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Spin cones in random-field XY models
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We determine the arrangement of spins in the ground state of the XY model with quenched, random fields,
on a fully connected graph. Two types of disordered fields are considered, namely, randomly oriented magnetic
fields and randomly oriented crystal fields. Orientations are chosen from a uniformly isotropic distribution, but
disorder fluctuations in each realization of a finite system lead to a breaking of rotational symmetry. The result
is an interesting pattern of spin orientations found by solving a system of coupled, nonlinear equations within
perturbation theory and also by exact numerical continuation. All spins lie within a cone for small enough ratio
of field to coupling strength, with an interesting distribution of spin orientations, with peaks at the cone edges.
The orientation of the cone depends strongly on the realization of disorder, but the opening angle does not. In the
case of random magnetic fields, the cone angle widens as the ratio increases till a critical value at which there is
a first-order phase transition and the cone disappears. With random crystal fields, there is no phase transition and
the cone angle approaches 180◦ for large values of the ratio. At finite low temperatures, Monte Carlo simulations
show that the formation of a cone and its subsequent alignment along the equilibrium direction occur on two
different timescales.

DOI: 10.1103/PhysRevE.110.014141

I. INTRODUCTION

Frozen-in or quenched disorder is known to have strong
effects on the thermodynamic properties of statistical systems.
In particular, the interplay of frozen-in randomness with co-
operative interactions can have a profound influence on the
nature of ordered states of spin systems and lead to interesting
types of patterning. Customarily, theoretical studies are car-
ried out by averaging over different realizations of disorder
in the thermodynamic limit of the number of spins N → ∞.
However, this procedure can mask interesting macroscopic
patterns that emerge from the competition between quenched
randomness and cooperativity in a system with large but finite
N . We show this by explicitly determining the exact ground
state of an XY model in the presence of randomly oriented
fields. In each realization of disorder, we demonstrate that
there is an interesting fanlike arrangement of spins with a ro-
bust cone angle and an interesting distribution of spins within
the cone.

The question of magnetic ordering in the presence of
random fields has a long history and remains a question of
current interest. In this paper, we study XY ferromagnets with
long-range interactions subject to two distinct types of lo-
cally quenched fields: random magnetic fields which promote
order in different directions (the RFXY model) and random
crystal fields which define a random set of easy axes for
spins (the RCXY model). The RFXY model has been used
to study disordered superconductors [1–3] and superfluid 3He
[4,5], and crystal surfaces with quenched disorder [6]. On the
other hand, the RCXY model was proposed [7] to explain the
magnetic properties of amorphous materials, exemplified by
rare earth compounds such as DyCu and TbAg [8,9]. The
randomness of anisotropy axis orientation competes with fer-
romagnetic exchange and reduces the magnetization [10,11].

The model has been used to understand the magnetic prop-
erties of many amorphous binary alloys [12–15], as well as
nanocrystalline [16,17] and molecular [18] magnets.

The occurrence and nature of order in these systems is
a central question. A general argument was given by Imry
and Ma to show that a ferromagnetically ordered state cannot
be sustained in less than two (four) dimensions for discrete
(vector) spins [19]. While a spin-glass phase is ruled out in
the random-field Ising model [20], there is no analogous result
which rules out a spin-glass phase in models with continuous
spins. In fact, there is evidence supporting the existence of
such a phase in RFXY models with short-range interaction
[21,22]. The effect of anisotropic exchange coupling on the
phase diagram of the 3D RFXY model was investigated in
Ref. [23]. The RCXY model with short-range interaction is
expected to exhibit a spin-glass phase below six dimensions
[24–26]. A spin-glass phase is also found in a Monte Carlo
study of the 3D RCXY model in infinitely strong crystal fields,
in which limit it reduces to a quenched random-bond Ising
model with correlated random couplings of either sign [27].
However, in higher dimensions, we expect ferromagnetism to
prevail at low temperatures.

The problem for either sort of random field has been
studied earlier on fully connected graphs. Infinite-range con-
nectivity has the advantage that the free energy can be
calculated exactly in the thermodynamic limit. For the RFXY
model, this was done recently using large deviations [28],
belief propagation [29], and replicas [30]. The nature of the
critical locus which separates the disordered phase from an
ordered phase with finite magnetization depends on the dis-
tribution of random fields: with a Gaussian distribution, it is
second-order throughout [30], while with randomly oriented
fields of fixed magnitude (the case of interest to us), the transi-
tion becomes first order for strong fields and low temperature
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[28]. For the RCXY model, there is a similar phase transition
to an ordered state, but the transition locus remains second
order throughout [31,32].

Although bulk thermodynamic quantities were calculated
in these treatments, the nature of spin ordering in the ferro-
magnetic state remained unknown even in the ground state.
This is the central question we address in this paper. With
randomly pointing fields of constant magnitude drawn from
an isotropic distribution, in a typical configuration, an effec-
tive field of order 1/

√
N breaks the isotropic symmetry of the

ground state. Minimization of the energy yields N coupled
nonlinear equations for the spin orientations. We develop a
perturbative method to solve for the spin angles for small
values of the ratio of field strength to the exchange and find
that they lie within a well-defined cone whose orientation
varies from sample to sample, but whose opening angle is
robust. Interestingly, the distribution of spins within the cone
is found to be largest near the cone edges. An exact numerical
treatment of the nonlinear equations confirms the perturbative
results and further shows that with increasing field, there is a
first-order phase transition to a disordered state, as predicted
in Ref. [28]. The cone angle increases continuously until the
transition, beyond which the cone disappears. On the other
hand, in the random crystal field problem, the cone angle
increases continuously to 180º as the strength of the crystal
field goes to ∞.

We also performed Monte Carlo simulations for both RFXY
and RCXY models at low temperatures and found that cone
formation is robust. An interesting dynamics governs cone
formation and settling: Formation of a well-defined cone is
quick and happens on a timescale determined by the exchange
coupling, while its orientation relaxes on a slower timescale
set by the strength of the random field. We develop a phe-
nomenological equation which describes this dynamics.

II. THE MODEL

The RFXY model is defined by the Hamiltonian

HRF = − J

2N

(
N∑

i=1

Si

)2

− h
N∑

i=1

ni · Si, (1)

where the spin Si is a two-dimensional unit vector associated
with the ith site of a fully connected graph with N sites.
The spin at site i is coupled to that at site j with an en-
ergy − J

N Si · S j , where J > 0, implying that the interaction is
ferromagnetic. Note that all spins are coupled to each other
with the same strength. At every site there is a random field
with site-independent strength h and site-dependent direction
determined by the unit vector ni. The unit vectors {ni} are
independent and identically distributed random vectors that
can lie anywhere on a unit circle with equal likelihood. The
spin at site i is coupled to the random field at that site with an
energy −hni · Si.

The RCXY model is obtained by replacing the last term in
the Hamiltonian (1),

HRC = − J

2N

(
N∑

i=1

Si

)2

− D
N∑

i=1

(ni · Si )
2, (2)

where D represents the strength of the random crystal field
in direction ni at site i. The unit vectors {ni} are distributed
uniformly as in the RFXY model. The RCXY model has
an underlying Ising symmetry: the Hamiltonian is invariant
under the transformation {Si | i = 1, 2, ...N} → {−Si | i =
1, 2, ...N}.

As mentioned earlier, the RFXY model exhibits a locus
of order-disorder phase transitions in the (T/J, h/J ) plane,
where T is the temperature. The transitions are of first or-
der in the portion of the locus lying in the low-temperature
regime, which is separated from the portion lying in the high-
temperature regime, where the transitions are continuous, by
a tricritical point. For the RCXY model, the transitions are
of second order everywhere and the critical temperature is
independent of the ratio D/J [31,32]. Further, there is no
phase transition to a disordered state when the ratio of field to
coupling strength is varied at T = 0, in contrast to the RFXY
model.

In the following sections, we will be interested in the nature
of the ordered state in both these models at T = 0 and at
temperatures close to zero. In particular, we will explore the
arrangement of spins in a finite system with a given configura-
tion of fields. Though the field orientations are chosen from an
isotropic distribution, rotational symmetry is broken for any
finite N .

III. RFXY: CONES AT ZERO-TEMPERATURE

In this section, we explore the T = 0 arrangement of spins
for the RFXY model.

A. Perturbation theory: h/J << 1

An insight into the distribution of spins can be obtained
by analyzing the ground state of the Hamiltonian (1) using
perturbation theory. To this end, Eq. (1) is first recast in terms
of the angles {θi} and {αi} that the spins {Si} and the fields {ni},
respectively, make with the x axis. The ensuing equation is
then extremized with respect to θi, yielding the following set
of N equations for the ground state:

1

N

N∑
j=1

sin(θi − θ j ) + h

J
sin(θi − αi ) = 0. (3)

To solve these, we expand θi in powers of h/J as

θi = θ (0) + h

J
θ

(1)
i + h2

J2
θ

(2)
i + .... (4)

Note that the zeroth order term θ (0) is independent of i, since
all spins point in the same direction in the limit h/J → 0. On
substituting Eq. (4) in Eq. (3) and then expanding in powers
of h/J , we obtain the following equations at O(h/J ) and
O(h2/J2), respectively:

N∑
j=1

(
θ

(1)
i − θ

(1)
j

) + N sin(θ (0) − αi ) = 0, (5)

N∑
j=1

(
θ

(2)
i − θ

(2)
j

) + Nθ
(1)
i cos(θ (0) − αi ) = 0. (6)
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Note that there are N equations at each order. On summing the
first-order equation (5), we obtain the zeroth-order contribu-
tion to θi as

N∑
i=1

sin(θ (0) − αi ) = 0 (7)

⇒ tan(θ (0) ) =
∑N

i=1 sin(αi )∑N
i=1 cos(αi )

. (8)

This implies that θ (0) = α0 or α0 + π , where α0 is the angle
made by

n0 ≡
N∑

i=1

ni (9)

with the x axis. The latter solution has a higher energy and
is therefore discarded. We conclude that at T = 0, h = 0 all
the spins Si point in the direction of the vector sum of the
fields. Note that for any finite system size N , the sum of
disordered fields h

∑N
i=1 ni is of the order

√
N , which re-

sults in singling out a preferred direction θ (0) = α0, breaking
rotational symmetry. We now focus on the N first-order
corrections {θ (1)

i }, which satisfy the N equation (5). However,
only N − 1 of these equations are linearly independent since
equation (5) adds to give 0. The “missing” equation which,
together with Eq. (5), uniquely determines θ

(1)
i is obtained

from the second-order equation (6), which on summing over
i yields

∑N
i=1 θ

(1)
i cos(θ (0) − αi ) = 0. Solving this simultane-

ously with Eq. (5) yields

θ
(1)
i = sin(αi − α0) + η, (10)

where we have replaced θ (0) by α0 and

η = 1

2

∑N
j=1 sin[2(α0 − α j )]∑N

j=1 cos(α0 − α j )
. (11)

Replacing θ
(1)
i in Eq. (4) by Eq. (5), we get

θi � α0 + h

J
(sin(αi − α0) + η) (12)

to first order in h/J .
To find the orientation of the magnetization M and the

distribution of spins around it to first order, we write

M ≡ 1

N

N∑
i=1

Si = 1

N

N∑
i=1

[cos(θi )x̂ + sin(θi)ŷ]

� M (0) − h

NJ
(sin(α0)x̂ − cos(α0)ŷ) ×

N∑
i=1

θ
(1)
i , (13)

where M (0) = cos(α0)x̂ + sin(α0)ŷ is the magnetization in the
limit h/J → 0. To obtain the last line, we used Eq. (12)
and expanded the resulting expression to first order in h/J .
The factor in the second term of Eq. (13) can be evaluated
using Eqs. (10), (11), and (7) to obtain

∑N
i=1 θ

(1)
i = Nη. The

orientation θ0 of the magnetization M is thus

θ0 � α0 + h

J
η (14)

to first order in h/J . The angle �θi that the ith spin makes
with M is

�θi ≡ θi − θ0 � h

J
sin(αi − θ0), (15)

where we have used Eqs. (4), (10), and (14). For random
fields that are uniformly distributed over a circle, we obtain
the probability distribution for �θi as

p(�θi ) = 1

π

√
(h/J )2 − �θ2

i

. (16)

A plot of the distribution p(�θi ) for h/J = 0.2 is shown by
the black line in Fig. 1(e). Note that all the spins lie within a
cone whose edges are given by �θi = ±h/J , at which points
the distribution diverges. Within the cone, the distribution
is minimum at the center. The arrangement of spins in the
perturbative regime, for a particular sample of size N = 100,
is depicted using the green arrows confined within the circle
in Fig. 1(b). The red dashed arrow shows the direction of n0

and the blue continuous arrow shows the direction of M. The
spin configuration shown therein corresponds to the particular
field configuration shown in Fig. 1(a).

Thus we see that spins are distributed within a cone whose
orientation is given by Eq. (14), while the cone angle, defined
as the angular separation between the spins at the two farthest
edges of the cone, is given by

φ = 2h

J
, (17)

which is evident from Eq. (16). The cone orientation depends
on the configuration of fields, while the cone angle does not.

B. Numerically continuing to higher h/J

We now investigate how the conical arrangement of spins
changes as h/J increases. We will show that the cone angle
increases continuously until a critical value hc/J , at which
point there is a first-order transition to a disordered state. As
N → ∞ the critical value hc/J → 0.597, the value obtained
from the large deviation calculation [28].

The T = 0 distribution of spins is obtained by solving
the equation for extremum (3) using the method of numeri-
cal continuation [33]. The equation is independently solved
for several configurations of quenched random fields and
for different values of N . In particular, we choose N =
100, 200, 300, 400, 600, and 800. The procedure is briefly
explained below.

First, N angles {αi} are chosen independently from the
interval (0, 2π ] with uniform likelihood. This fixes the direc-
tions of the quenched random fields {ni}. Now, the formula
derived using the perturbation theory (12) is used to obtain
an approximate solution to Eq. (3) for a small value of h/J
(say, 0.001). This solution is used as an initial guess using
which we numerically continue to higher values of h/J . (See
Appendix for further details.)

For small enough h/J , we find that the distribution of
spins is consistent with the perturbative results. The spins
are confined within a cone centered along the direction of
magnetization as shown in Fig. 1(b). The number of spins
is largest at the edges, where there is a sharp cutoff, and
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FIG. 1. The RFXY model: (a) and (b) show, respectively, the directions of {ni} and {Si} for h/J = 0.2. (c) {Si} for h/J = 0.63. All three
subfigures are for a typical sample with N = 100. The protruding red dashed (blue straight) arrow shows the direction of n0 = ∑N

i=1 ni

(M). (d) Cone angle φ versus h/J for 10 different samples of N = 400. The black dashed line shows cone angle φ(h/J ) according to
perturbation theory (17). (e) Distributions of spins at h/J = 0.2 and 0.59. The angles are in degrees. The black line shows the probability
distribution function (16) for h/J = 0.2. (f) Magnetization vs h/J for ten different samples of N = 400. The black dashed line shows exact
|M| obtained from the large deviation theory [28]. (g) Energy versus h/J for solutions that minimize the Hamiltonian (1). Notice the occurrence
of metastability. These results are obtained using the numerical techniques discussed in Sec. III B.

smallest at the center of the cone. This is demonstrated using
the case of h/J = 0.2 in Fig. 1(e) (blue circles), where the
probability density p(�θ ) is plotted against �θ = θ − θ0.
The probability density p(�θ ) was obtained by sampling over
500 configurations with N = 100.

We find that the cone angle φ widens until the criti-
cal value hc/J is reached. Figure 1(d) shows the variation
of φ for N = 400. The values of the cone angles at the
phase transition are found to be φc = 111 ± 14, 103 ±
8, 101 ± 6, 97 ± 4, 95 ± 4, and 94 ± 4 degrees for N =
100, 200, 300, 400, 600, and 800, respectively, on averag-
ing over 50 samples for each N . The results are consistent
with φc → 90◦ as N → ∞. The distribution of spins within
the cone just before the phase transition is found to be flat
around the center of the cone, unlike for small h/J [see
Fig. 1(e)]. The value of hc/J shows sample-to-sample fluc-
tuations and a systematic fall as N increases. For each N ,
we estimated the critical value hN

c /J by suitably averaging
over 50 samples, and found hN

c /J = 0.668 ± 0.025, 0.650 ±
0.020, 0.642 ± 0.019, 0.633 ± 0.014, 0.628 ± 0.013, and
0.624 ± 0.014 for N = 100, 200, 300, 400, 600, and 800,
respectively. We observe that the deviation |hN

c /J − h∞
c /J|

of the critical value hN
c /J from the N → ∞ value h∞

c /J
falls with the number of spins as N−1/2. Here h∞

c /J �
0.597 is the value obtained using the large deviation
method [28].

The numerical continuation scheme fails at a value of h/J
slightly greater than hc/J as there is no ordered state solu-
tion to Eq. (3) at this point. The solutions that minimize the
energy (1) at points beyond hc/J are the disordered ones.
To access these, we numerically continue in the direction of
decreasing h/J from the state in the limit J/h << 1. The
starting guess solution to Eq. (3), obtained perturbatively, is
θi � αi + J

Nh

∑N
j=1 sin(α j − αi ).

There is an abrupt change in the arrangement of spins as
h/J is increased past the transition point: from being confined
to a cone, for h/J < hc/J , they spread over a circle. The
distribution of spins in the disordered phase for a typical
configuration of fields is shown in Fig. 1(c) (at h/J = 0.65).
We note here that for this sample the phase transition occurs
between h/J = 0.64 and 0.65.

There is also a sudden jump in the magnetization at the
phase transition for each sample, which is clear from the plot
in Fig. 1(f), clearly indicating that the system is undergoing
a first-order phase transition. The dashed black line therein
shows the exact modulus of magnetization |M| in the ther-
modynamic limit, calculated using large deviation theory in
Ref. [28].

The energies of the minima obtained for a typical configu-
ration of fields using the scheme described above are plotted
against h/J in Fig. 1(g). The cones and circles used as markers
therein indicate that the solutions in these regions correspond
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FIG. 2. The RCXY model: (a) and (b) show, respectively, the directions of {ni} and {Si} for D/J = 0.2. (c): {Si} for D/J = 5. All three
subfigures are for a typical sample with N = 100. The protruding red dashed (blue straight) arrow shows the direction of n0 = ∑N

i=1 ni

(M). (d) Cone angle φ vs D/J for ten different samples with N = 400. Dashed line depicts φ(D/J ) obtained from the perturbation theory.
(e) Probability distribution of deviation of spins �θ from the direction of magnetization θ0. The black line shows the distribution (22) at
D/J = 0.2. (f) Modulus of magnetization vs D/J for ten different samples with N = 400. All the angles are in degrees.

to conical and disordered arrangements of spins, respectively.
Note that the conical (disordered) states continue to the right
(left) of the transition point, where they are no longer the
global minima but are still metastable local minima of the
Hamiltonian.

IV. RCXY: CONES AT ZERO TEMPERATURE

We turn to a study of the T = 0 spin arrangements for the
RCXY model as a function of the crystal field strength D, using
perturbation theory followed by numerical continuation in the
nonperturbative regime.

When D/J << 1, the arrangement of spins for the RCXY
model is identical to that for the RFXY model. A typical field
configuration with N = 100 is shown in Fig. 2(a), which is
exactly the same as the configuration in Fig. 1(a) for the
RFXY model. Figures 2(b) and 2(c) show the corresponding
spin configurations at D/J = 0.2 and 5, respectively. The red
dashed (blue continuous) line shows the direction of vector
sum of fields (spins).

There is a striking difference between the two models for
higher values of D/J . For instance, the distribution of spins
within the cone changes and has a maximum at the center of

the cone when D/J ∼ 1, for the RCXY model. Further, unlike
the RFXY model, there is no phase transition, and the cone is
preserved for all values of D/J . Moreover, the cone does not
align along n0 in the limit D/J → 0, in contrast to the RFXY
model.

The calculation proceeds along the lines spelled out in
Sec. III. To first order, the perturbative solution for {θi} that
minimize the RCXY Hamiltonian (2) for small values of
D/J is

θi = θ (0) + D

J
[sin(2(αi − θ (0) )) − ζ ], (18)

where θ (0) is given by

tan(2θ (0) ) =
∑N

i=1 sin(2αi )∑N
i=1 cos(2αi )

(19)

and

ζ = 1

2

∑N
i=1 sin{4(θ (0) − αi )}∑N
i=1 cos{2(θ (0) − αi )}

. (20)

Equation (19) yields four solutions for θ (0), namely,
α̂, α̂ + π, α̂ + π/2, and α̂ − π/2, where α̂ is defined as
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half of the angle that the vector d = (
∑N

i=1 cos(2αi ))x̂ +
(
∑N

i=1 sin(2αi ))ŷ makes with the x axis. The first two and the
last two solutions are degenerate. However, the latter pair has
higher energy and is therefore discarded.

Note that in the case of the RCXY model, the solutions for
extrema are always twofold degenerate as the Hamiltonian
is invariant under the transformation {Si | i = 1, 2, ...N} →
{−Si | i = 1, 2, ...N}. This implies that there are at least two
global minima, and our calculations indicate that there are
only two for finite values of D/J . In the following, we focus
on one of the two minima.

The perturbative solution leads to a magnetization

M ≡ 1

N

N∑
i=1

Si

� M (0) − Dζ

J
(sin(̂α)x̂ − cos(̂α)ŷ) (21)

to first order in D/J . It is straightforward to see that M ori-
ents along θ0 � α̂ + D

J ζ , leading to the following probability
distribution for the deviation of a spin �θi from M:

p(�θi ) = 1

π

√
(D/J )2 − �θ2

i

. (22)

Thus, as for the RFXY model, spins are confined within a cone,
at whose center the distribution is minimum and at whose
edges the distribution diverges. The cone angle is given by
φ = 2D/J .

Beyond the perturbative regime, our numerical studies
show that the spins remain confined to a cone, but the distri-
bution becomes flat within the cone at D/J ∼ 0.7. As D/J is
increased further, the distribution develops a maximum at the
center of the cone. Asymptotically, as D/J → ∞, we expect
the distribution to become flat again. Figure 2(e) shows the
probability density p(�θ ) at various values of D/J .

The cone angle φ widens with D/J as shown in Fig. 2(d),
initially linearly but the widening slows down when D/J ∼ 1.
As D/J → ∞, the cone angle φ → 180◦ when N is infinite.
This can be conceptualized as follows. In the limit N → ∞,
the fields will be distributed uniformly everywhere over the
circle, and as D/J → ∞ the second term in the Hamiltonian
(2) will dominate, forcing each spin Si to lie on the easy axes
pointing either along the direction of the respective field ni or
opposite to it. Thus, we have an Ising degree of freedom at
each site. However, the J term would prefer the spins to be
parallel to each other, resulting in the spins spanning a hemi-
sphere. We note here that the hemispherical distribution of
spins in the D/J → ∞ limit has been pointed out in Ref. [10].

Figure 2(f) shows the behavior of magnetization as a func-
tion of D/J . The magnetization decreases smoothly and there
is no phase transition. As D/J → ∞, magnetization |M| →
2/π in the thermodynamic limit [32].

V. CONES AND DYNAMICS AT T > 0

Here, we use Monte Carlo simulations to address the
question of robustness of the cone and the spin distribution
at equilibrium for the RFXY model at T > 0. The RCXY
model shows similar equilibrium features, and is therefore not

discussed separately. We show that the spin distribution re-
mains similar to that at T = 0 and has a two-peaked structure
below a characteristic temperature determined by the field.

We also perform Monte Carlo simulations below this tem-
perature to study the dynamics of the approach to the ordered
spin state starting from a typical random initial configuration
of spins. We restrict ourselves to the RFXY model in this case.

A. Equilibrium cones

To first order in h/J , the energy per spin in the ground state
is given by

E/N = −J/2 − h

N

N∑
i=1

cos(α0 − αi ) = −J/2 − h

N
|n0|,

(23)

which is obtained by using Eqs. (1) and (12). The contribu-
tion coming from the randomly disordered fields is Edis =
h|n0|/N . Since ni’s are independent random vectors dis-
tributed uniformly over a unit circle, we have

|n0| ≡
∣∣∣∣∣

N∑
i=1

ni

∣∣∣∣∣ ∼
√

N, (24)

implying Edis ∼ h/
√

N . Thus, disorder brings into play a char-
acteristic temperature Tdis ∼ h/

√
N . We performed Monte

Carlo simulations at T < Tdis and T > Tdis according to the
following procedure.

First, a random field configuration is realized by choosing
N field-angles {αi} independently and uniformly from the
interval (0, 2π ]. An initial spin configuration is chosen by
assigning a set of N angles {θi} in the same fashion. The
angles {θi} are now evolved using the Metropolis algorithm.
Each Monte Carlo sweep consists of N updates, at each of
which a particular θi is chosen at random and varied by an
angle �θi that is chosen randomly and uniformly from the
interval (−π/500, π/500). This changes the spin angles, say,
from {θi} to {θ ′

i }. At the end of a step, if the new spin config-
uration lowers the energy (1), it is accepted. Otherwise it is
accepted with a probability exp(−�HRF/T ), where �HRF =
HRF({θ ′

i }) − HRF({θi}). Each such step corresponds to one
unit of time.

From the simulations, we find that the equilibrium distri-
butions of spins within the cone have different characteristics
for T < Tdis and T > Tdis, as shown in Fig. 3. For T < Tdis, the
distribution is similar to that at T = 0, with maxima towards
the edges of the cone and minimum at the center, whereas for
T > Tdis, the distribution is a Gaussian peaked at the center
of the cone. The equilibrium distributions of spins exhibit the
same features for the RCXY model also, with the characteristic
temperature Tdis ∼ D/

√
N .

B. Low-temperature dynamics

We now study the dynamics of spins in the ordered state us-
ing analytical and Monte Carlo methods, restricting ourselves
to T < Tdis.

We find that the evolution of spins from a typical random
initial configuration to the equilibrium state is characterized
by two timescales. In the initial, shorter timescale τ f , the
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FIG. 3. Distribution of spins within the cone for various tem-
peratures, obtained by sampling over 100 field configurations with
J = 1, h = 0.2, and N = 100. The angles are in radians. The dis-
tribution for T = 0.05 is a Gaussian with 0 mean and standard
deviation 0.27. The black line shows the T = 0, h/J = 0.2 distri-
bution of spins (16), obtained from the perturbation theory. Note that
the double-peaked distribution goes to the single-peaked Gaussian
distribution when T > Tdis.

randomly oriented spins come together and form a cone, while
on the second longer timescale τo, the cone rotates and orients
along the equilibrium direction. Figure 4 shows illustrations of
evolution of the spin configuration and plots depicting the evo-
lution of the magnitude and the orientation of magnetization
and the evolution of energy for a typical field configuration
and initial spin configuration.

FIG. 5. The cone orientation time τo for different field configura-
tions, each with a different value of |n0|. For each field configuration,
τo is calculated by averaging over 100 different initial spin configu-
rations. The height of the error bar shows the standard deviation of τ0

with initial spin configurations. The inset shows τ0 versus |n0| in log
scale. The blue line therein has slope −1. Note that N = 100 here.

We find that the cone formation time τ f depends primarily
on J , while the cone-orientation time τ0 is set by h. Further,
τ0 depends on |n0| ≡ | ∑N

i=1 ni|. The larger the value of |n0|,
the shorter the orientation time. This is evident from Fig. 5,
which shows the cone orientation time τo for different field
configurations, each with a different value of |n0|. Note that, in

(a) (b) (c)

0 105 2×105 3×105 4×105

105 3×105

- 0.5

- 0.3

- 0.1

- 0.518

-0.515

(d)

0 1050.0

0.2

0.4

0.6

0.8

1.0

(e)

280

300

260

320

0 105 2×105 3×105 4×105

(f)

FIG. 4. Time evolution (RFXY): (a)–(c) show the spin configurations at t = 0, t = τ f = 4.5 × 104, and t = τ f + τo = 4.35 × 105, respec-
tively. The protruding red dashed and blue straight arrows show the directions of n0 and M, respectively. (d) Energy per spin versus time.
The inset shows variation of E/N from time τ f to τ f + τo. (e) Magnitude of magnetization M versus time. (f) Orientation of magnetization θ0

versus time. The dot-dashed line indicates the T = 0 orientation of M according to perturbation theory (14). All plots refer to a single typical
field configuration and initial spin configuration with N = 400, J = 1, h = 0.2, and T = 0.005.
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practice, we calculate τ f as the time at which the value of |M|
first reaches 0.98 and τ f + τo as the time at which M orients
along the angle α0 + (h/J )η, which is the T = 0 orientation
of M according to the perturbation theory (14).

We write a phenomenological dynamical equation to de-
scribe the evolution of the orientation of M once the cone has
formed,

∂θ0

∂t
= −γ

∂HRF

∂θ0
, (25)

where the effects of thermal fluctuations are neglected. Since
we are interested primarily in the orientation of the cone, we
neglect the spread of spins within the cone and write Si = S
for all i. This simplification is justified for small enough h/J
when the spins point more or less along the same direction
once the cone has formed. Thus, Eq. (1) becomes

HRF = − J

2N
(NS)2 − h

N∑
i=1

S · ni (26)

= −JN

2
− h

N∑
i=1

cos(θ0 − αi ), (27)

where θ0 denotes the orientation of S. Defining �θ0 = θ0 −
α0, the sum in the second term in Eq. (27) can be rewritten as

N∑
i=1

cos(θ0 − αi ) =
N∑

i=1

cos(α0 − αi + �θ0)

= cos(�θ0)|n0|, (28)

where we used the results
∑N

i=1 cos(α0 − αi ) = |n0| and∑N
i=1 sin(α0 − αi ) = 0. Solving for θ0 using Eqs. (25), (27),

and (28), we obtain

tan

(
θ0(t ) − α0

2

)
= tan

(
θ0(0) − α0

2

)
exp (−γ h|n0|t ).

(29)
From the above, we see that the relaxation time τo ∝ 1/|n0|
which is corroborated by the numerical results (see Fig. 5).

VI. CONCLUSION

The ordered states in the RFXY and the RCXY models
show interesting arrangements of spins, which break rota-
tional symmetry for any finite N . In the ground state, the spins
are confined within a two-dimensional cone, whose angle and
orientation are determined by the ratio of disorder to coupling
strength. The distribution of spins within the cone is sensitive
to temperature, and shows very different features for T < Tdis

and T > Tdis. The dynamics of spins relaxing to equilibrium is
characterized by two timescales, namely, the cone formation
time and the cone orientation time.

Note that rotational symmetry is restored only if N is
strictly infinite: the ground state energy per spin E/N becomes
insensitive to the orientation of M in that limit. Further, our
preliminary analysis of the dynamics suggests that γ ∼ N−α ,
where α > 0, implying that the cone orientation time τo di-
verges as N → ∞. The cone formation time is also sensitive
to N . It would be interesting to track the N dependence of
these times.

Another physically relevant question is: What is the effect
of a uniform external field on the cones and arrangement
of spins, as well as on the phase diagram? A preliminary
study, based on the extension of our numerical continuation
techniques to this problem, suggests that at T = 0, the exter-
nal field reorients the cone, with a possible first order phase
transition—from an ordered state to a different ordered state.

We expect many of the qualitative features of the RFXY and
RCXY models, like the existence of a cone, to remain valid for
the case of Heisenberg spins Si that can lie anywhere on a unit
sphere.
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APPENDIX: NUMERICAL CONTINUATION

Here, we explicitly lay out the procedure for solving the
nonlinear Eqs. (3) numerically.

The left-hand side of Eq. (3) Gi ≡ ∂HRF/∂θi, for i =
1, 2, ...N , constitutes a set of continuously differentiable
functions of the variables θ = {θ1, θ2, ...θN } and the param-
eter λ ≡ h/J , for a fixed N and field angles {αi}. It is useful to
write Eq. (3) in terms of Gi here:

Gi = 0. (A1)

If for a set of values (θ, λ), Gi(θ, λ) = 0 for every i, then that
set is called a solution point.

If there exists a solution-point (θ0, λ0) for which

det

⎡⎢⎣
∂G1
∂θ1

... ∂G1
∂θN

...
∂GN
∂θ1

... ∂GN
∂θN

⎤⎥⎦
0

�= 0, (A2)

where the subscript 0 indicates that the derivatives are to be
taken at (θ, λ) = (θ0, λ0), then there also exists a unique set
of solution points (θ(λ), λ) for values of λ in the neighborhood
of λ0, by implicit function theorem. Such a solution point is
referred to as regular.

If we know a regular solution-point (θ0, λ0), we can find a
nearby solution-point (θ1, λ1) approximately by incrementing
the parameter λ by a small number �λ to obtain λ1 = λ0 +
�λ and then finding θ1 = θ0 + �θ that solves the linearized
version of Eq. (A1), which is

N∑
j=1

∂Gi(θ0, λ0)

∂θ j
�θ j + ∂Gi(θ0, λ0)

∂λ
�λ = 0. (A3)

The above equation can be solved easily to obtain �θ, and
hence θ1. The accuracy of the approximate solution θ1 can be
improved by using any of the familiar iterative schemes, such
as the Newton-Raphson or Secant method. In this paper, we
have used the inbuilt FindRoot function in Mathematica.

If the new solution point (θ1, λ1) is also regular, we can re-
peat the above scheme to find the next solution point (θ2, λ2),
and so forth. Alternate methods have to be used if a solution
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point is not regular. For solving Eq. (3), we start from the
perturbative solution (12) and not from the solution θ (0) at
h/J = 0 because the latter is not a regular solution point.
However, the subsequent solution points that correspond to

the minima of the Hamiltonian (1) are regular, and therefore
no alternative schemes had to be used. Further, the absence of
nonregular solution points implies that there are no bifurca-
tions or folds at any of these points.
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