt−ω′s)〈Rα (t )Rβ (s)〉γR . (F5)

This can be further simplified to the form:


̃αβ (ω,ω′, t ) = ei(ω−ω′ )t
∫ t

0
ds eiω′s〈Rα (s)Rβ (0)〉γR ≡ ei(ω−ω′ )t 
αβ (ω′, t ), (F6)

where we changed the variables in the integrand s → t − s and use the property 〈Rα (t )Rβ (s)〉γR = 〈Rα (t − s)Rβ (0)〉γR . Next, we
rewritten the Hermitian conjugate part in the form:∑

ω,ω′

∑
α,β


̃∗
αβ (ω,ω′, t )(Aβ (ω′)ρ̃(t )A†

α (ω) − A†
α (ω)Aβ (ω′)ρ̃(t ))† (F7)

=
∑
ω,ω′

∑
α,β


̃∗
αβ (ω,ω′, t )(Aα (ω)ρ̃(t )A†

β (ω′) − ρ̃(t )A†
β (ω′)Aα (ω)) (F8)

=
∑
ω,ω′

∑
α,β


̃∗
βα (ω′, ω, t )(Aβ (ω′)ρ̃(t )A†

α (ω) − ρ̃(t )A†
α (ω)Aβ (ω′)). (F9)
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Finally, we get

L̃R
t [ρ̃(t )] =

∑
ω,ω′

∑
α,β

(
̃αβ (ω,ω′, t ) + 
̃∗
βα (ω′, ω, t ))Aβ (ω′)ρ̃(t )A†

α (ω) (F10)

− 1

2

∑
ω,ω′

∑
α,β

(
̃αβ (ω,ω′, t )A†
α (ω)Aβ (ω′)ρ̃(t ) + 
̃∗

βα (ω′, ω, t )ρ̃(t )A†
α (ω)Aβ (ω′)) (F11)

− 1

2

∑
ω,ω′

∑
α,β

(
̃αβ (ω,ω′, t )A†
α (ω)Aβ (ω′)ρ̃(t ) + 
̃∗

βα (ω′, ω, t )ρ̃(t )A†
α (ω)Aβ (ω′)) (F12)

− 1

2

∑
ω,ω′

∑
α,β

(
̃∗
βα (ω′, ω, t ))A†

α (ω)Aβ (ω′)ρ̃(t ) + 
̃αβ (ω,ω′, t )ρ̃(t )A†
α (ω)Aβ (ω′)) (F13)

+ 1

2

∑
ω,ω′

∑
α,β

(
̃∗
βα (ω′, ω, t ))A†

α (ω)Aβ (ω′)ρ̃(t ) + 
̃αβ (ω,ω′, t )ρ̃(t )A†
α (ω)Aβ (ω′)). (F14)

where the last two lines sum up to zero. After rearranging terms and putting the definition (A16) and (A17), we finally obtain
the master equation in the form:

L̃R
t [ρ̃(t )] =

∑
ω,ω′

∑
α,β

[
iS̃αβ (ω,ω′, t )[ρ̃(t ), A†

α (ω)Aβ (ω′)] + γ̃αβ (ω,ω′, t )

(
Aβ (ω′)ρ̃(t )A†

α (ω) − 1

2
{A†

α (ω)Aβ (ω′), ρ̃(t )}
)]

.

(F15)

APPENDIX G: THE CUMULANT EQUATION IN THE SCHRÖDINGER PIRCTURE

The cumulant equation is originally derived in the interaction picture. In order to transform the cumulant equation into the
Schrödinger picture we start with a simple observation,

ρ̃(t ) = ei[H0,·]tρ(t ). (G1)

The superoperator in the right-hand side of the equation above has its unique inverse, and ρ̃(0) = ρ(0), therefore:

ρ(t ) = e−i[H0,·]t eK̃ (2)
t ρ(0) = eK (2)

t ρ(0). (G2)

The right-hand side of the equation above defines the Schrödinger picture cumulant eqaution superoperator K (2)
t :

eK (2)
t = e−i[H0,·]t eK̃ (2)

t . (G3)

The explicit form of K (2)
t can be found with the aid of the Baker-Campbell-Hausdorff (BCH) formula,

eX eY = exp
{
X + Y + 1

2 [X,Y ] + 1
12 [X, [X,Y ]] − 1

12 [Y, [X,Y ]] + · · ·}. (G4)

We observe that in a generic case the superoperator K (2)
t in not of the GKSL form. This follows from the presence of

multicommutator terms in the formula (G4). These terms do not vanish, as [K (2)
t , H0] is not central. Therefore, eK (2)

t is an example
of a one-parameter family of CPTP dynamical maps that are not of the GKSL form.

APPENDIX H: THE CUMULANT EQUATION IN THE DIFFERENTIAL FORM

We start this section with the following lemma on the properties of the derivative of an exponential map.
Lemma 4. The derivative of the exponential map is given by

d

dt
eX (t ) =

(
e[X (t ),·] − 1

[X (t ), ·]
dX (t )

dt

)
eX (t ). (H1)

Proof. The proof of the above relation is identical to the proof of Theorem 5 in Ref. [36] up to small modifications. �
Using Lemma 4 we instantly obtain the cumulant equation in the differential form:

d

dt
ρ̃(t ) =

(
e[K̃ (2)

t ,·] − 1[
K̃ (2)

t , ·] dK̃ (2)
t

dt

)
ρ̃(t ) = L̃C

t ρ̃(t ). (H2)

This result can also be obtained with integration of equation (G1). When truncated to the leading order, the above formula

reproduces the Bloch-Redfield master equation since dK̃ (2)
t

dt = L̃R
t .
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Equation (H2) can be readily transformed into the Schrödinger picture. This is done with iterative application of the e±iH0t

operators to the jump operators Ai(ω) inside K̃ (2)
t superoperator,

d

dt
ρ(t ) =

(
−i[H0, ·] + e−i[H0,·]t e[K̃ (2)

t ,·] − 1[
K̃ (2)

t , ·] L̃R
t ei[H0,·]t

)
ρ(t ) (H3)

=
(

−i[H0, ·] + e[K̄ (2)
t ,·] − 1[
K̄ (2)

t , ·] L̄R
t

)
ρ(t ) = LC

t ρ(t ), (H4)

where

K̄ (2)
t [ρ]

= λ2
∫ t

0
ds

∑
ω,ω′

∑
αβ

ei(ω−ω′ )(s−t )

(
iSαβ (ω,ω′, s)[ρ, A†

α (ω)Aβ (ω′)] + γαβ (ω,ω′, s)

(
Aβ (ω′)ρA†

α (ω) − 1

2
{A†

α (ω)Aβ (ω′), ρ}
))

,

(H5)

L̄R
t = LR

t + i[H0, ·]. (H6)

Moreover, we observe that

LC
t = LR

t + O(λ4). (H7)

Unfortunately, the problem of the long-time limit of the above superoperator was not resolved yet. This situation makes
determination of the higher-order corrections to the steady state of the cumulant equation even more involving.

Equation (H4) can be compared with the differential form of the Schrödinger picture cumulant equation obtained with Lemma
4 and the superoperator in equation (G3).

d

dt
ρ(t ) =

(
e[K (2)

t ,·] − 1[
K (2)

t , ·] dK (2)
t

dt

)
ρ(t ) = LC

t ρ(t ). (H8)

The above formula has only a formal meaning, as the K (2)
t superoperator does not possess a closed form formula. We present it

only for the curiosity of the reader.

APPENDIX I: EXTRACTING THE CORRECTION FROM A DENSITY MATRIX

To extract the second-order correction from the reaction coordinate, we started by obtaining the steady-state density matrix,
which is given by a Gibbs state of the form:

ρλ = e−βH

Z . (I1)

By taking the logarithm, one obtains

log(Z ) + log(ρλ) = −βH. (I2)

We then expand H

H = H0 + λ2H2 + λ4H4 + . . . , (I3)

substituting in Eq. (I2),

log(Z ) + log(ρλ) = −β(H0 + λ2H2 + λ4H4 + . . . ). (I4)

We now impose our gauge Tr[H] = 0. Then tracing out both sides we obtain

log(Z ) = − 1

d
Tr[log(ρλ)]. (I5)

By substituting back into Eq. (I4) and rearranging terms one obtains

H2 = 1

λ2

[
1

β

(
1

d
Tr[log(ρλ)] − log(ρλ)

)
− (H0 + O(λ4))

]
. (I6)

Finally, as λ approaches zero,

lim
λ→0

H2 = lim
λ→0

1

λ2

[
1

β

(
1

d
Tr[log(ρλ)] − log(ρλ)

)
− H0

]
. (I7)
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