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Free-energy estimates from nonequilibrium trajectories under varying-temperature protocols
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The Jarzynski equality allows the calculation of free-energy differences using values of work measured from
nonequilibrium trajectories. The number of trajectories required to accurately estimate free-energy differences
in this way grows sharply with the size of work fluctuations, motivating the search for protocols that perform
desired transformations with minimum work. However, protocols of this nature can involve varying temperature,
to which the Jarzynski equality does not apply. We derive a variant of the Jarzynski equality that applies to
varying-temperature protocols, and show that it can have better convergence properties than the standard version
of the equality. We derive this modified equality and the associated fluctuation relation within the framework of
Markovian stochastic dynamics, complementing related derivations done within the framework of Hamiltonian
dynamics.
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I. INTRODUCTION

The Jarzynski equality allows the calculation of free-
energy differences by measuring the work done by a
nonequilibrium protocol. For a system at fixed temperature
β−1 that is initially in equilibrium and driven out of it by the
variation of a set of control parameters, the Jarzynski equality
reads [1,2]

〈e−βW 〉 = e−β�F . (1)

Here W is work; the angle brackets denote an average over
many independent dynamical trajectories resulting from the
protocol; and �F is the free-energy difference associated with
the initial and final values of the control parameters. However,
because Eq. (1) involves the average of an exponential, the
number of trajectories required to estimate �F using it grows
exponentially with the variance of work fluctuations [3–5]
(see Appendix A).

This problem motivates the search for nonequilibrium pro-
tocols that perform desired transformations while minimizing
work or other path-extensive quantities [6–12].1 But while
protocols of this nature can involve varying temperature—
such as the protocol that reverses the magnetization of the
Ising model with least dissipation [13,14]—Eq. (1) applies
only at fixed temperature.

In this paper we consider a variant of (1) that applies to
protocols whose temperature can vary with time. Such vari-
ants have been derived within the framework of Hamiltonian
dynamics [15–17] or Markovian dynamics specific to the
Ising model [18]. We follow Ref. [19] and consider a gen-
eral Markovian dynamics satisfying detailed balance. If we
consider the protocol to involve a set of time-varying control
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1Minimizing work does not necessarily minimize the fluctuations

of work, but there is usually a strong correlation between these
things: see, e.g., Fig. 1(d).

parameters and a time-varying reciprocal temperature β(t ),
with the latter starting and ending at a value β,2 then (1) is
replaced by

〈e−�〉 = e−β�F . (2)

Here � ≡ βW + βQ − �, where Q is the heat exchanged
with the bath and −� is the path entropy produced by the
trajectory (the instantaneous change of heat divided by the
instantaneous temperature, summed over the trajectory). The
quantity � − β�F is the total entropy production.3

The angle brackets in (2) denote an average over nonequi-
librium trajectories that start in equilibrium at temperature
β−1, that finish at the same temperature (not necessarily in
equilibrium), and that otherwise involve an arbitrary change
of temperature and other control parameters.4 Similar re-
sults have been derived for Hamiltonian dynamics: Eq. (2) is
equivalent to Eq. (9) of Ref. [17] (verified experimentally in
Ref. [23]) upon applying the first law of thermodynamics to
that result and setting the start and end temperatures equal.

Under the same conditions, the fluctuation relation

PF(�)e−� = e−β�F PR(−�) (3)

holds. Here PF(�) denotes the probability distribution of �

under the protocol, and PR(−�) is the distribution of −�

2β with no time argument or subscript denotes the fixed reciprocal
temperature at the start and end of the trajectory: we want to estimate
the value β�F appearing in (1) by allowing the system at intermedi-
ate times to have a value β(t ) that may be different from the endpoint
value β.

3Equation (2) can be considered a special case—one where the
temperatures at the trajectory endpoints are equal—of a varying-
temperature version of the entropy-production fluctuation theorem
[20,21].

4Very rapid temperature variation may drive the thermal bath out
of equilibrium, in which case temperature is not a well-defined
quantity [22]; the derivation assumes that the thermal bath remains in
equilibrium.
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under the time-reversed protocol. For a fixed-temperature tra-
jectory we have βQ = � and so � = βW , and (2) and (3)
reduce to the Jarzynski equality (1) and the Crooks fluctuation
relation [24]

PF(W )e−βW = e−β�F PR(−W ), (4)

respectively. Equation (3) can be obtained from the generic
expression (1.12) of Ref. [25] by imposing that we start in
equilibrium, interact with a single bath with a time-varying
temperature, and start and end at the same temperature. Re-
lated expressions for deterministic dynamics are given in
Refs. [26,27]. However, the specific forms (2) and (3) allow
the extraction of free-energy differences at temperature β−1,
as do the original Jarzynski and Crooks relations, but with the
potential for increased statistical accuracy.

In Sec. II we sketch the derivation of Eqs. (2) and (3).
Details of the derivation are given in Appendix B, which
follows Ref. [19] with minor notational changes.5 In Sec. III
we introduce a simulation model of a colloidal particle in an
optical trap, and use it to show, in Sec. IV, that the fluctuation
relations (2) and (3) hold for varying-temperature protocols.
Notably, such protocols can give rise to smaller fluctuations
of � and better convergence properties of (2) than do fixed-
temperature protocols for W and (1), allowing more accurate
extraction of free-energy differences. In Sec. V we show that
this difference is particularly pronounced in the presence of a
phase transition, where the ability to vary temperature allows
us to choose protocols that lead to much lower dissipation than
the best fixed-temperature protocols. We conclude in Sec. VI.

II. SKETCH OF DERIVATION

Consider a system at instantaneous temperature β−1(t ).
The system’s microscopic coordinates are given by a vector
x, and its energy function is E (x|λ), where λ is a vector of
control parameters. We define the protocol as the deterministic
time evolution of λ(t ) and β(t ). Starting in microstate x(0) =
x0 with the parameter values λ(0) = λ0 and β(0) = β0, a
dynamical trajectory ω of the system consists of a series of al-
ternating changes of the protocol, β0,λ0 → β1,λ1 → · · · →
βN ,λN , and coordinates, x0 → x1 → · · · → xN . If P[0 → N]
is the probability of generating the trajectory ω, and P[0 ←
N] the probability of generating its reverse under the time-
reversed protocol, then, for a Markovian stochastic dynamics
satisfying detailed balance, we have P[0 → N]/P[0 ← N] =
e−�ω , where

�ω ≡
N−1∑
i=0

βi+1[E (xi+1|λi+1) − E (xi|λi+1)] (5)

is (minus) the path entropy produced by ω. This assumption
requires the bath degrees of freedom to remain in equilibrium

5We also show that the Jarzynski equality becomes the staged
Zwanzig formula for free-energy perturbation if the trajectory re-
mains in equilibrium, and becomes the formula for thermodynamic
integration if, in addition, the control parameters change in infinites-
imal increments; related limiting forms were derived in Ref. [1]
within the framework of Hamiltonian dynamics.

as temperature is varied, setting an upper limit on how rapidly
this can be done [22]. If we assume that ω and its reverse
start in thermal equilibrium with respective control-parameter
values β0,λ0 and βN ,λN , where β0 = βN ≡ β, then the path-
probability ratio can be written

P0[0 → N]e−βWω−βQω+�ω = e−β�F P0[0 ← N]. (6)

Here �F is the Helmholtz free-energy difference at tempera-
ture β−1 corresponding to the change λ0 → λN , and

Wω =
N−1∑
i=0

[E (xi|λi+1) − E (xi|λi )] (7)

and

Qω =
N−1∑
i=0

[E (xi+1|λi+1) − E (xi|λi+1)] (8)

are the work done and heat exchanged with the bath (the
energy transferred to the system from the bath) within ω.

Summing (6) over all trajectories ω gives Eq. (2) (there we
have dropped the path label subscript ω on �). Multiplying
both sizes of (6) by δ(�ω − �) and summing over trajectories
ω (once we have symmetrized the dynamics with respect to
the order of state- and protocol changes) gives Eq. (3).

For details of this derivation, see Appendix B.

III. CONSTANT-TEMPERATURE PROTOCOLS

Consider a model of an overdamped colloidal particle in
an optical trap [6]. The particle has position x and the sys-
tem has energy function E (x|λ) = k(t )[x − λ(t )]2/2, where λ

specifies the trap center. The particle undergoes the Langevin
dynamics

ẋ = −∂xE (x|λ) + ξ (t ), (9)

which satisfies detailed balance with respect to the system’s
energy function [25,28]. The noise ξ satisfies 〈ξ (t )〉 = 0
and 〈ξ (t )ξ (t ′)〉 = 2β(t )−1δ(t − t ′). Initially we set k(t ) = 1
for all t .

We simulate (9) using the forward Euler discretization
with time step �t = 10−3. Starting in equilibrium at tem-
perature β−1 = 1, with the trap center at λ(0) = λ0 = 0, we
consider the fixed-temperature protocol that moves the trap
center to a final position λ(tf ) = λf = 5, in finite time tf ,
and that minimizes the work averaged over many realizations
of the process. This protocol has the form λ�(t ) = λf (t +
1)/(tf + 2), for 0 < t < tf , with jump discontinuities at the
start (t = 0) and end (t = tf ), and produces mean work W � =
λ2

f /(tf + 2) [6]. Note that �F = 0 for this protocol, because
the energy function is translated but otherwise unchanged.

In Fig. 1 we verify that work distributions produced by
the protocol λ� obey the standard relations (1) and (4). In
Fig. 1(a) we show the protocol λ� for two trajectory lengths tf .
In Fig. 1(b) we show for tf = 10 the time-resolved distribution
of particle positions ρ(x) under this protocol, together with
the energy function E (x|λ) and the associated Boltzmann
distribution ρ0(x|λ). Here and subsequently we calculate dis-
tributions and averages over 106 independent trajectories. In
Fig. 1(c) we verify that the work distribution produced by
this protocol and its time reverse satisfy the work-fluctuation
relation (4).
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FIG. 1. Model of an overdamped colloidal particle in an optical trap, at constant temperature β−1 = 1, translated according to the work-
minimizing protocol of Ref. [6]. (a) Protocol λ�(t ) for two values of trajectory length tf . (b) Particle-position distribution, potential, and
associated Boltzmann distribution, at three times t , for trajectories of length tf = 10. (c) Work statistics for this protocol and its time reverse
satisfy the fluctuation relation (4). (d) Mean work 〈W 〉 (compared with the exact result W � [6], shown as a dashed line); work variance σ 2

W ;
Jarzynski free-energy estimator JW ; and variance σ 2

BW
of the block average of the exponential of JW (note the vertical log scale). Averages and

distributions are calculated over 106 trajectories.

In Fig. 1(d) we compare protocols λ� carried out for a
range of trajectory lengths tf . Shown are the mean work 〈W 〉;
the variance σ 2

W of the work distribution; the Jarzynski free-
energy estimator

JW = −β−1 ln

⎛
⎝N−1

traj

Ntraj∑
i=1

e−βWi

⎞
⎠, (10)

where i labels trajectories and Ntraj = 106; and the variance
σ 2

BW
of the block average BW = N−1

block

∑Nblock
i=1 e−βWi , where

Nblock = 100. The mean work satisfies 〈W 〉 = W �, as ex-
pected. The estimator JW returns �F = 0 for large values of
tf , but for small values of tf is imprecise; the fluctuation σ 2

W is
the source of this imprecision, and σ 2

BW
is one measure of its

size.

IV. SIMPLE VARYING-TEMPERATURE PROTOCOLS

In Fig. 2 we again consider the protocol λ = λ�(t ), for
tf = 10, but now β is varied in a piecewise-linear way, β(t ) =
1 + 2(β ′ − 1)(t/tf ) for t/tf < 1/2 and β(t ) = β ′ + 2(1 −
β ′)(t/tf − 1/2) for t/tf � 1/2 [so that β(0) = β(tf ) = 1]. We
consider a range of β ′ either side of one. We also consider
a time-varying spring constant k(t ) = (1 − t/tf )k + (t/tf )k′
which results in a free-energy difference �F = 1

2 ln(k′/k):
we choose k′ = 3k = 3, giving �F ≈ 0.55. In Fig. 2(a) we
show that, as expected, the work fluctuation relation (4) is
not obeyed for a varying-temperature protocol (here β ′ =
0.21), but the varying-temperature fluctuation relation (3) is.
In Fig. 2(b) we show that, as expected, the standard Jarzynski
equality no longer applies: the green line is the free-energy es-
timator JW , which for β ′ 	= 1 does not equal �F . By contrast,

FIG. 2. Trap-translation protocols run at varying temperature β(t ), parametrized by β ′ (β ′ = 1 corresponds to constant temperature).
(a) Probability distributions of W and � for the protocol with β ′ = 0.21. The work fluctuation relation (4) does not hold (left panel), while
the varying-temperature fluctuation relation (3) does (right panel). (b) The logarithm of the estimator of (2), J�, approximates �F , while
the logarithm of the estimator of (1), JW , does not. Fluctuations of (c) � and of (d) the block average of the estimator can be smaller for
varying-temperature protocols (β ′ 	= 1) than for constant-temperature protocols (β ′ = 1).
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FIG. 3. Ising-model magnetization reversal using dissipation-minimizing fixed- and varying-temperature protocols. Protocols were deter-
mined by genetic algorithm applied to a neural network [29]. (a) Learned protocols in parametric form. The dotted line is the first-order phase
transition line. (b) Protocols as functions of time, together with typical time-ordered snapshots. (c) Fixed-temperature protocols (for which
� = βW ) generate large amounts of dissipation, preventing application of the standard relations (1) and (4) (left panel). Varying-temperature
protocols produce much less dissipation, allowing application of (2) and (3) (right panel).

the estimator

J� = −β−1 ln

⎛
⎝N−1

traj

Ntraj∑
i=1

e−�i

⎞
⎠ (11)

provides a noisy estimate of �F , indicating that (2) is obeyed.
In Figs. 2(c) and 2(d) we show, as a function of β ′, the

variance σ 2
W of � and the variance σ 2

B�
of the block average

B� = N−1
block

∑Nblock
i=1 e−�i , with Nblock = 100. The minimum of

the latter occurs around β ′ = 0.2, and is less than half that at
β ′ = 1 [where � = βW and the relations (2) and (3) reduce to
(1) and (4)]. While fluctuations tend to increase with tempera-
ture, the combination � ≡ βW + βQ − � and its fluctuations
can be smaller than W and its fluctuations. These effects
compete, and for some range of β ′ 	= 1 the fluctuations of
� are smaller than those of W at β ′ = 1, leading to better
convergence of (2) than (1).

V. VARYING-TEMPERATURE PROTOCOLS
IN THE PRESENCE OF A PHASE TRANSITION

This difference in convergence properties is small, because
the physics of the trap model does not change substantially
with temperature. But when a system’s physics does change
with temperature, the difference between the convergence
properties of the fixed- and varying-temperature relations can
be significant.

In Fig. 3 we consider magnetization reversal in the two-
dimensional (2D) ferromagnetic Ising model, a simple model
of nanomagnetic bit copying and erasure [13,14]. We consider
a 32 × 32 lattice, with fixed coupling J = 1, and simulate
the model using Glauber dynamics for tf = 103 Monte Carlo
sweeps. Protocols start and end at parameter values β(0) =
β(tf ) = 1 and h(0) = −h(tf ) = −1, giving �F = 0, in which
case � is equal to the total entropy production. We deter-
mine time-dependent protocols β(t ) and h(t ) for 0 < t < tf by
expressing these quantities using a deep neural network and
training that network by genetic algorithm to minimize 〈�〉
measured over 104 independent trajectories [29]. Protocols
learned in this way effect magnetization reversal. We consider
one set of learning simulations with the constraint that β(t )
remain constant, and another in which β(t ) is allowed to vary.

In Fig. 3(a) we show in parametric form the protocols
learned in this way. The varying-temperature protocol avoids
the critical point and the first-order phase transition line
[13,14], while the fixed-temperature protocol is constrained
to cross it. In Fig. 3(b) we show protocols as functions of
time, together with time-ordered snapshots taken from typical
trajectories. The fixed-temperature protocol effects nucleation
and growth, accompanied by large values of dissipation:
〈�〉 = 〈βW 〉 ≈ 1550. By contrast, the varying-temperature
protocol is accompanied by much smaller dissipation, with
〈�〉 ≈ 11.

As a result, distributions of work for the fixed-temperature
protocol and its time reverse are well separated, while dis-
tributions of � for the varying-temperature protocol and
its time reverse cross at a value that approximates �F =
0; see Fig. 3(c). Using 105 trajectories, the free-energy
estimator J� yields a value 0.46, with block-average variance
σ 2

B�
≈ 13 700. Thus (3) and (2) provide an accurate if impre-

cise measure of �F . By contrast, if we are constrained to
fixed temperature in order to apply the standard relations (1)
and (4), measuring �F is not a realistic proposition. Fixed-
temperature trajectories hundreds of times longer would be
required to achieve convergence properties comparable to (2)
and (3) using varying-temperature trajectories.6

VI. CONCLUSIONS

We have shown, within the framework of Markovian
stochastic dynamics satisfying detailed balance, that the rela-
tions (2) and (3) replace the Jarzynski equality (1) and Crooks
work fluctuation relation (4), for trajectories influenced by
a time-varying temperature that starts and ends at a value
β−1. We have used simulation models to show that free-
energy differences can be calculated more accurately using
the varying-temperature relations than the fixed-temperature
ones, particularly when varying temperature gives us the free-
dom to avoid the large dissipation associated with a first-order

6We could change J at fixed β in order to mimic temperature varia-
tion, but our model study is carried out to represent an experiment in
which we cannot change the microscopic parameters of a material,
while we can use temperature as a control parameter to take us across
a phase boundary.

014142-4



FREE-ENERGY ESTIMATES FROM NONEQUILIBRIUM … PHYSICAL REVIEW E 110, 014142 (2024)

FIG. 4. (a) Forward trajectory, and (b) forward-reverse trajectory pair.

phase transition. To measure the quantity � = βW + βQ −
� that appears in (2) and (3) we must be able to measure the
time-resolved heat flow, as well as total heat and work. For
many experiments this will be technically demanding, but it is
possible in principle.

Code for the trap model can be found here [30]. Code
for doing neuroevolutionary learning of Ising model protocols
can be found here [31], which accompanies Ref. [29] [for this
paper we neglect the shear term, Eq. (7), used in that work].
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APPENDIX A: WORK FLUCTUATIONS
AND THE JARZYNSKI EQUALITY

To illustrate in a simple way the convergence problems of
an exponential average, assume that the distribution P(W ) of
nonequilibrium work values is Gaussian with mean W̄ and
variance σ 2, P(W ) ∝ e−(W −W̄ )2/(2σ 2 ). The average on the left-
hand size of (1) can then be written as

〈e−βW 〉 ∼
∫

dW e−(W −Wa )2 /(2σ 2 ) , (A1)

which is dominated by contributions from the atypical work
value W = Wa ≡ W̄ − βσ 2. The probability of realizing this
work value is P(Wa ) ∝ e−β2σ 2/2, which requires a characteris-
tic number of trajectories ∼1/P(Wa ) ∝ eβ2σ 2/2. This quantity
grows exponentially with the variance σ 2 of work fluctuations.

Work distributions are in general not Gaussian, but it is
usually the case that the larger the fluctuations of W , the more
trajectories are required to calculate (1).

APPENDIX B: CONSTANT-TEMPERATURE PROTOCOLS

1. Markovian stochastic dynamics satisfying detailed balance

In this supplement we derive the expressions (2) and
(3) used in the main text, following Ref. [19] with minor
notational changes. We consider a stochastic Markovian
dynamics that satisfies detailed balance at temperature β−1

with respect to the energy function E (x|λ). Here x is the
vector of microscopic coordinates of the system, and λ is
a vector of control parameters. As shown in Fig. 4(a), a
dynamical trajectory of the system involves N deterministic
changes of the control-parameter vector λ, according to
λ0 → λ1 → · · · → λN . The system coordinates x evolve
stochastically as x0 → x1 → · · · → xN . We consider these
changes to occur in an alternating fashion: λ changes along
dotted arrows, with work done or expended, and x changes
along solid arrows, with heat exchanged with the thermal bath.
Here we follow Ref. [19] in choosing a specific ordering for
state- and protocol changes; in Appendix D we symmetrize
the trajectory with respect to the order of these changes.

The probability with which the trajectory of Fig. 4(a) oc-
curs is P[0 → N], where

P[a → b] =
b−1∏
i=a

P[i → i + 1]

=
b−1∏
i=a

p(xi → xi+1|λi+1). (B1)

Here p(xi → xi+1|λi+1) is the probability of moving from mi-
crostate xi to microstate xi+1, given that the control-parameter
vector is λi+1. The product structure of (B1) follows from the
Markovian property of the dynamics.

As a convenient device, Ref. [19] introduces the notion of
a time-reversed trajectory, shown as the lower set of arrows in
Fig. 4(b), in which λ and x evolve in the reverse order to the
forward trajectory. The ratio of path probabilities of forward
and reverse trajectories is

P[0 → N]

P[0 ← N]
=

N−1∏
i=0

p(xi → xi+1|λi+1)

p(xi ← xi+1|λi+1)
(B2)

=
N−1∏
i=0

e−β[E (xi+1|λi+1 )−E (xi|λi+1 )] (B3)

= e−βQ0→N . (B4)

Here p(xi ← xi+1|λi+1) is the probability of moving from mi-
crostate xi+1 to microstate xi, given that the control-parameter
vector is λi+1, and

Q0→N =
N−1∑
i=0

[E (xi+1|λi+1) − E (xi|λi+1)] (B5)
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is the heat exchanged with the bath (the energy transferred
to the system from the bath) along the forward trajectory. In
the main text we use the subscript ω to indicate a trajectory-
dependent quantity. Here we use the more detailed notation
0 → N , so that we can in describe portions of the trajectory
using the notation i → j. The passage from (B2) to (B3) fol-
lows from the fact that the dynamics satisfies detailed balance.
Equation (B4) is a statement of microscopic reversibility: it is
guaranteed if the dynamics satisfies detailed balance, but also
holds if the dynamics satisfied global balance and not detailed
balance.

Given a control-parameter vector λi, the likelihood of ob-
serving microstate x j in thermal equilibrium is

ρ(x j |λi ) = eβ[Fβ (λi )−E(x j |λi )], (B6)

where

Fβ (λi ) = −β−1 ln
∑

x

e−βE (x|λi ) (B7)

is the Helmholtz free energy of the system under control-
parameter vector λi (we drop subscript labels β on F unless
considering free energies calculated at different tempera-
tures). If we assume that forward and reverse trajectories
each start in thermal equilibrium under respective control-
parameter values λ0 and λN , then the path-probability ratio
(B2) becomes

ρ(x0|λ0)P[0 → N]

P[0 ← N]ρ(xN |λN )
= e−β(�F0→N −�E0→N +Q0→N ), (B8)

where �F0→N ≡ F (λN ) − F (λ0) and �E0→N ≡ E (xN |λN ) −
E (x0|λ0). Using the first law of thermodynamics,

Q0→N + W0→N = �E0→N , (B9)

where

W0→N =
N−1∑
i=0

[E (xi|λi+1) − E (xi|λi )] (B10)

is the work done along the forward trajectory, (B8) can be
written as

ρ(x0|λ0)P[0 → N]

P[0 ← N]ρ(xN |λN )
= e−β(�F0→N −W0→N ). (B11)

It will be convenient to write (B11) as

ρ(x0|λ0)P[0 → N]e−βW0→N

= e−β�F0→N P[0 ← N]ρ(xN |λN ). (B12)

2. Jarzynski equality

Summing (B12) over all possible trajectories {x} gives∑
{x}

ρ(x0|λ0)P[0 → N]e−βW0→N

= e−β�F0→N
∑
{x}

P[0 ← N]ρ(xN |λN ). (B13)

The sum on the right-hand side of (B13) is unity, by normal-
ization of probabilities, and we can write what remains as

〈e−βW0→N 〉λ0→λN = e−β�F0→N . (B14)

The angle brackets in (B14) denotes an average over tra-
jectories under the forward protocol, starting from thermal
equilibrium at the control-parameter vector λ0. This com-
pletes the proof of the Jarzynski equality given in Ref. [19],
for a Markovian, stochastic dynamics satisfying detailed bal-
ance. Only the starting point of the forward trajectory is
in thermal equilibrium; no subsequent points on the trajec-
tory, including the final one, need be in equilibrium. The
time-reversed trajectory is introduced as a device to en-
sure a convenient cancellation of terms in the derivation of
(B14), but no reverse trajectories need be considered for its
calculation.

In the remainder of Appendix B we consider some special
cases and limits of the Jarzynski equality.

3. Staged Jarzynski equality

Assume now that forward and reverse trajectories attain
equilibrium when the control-parameter vector is λi, where
0 < i < N . To enforce this assumption we insert the factor
ρ(xi|λi ) in the numerator and denominator of (B11), giving

ρ(x0|λ0)P[0 → i]ρ(xi|λi )P[i → N]

P[0 ← i]ρ(xi|λi )P[i ← N]ρ(xN |λN )
. (B15)

The value of (B15) is again equal to e−β(�F0→N −W0→N ), but
forward and reverse trajectories now possess a constraint not
present in the previous case. This constraint could be enforced
by having a time-varying protocol that pauses at the value λi

for as long as required to achieve equilibrium. However, we
could also consider the expression (B15) to refer to two sets
of trajectory pairs that involve the portions 0 → i and i → N
of the original trajectory, respectively. These trajectory pairs
start in equilibrium and possess no additional constraints. The
form of (B15) consistent with this assumption is

ρ(x0|λ0)P[0 → i]

P[0 ← i]ρ(xi|λi )

ρ(xi|λi )P[i → N]

P[i ← N]ρ(xN |λN )
, (B16)

the two factors in (B16) corresponding to the two trajectory
pairs. The first factor is

ρ(x0|λ0)P[0 → i]

P[0 ← N]ρ(xi|λi )
= e−β(�F0→i−W0→i ), (B17)

which can be rearranged and summed over x to give

〈e−βW0→i 〉λ0→λi = e−β�F0→i . (B18)

As before, the angle brackets denote averages over all trajec-
tories, starting in equilibrium under control-parameter vector
λ0. The second factor in (B16) gives

〈e−βWi→N 〉λi→λN = e−β�Fi→N . (B19)

Because free energies are additive, i.e., �F0→i + �Fi→N =
�F0→N , we can write

〈e−βW0→i 〉λ0→λi〈e−βWi→N 〉λi→λN = e−β�F0→N , (B20)

Eq. (B20) is the statement that the Jarzynski equality (B14)
can be evaluated by staging [32], dividing a single trajectory
(which starts in equilibrium but need not be in equilibrium
subsequently) into shorter trajectories (each of which starts
in equilibrium but need not be in equilibrium subsequently).
This is obvious on physical grounds, given that the Jarzynski
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equality is a method for evaluating free-energy differences,
and it applies to trajectories of arbitrary length.

4. Staged Zwanzig formula for free-energy perturbation

A special case arises when we insert, in the numerator and
denominator of (B11), factors of ρ(xi|λi ) for all values of i,
so assuming that both trajectories attain equilibrium between
each variation of the control-parameter vector λ and the next.
In this case (B11) becomes

N−1∏
i=0

ρ(xi|λi )P[i → i + 1]

P[i ← i + 1]ρ(xi+1|λi+1)
= e−β�F0→N . (B21)

Each factor on the left-hand side of (B21) is

ρ(xi|λi )P[i → i + 1]

P[i ← i + 1]ρ(xi+1|λi+1)
= e−β[E (xi|λi )−E (xi|λi+1 )]

× e−β[F (λi+1 )−F (λi )]. (B22)

The right-hand side of (B22) depends on the energy at a single
coordinate xi only, and so the notion of an explicit dynamics is
absent. Rearranging (B22) and summing over trajectories {x}
gives∑

xi

ρ(xi|λi )e
−β[E (xi|λi+1 )−E (xi|λi )]

∑
xi+1

P[i → i + 1]

= e−β[F (λi+1 )−F (λi )]
∑

xi,xi+1

P[i ← i + 1]ρ(xi+1|λi+1),

which can be written

〈e−β[E (x|λi+1 )−E (x|λi )]〉λi = e−β�Fi→i+1 . (B23)

Here the angle brackets 〈(·)〉λi denote an equilibrium av-
erage

∑
x ρ(x|λi )(·) under the control-parameter vector λi.

Equation (B23) is the exponential of the Zwanzig formula
for free-energy perturbation [33]. Using (B23), (B21) can be
written

�F0→N = −β−1
N−1∑
i=0

ln〈e−β[E (x|λi+1 )−E (x|λi )]〉λi , (B24)

which is a staged version of Zwanzig formula for N changes
of the control-parameter vector λ. To calculate (B24), it is
natural to consider N independent trajectories that all begin
in equilibrium and consist of a single change of the control-
parameter vector.

It was shown in Ref. [1] that the Jarzynski equality reduces
to the Zwanzig formula

�F0→N = −β−1 ln〈e−β[E (x|λ0 )−E (x|λN )]〉λ0 (B25)

for a single, instantaneous change of the control-parameter
vector from λ0 → λN . Equation (B24) is the staged variant of
this expression: (B24) applies if the transformation is done in
well-separated stages, with the system coming to equilibrium
after each control-parameter change.

5. Thermodynamic integration

If we further assume that the trajectory involves only small
changes of the control-parameter vector, λi+1 = λi + δλ, such

that

E (x|λi+1) ≈ E (x|λi ) + δλ · ∂E (x|λ)

∂λ

∣∣∣∣
λ=λi

, (B26)

then (B24) becomes

�F0→N ≈ −β−1
N−1∑
i=0

ln

(
1 − βδλ ·

〈
∂E (x|λ)

∂λ

〉
λi

)

≈
N−1∑
i=0

δλ ·
〈
∂E (x|λ)

∂λ

〉
λi

. (B27)

In the limit of a large number N → ∞ of vanishingly small
changes δλ → 0 we can write the above as

�F0→N =
∫ λN

λ0

dλ ·
〈
∂E (x|λ)

∂λ

〉
λ

, (B28)

which is the formula for thermodynamic integration [34,35].
In Ref. [1] it was shown, within the framework of Hamilto-
nian dynamics, that thermodynamic integration is recovered
from the Jarzynski equality in the limit of an infinitely slow
transformation.

6. Summary of this section

Figure 5 summarizes the results of Appendix B. In
Ref. [19] it was shown that consideration of forward and
reverse trajectory-pairs permits a simple proof of the Jarzyn-
ski equality [1], Eq. (B14), for trajectories of a Markovian
stochastic dynamics that satisfies detailed balance, provided
that these trajectories begin in thermal equilibrium with re-
spect to the initial value of the control-parameter vector. We
have summarized this proof in Appendixes B 1 and B 2. Using
the same framework we have shown in Appendix B 3 that if
trajectories also attain thermal equilibrium with other values
of the control-parameter vector then we recover the (physi-
cally obvious) statement that the Jarzynski equality can be
evaluated in a staged way. In Appendix B 4 we show that if
trajectories attain thermal equilibrium after all changes of the
control-parameter vector then the same considerations yield
a staged version of the Zwanzig formula [33] for free-energy
perturbation, Eq. (B24). (The single-stage Zwanzig formula
is recovered in the limit of a single, instantaneous change
of λ [1].) In Appendix B 5 we show that if, in addition,
the control-parameter vector is changed in a large number
of infinitesimally small steps, we recover the formula for
thermodynamic integration, Eq. (B28). (The same formula is
recovered within the framework of Hamiltonian dynamics in
the limit of an infinitely slow transformation [1].)

APPENDIX C: VARYING-TEMPERATURE PROTOCOLS

In this section we modify the proof of Appendix B to
allow for a time-varying reciprocal temperature β, such that
β0 → β1 → · · · → βN along a trajectory. We change β in step
with the control-parameter vector λ, as shown in Fig. 6, and so
where λ = λi we have β = βi. We note that the microscopic
energies E (xi|λi ) could in principle be temperature dependent.
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FIG. 5. Summary of the results of Appendix B, relating the nature of the forward trajectory of Fig. 4(a) to the identity that applies to it.
The line points in the direction of increasing rate of transformation.

Under this new protocol, Eq. (B4) reads

P[0 → N]

P[0 ← N]
=

N−1∏
i=0

p(xi → xi+1|λi+1)

p(xi ← xi+1|λi+1)

=
N−1∏
i=0

e−βi+1[E (xi+1|λi+1 )−E (xi|λi+1 )]

= e−�0→N , (C1)

where

�0→N ≡
N−1∑
i=0

βi+1[E (xi+1|λi+1) − E (xi|λi+1)] (C2)

is (minus) the path entropy within the forward trajectory (i.e.,
neglecting the endpoint distributions). Equation (C2) is an
explicit realization of the path term appearing in the generic
form �Sbaths given in Eq. (1.18) of Ref. [25]. These expres-
sions assume the thermal bath to remain in equilibrium at all
times; see Ref. [22] for a discussion of a finite-size bath that
relaxes at finite rate.

For a varying-temperature protocol, Eq. (B8) becomes

ρ(x0|λ0)P[0 → N]

P[0 ← N]ρ(xN |λN )
= eβ0Fβ0 (λ0 )−βN FβN (λN )

× eβN E (xN |λN )−β0E (x0|λ0 )−�0→N . (C3)

Because our goal is to evaluate free-energy differences at fixed
temperature β−1, we now specify that the temperatures at
the start and end of the trajectory are equal, β0 = βN ≡ β

(we allow general βi > 0 for 0 < i < N). In this case the
free-energy difference appearing in the first line of (C3)
is again −β�F0→N , and the difference of internal energies
given on the second line of (C3) becomes β�E0→N . This
can be eliminated in favor of the path-dependent combination
β(W0→N + Q0→N ): β times the sum of (B5) and (B10) is
equal to β�E0→N , whether or not the time-dependent tem-
perature along the path is equal to the temperature at the
trajectory endpoints.

Thus, for a varying-temperature trajectory that starts and
ends at temperature β−1, Eq. (C3) can be written

ρ(x0|λ0)P[0 → N]

P[0 ← N]ρ(xN |λN )
= e−β�F0→N +β�E0→N −�0→N

= e−β�F0→N +β(W0→N +Q0→N )−�0→N , (C4)

giving

ρ(x0|λ0)P[0 → N]e−βW0→N −βQ0→N +�0→N

= P[0 ← N]ρ(xN |λN )e−β�F0→N . (C5)

Summing (C5) over all trajectories {x} gives

〈e−�0→N 〉λ0→λN = e−β�F0→N , (C6)

where

�0→N ≡ βW0→N + βQ0→N − �0→N . (C7)

The angle brackets in (C6) denote an average over nonequi-
librium trajectories of fixed but arbitrary length that start in
equilibrium with reciprocal temperature β0 = β and control-
parameter vector λ0, end with reciprocal temperature βN = β

and control-parameter vector λN , and otherwise involve an
arbitrary time-dependent variation of βi and λi.

Equation (C6), which is Eq. (2) of the main text, is a variant
of the Jarzynski equality (B14) that is valid for a varying-
temperature protocol with equal start- and end temperatures.

The Jensen inequality applied to (C6) yields 〈�0→N 〉 �
β�F , the statement that the total entropy production is
non-negative. This is an expression of the second law of
thermodynamics, analogous to the statement 〈W 〉 � �F that
results from Jensen’s inequality applied to the Jarzynski
equality.

APPENDIX D: FLUCTUATION RELATIONS

1. Fixed temperature

In this section we consider the fluctuation relations that
correspond to the expressions (B14) and (C6). Thus far,
time-reversed trajectories have been considered as a device
to derive the Jarzynski equality and related identities, but
evaluation of those identities requires only the generation of
trajectories using the forward protocol. In this section we

FIG. 6. Modification of the protocol of Fig. 4 to permit a time-varying temperature β−1
i .
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consider expressions (again derived using time-reversed tra-
jectories as a convenient device) that refer explicitly to the
ensemble of trajectories generated using the normal dynamics
into which the time-reversed protocol has been inserted.

So far we have followed Ref. [19] in considering a stochas-
tic dynamics in which, as shown in Fig. 4, protocol changes
and state changes alternate, but occur in fixed order. The
forward trajectory shown in that figure starts with a protocol
change, and so the time-reversed trajectory starts with a state
change. To derive the Jarzynski identity [or the relation (C6)
in the varying-temperature case], we need only that the time-
reversed dynamics is normalized, which it is. We do not need
to generate that dynamics explicitly. However, the derivation
of (4), the Crooks relation [24] [or of (3) in the varying-
temperature case], requires that we associate the time-reversed
trajectory with a trajectory generated by the normal dynamics
using the time-reversed protocol. To do so, we need to con-
sider a dynamics that is symmetrized with respect to the order
of state- and protocol changes.

To see this, note that we can multiply (B12) by
δ(W0→N − W ) and sum over all possible trajectories {x}. The
result is∑

{x}
δ(W0→N − W )ρ(x0|λ0)P[0 → N]e−βW0→N

= e−β�F0→N
∑
{x}

δ(W0→N − W )P[0 ← N]ρ(xN |λN ).

(D1)

We can write this as

PF(W )e−βW = e−β�F0→N PR(−W ), (D2)

where PF(W ) is the probability of observing work value
W0→N = W for a trajectory generated by the forward proto-
col λ(t ). PR(−W ) is the probability of observing work value
WN→0 = −W for the ensemble of time-reversed trajectories
(note that W0→N = −WN→0). The quantity PR(−W ) is not au-
tomatically the same thing as the probability distribution of W
for the normal dynamics into which the time-reversed protocol
λ(tf − t ) has been inserted because the latter dynamics always
begins with a protocol change and so could never generate the
lower (reverse) trajectory shown in Fig. 4(b), which begins
with a state change.

To sidestep this issue we can symmetrize the dynamics
with respect to state- and protocol changes, defining it so
that the first step of a trajectory is, with equal probability, a
state change or a protocol change. We can then interpret the
reverse trajectory drawn in Fig. 4 as a trajectory generated by
the normal dynamics into which the time-reversed protocol
has been inserted. Given the trajectories drawn in Fig. 4, the
right-hand side of Eq. (B1) picks up a factor of 1/2 (because
with that probability we choose the ordering shown), but so
too does the expression P[0 ← N] for the reverse trajectory,
and so Eq. (B2) remains unchanged. As before, we proceed
to Eq. (B12). We multiply this equation by δ(W0→N − W ) and
sum over {x}, giving

P(1)
F (W )e−βW = e−β�F0→N P(2)

R (−W ). (D3)

Here the probability distributions F and R are over trajecto-
ries generated by the dynamics under the forward λ(t ) and

time-reversed protocols λ(tf − t ), respectively, while the su-
perscripts 1 and 2 indicate the subset of dynamical trajectories
in which a protocol change or a state change is proposed first.

There is then a diagram similar to that shown in Fig. 4(b)
but with the order of state changes and protocol changes
swapped. This gives rise to the same series of equations as
before, with the bookkeeping change that heat and work are
now defined as

Q0→N =
N−1∑
i=0

[E (xi+1|λi ) − E (xi|λi )], (D4)

and

W0→N =
N−1∑
i=0

[E (xi+1|λi+1) − E (xi+1|λi )]. (D5)

Once again, Q0→N + W0→N = �E0→N≡E (xN |λN )−E (x0|λ0).
We then obtain a version of Eq. (D3) with superscript labels
reversed,

P(2)
F (W )e−βW = e−β�F0→N P(1)

R (−W ). (D6)

Adding (D3) and (D3) gives

PF(W )e−βW = e−β�F0→N PR(−W ), (D7)

which is Eq. (4) of the main text, once we note
that PF(W ) = [P(1)

F (W ) + P(2)
F (W )]/2 and PR(−W ) =

[P(1)
R (−W ) + P(2)

R (−W )]/2. Now, however, we can interpret
the symbol PR(−W ) in (D7) as the probability distribution
of −W under the normal dynamics using the time-reversed
protocol λ(tf − t ), which can be straightforwardly calculated
in simulations.

The difference between symmetric and asymmetric forms
of the dynamics is likely negligible for all but the shortest
trajectories, but we note that it is more natural to associate
the time-reversed dynamics with the normal dynamics under
the time-reversed protocol if the latter can start with a state
change or a protocol change.

2. Varying temperature

Similar considerations apply to the derivation of the
fluctuation relations corresponding to (C6). We consider a
dynamics that starts with either a state change or a proto-
col change, with equal probability. Equation (C1) acquires
factors of 1/2 in its numerator and denominator and so re-
mains unchanged. We then end up with two versions of
Eq. (C5), one for the ordering of state and protocol changes
shown in Fig. 6, and one for its reverse. Multiplying each
by δ(W0→N − W )δ(Q0→N − Q)δ(�0→N − �), summing over
{x}, and adding the resulting equations gives the detailed
fluctuation relation

PF(W, Q, �)e−βW −βQ+� = e−β�F0→N PR(−W,−Q,−�).

(D8)

Here PF(W, Q, �) is the joint probability of observing the
values (W0→N , Q0→N , �0→N ) = (W, Q, �) under the forward
protocol (β(t ),λ(t )), while PR(−W,−Q,−�) is the joint
probability of observing the values (W0→N , Q0→N , �0→N ) =
(−W,−Q,−�) under the time-reversed protocol (β(tf −
t ),λ(tf − t )).
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The simple fluctuation relation associated with (C6) fol-
lows by multiplying both versions of (C5) by δ(�0→N − �),
summing over {x}, and adding the resulting equations, and is

PF(�)e−� = e−β�F0→N PR(−�), (D9)

which is Eq. (3) of the main text. Here PF(�) is the probability
of observing the value �0→N = � under the forward protocol
(β(t ),λ(t )), and PR(−�) is the probability of observing
the value �N→0 = −� under the time-reversed protocol

(β(tf − t ),λ(tf − t )); note that �0→N = −�N→0. Integrating
(D9) over � gives (C6).

For a constant-temperature protocol, βQ = � and � =
βW , and both (D8) and (D9) reduce to (D7).

Finally, note that � − β�F0→N is the total entropy produc-
tion, and (D9) can be considered a special case (one where
the temperatures at the trajectory endpoints are equal) of a
varying-temperature version of the entropy-production fluctu-
ation theorem [20].
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