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Noise intensity of a Markov chain
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Stochastic transitions between discrete microscopic states play an important role in many physical and
biological systems. Often these transitions lead to fluctuations on a macroscopic scale. A classic example from
neuroscience is the stochastic opening and closing of ion channels and the resulting fluctuations in membrane
current. When the microscopic transitions are fast, the macroscopic fluctuations are nearly uncorrelated and
can be fully characterized by their mean and noise intensity. We show how, for an arbitrary Markov chain,
the noise intensity can be determined from an algebraic equation, based on the transition rate matrix; these
results are in agreement with earlier results from the theory of zero-frequency noise in quantum mechanical and
classical systems. We demonstrate the validity of the theory using an analytically tractable two-state Markovian
dichotomous noise, an eight-state model for a calcium channel subunit (De Young-Keizer model), and Markov
models of the voltage-gated sodium and potassium channels as they appear in a stochastic version of the
Hodgkin-Huxley model.
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I. INTRODUCTION

For models of many fluctuation phenomena in physics,
biology, chemistry, and other fields, it is important to properly
characterize the noise that drives a given dynamical system.
Examples include the firing of a neuron, driven by channel
noise [1–6] and by shot-noise-like input from other neurons
[7–12], the fluctuations in the intensity of an excitable laser
[13–16], or chemical reactions in mesoscopically small vol-
umes [17–19]. In the past decades, strongly simplified noise
models, such as white Gaussian noise, Poissonian shot noise,
dichotomous noise, or an exponentially correlated Ornstein-
Uhlenbeck noise have often been used to describe the input
noise in these systems. As the models for the driving noise
process become more complex, one would like to use charac-
teristics of the noise process that can be used to fairly compare
different noise models (and their effect on a dynamical sys-
tem). This fair comparison is already possible for simple noise
processes, such as different exponentially correlated processes
like the Gaussian Ornstein-Uhlenbeck process [20–22], the
dichotomous telegraph noise [17,23–25], or the exponentially
distributed noise [26] (which is, however, only approximately
exponentially correlated).

Simple characteristics of a stochastic (noise) process x(t )
are its stationary mean and variance

μ = 〈x(t )〉, σ 2 = 〈�x2〉 = 〈x2(t )〉 − 〈x(t )〉2, (1)

its correlation time

τ =
∫ ∞

0
dt ′ 〈x(t )x(t + t ′)〉 − 〈x(t )〉2

〈�x2〉 , (2)

and its noise intensity

D =
∫ ∞

0
dt ′〈x(t )x(t + t ′)〉 − 〈x(t )〉2. (3)

*Contact author: benjamin.lindner@physik.hu-berlin.de

The meaning of mean and variance are quite obvious. The
correlation time (here defined by an integral over the normal-
ized autocorrelation function) provide an order-of-magnitude
estimate of the periods over which the process changes
significantly. Last but not least, the intensity (here defined
by an integral over the unnormalized autocorrelation func-
tion) captures how much of an effect the process would have
when driving a dynamical system. More specifically, if x(t )
were the velocity of a Brownian particle, D would correspond
to the diffusion coefficient, which is a reasonable measure
of the effect of the velocity noise on the position dynamics.
An alternative interpretation is based on the observation that
the integral is a (half of a symmetric) Fourier transform of
the correlation function at zero frequency, i.e., D can be re-
garded as the zero-frequency limit of the fluctuation’s power
spectrum.

It is clear from the above definitions that correlation time,
variance, and intensity are connected by

D = σ 2τ, (4)

i.e., if we know two of the characteristics, we can easily
compute the third one. For processes described by a nonlinear
Langevin equation, all four characteristics (including also the
mean value) can be expressed by quadratures [27]; see also
Refs. [28,29], which include making the above-mentioned
connection between noise intensity and diffusion coefficient
more explicit.

For discrete-valued processes, x(t ) ∈ {x1, x2, . . . }, gov-
erned by a master equation, the mean and the variance can
easily be calculated in all cases where the stationary proba-
bility can be obtained. The calculation of the noise intensity
is more involved but has recently been worked out in our
previous paper and applied for a specific model [30,31]. In
fact, the general solution to the problem has been given in the
community dealing with zero-frequency current noise decades
ago [32,33] and generalized to quantum mechanical systems
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[34]. Here, we rederive the theory for a general master equa-
tion in a hopefully accessible way and apply the resulting
formulas to popular models of channel kinetics.

Our paper is structured as follows. We begin in Sec. II
with the general framework for calculating the noise intensity.
Then we discuss three examples. In Sec. III we illustrate
the general result for the (simple and well-known) case of
Markovian dichotomous noise. In Sec. IV we study the more
complicated case of an eight-state Markov model, as used in
the De Young-Keizer model to describe a subunit of calcium
release channel. In Sec. V we study a stochastic version of the
sodium and potassium currents as they appear in the Hodgkin-
Huxley model with channel noise. Finally, in Sec. VI, we
discuss further applications of our results, such as a general
white-noise approximation in cases where the microscopic
transitions are much faster than the dynamics of the driven
system. However, we also point out some limitations for sys-
tems where the noise is not purely external and/or very fast
but also depends on the state of the driven system.

II. NOISE INTENSITY OF A MARKOV CHAIN

We consider a random process x(t ) with discrete states,
where the probability pi(t ) of finding a state i at time t is
determined by the (homogeneous) master equation

ṗ(t ) = W p(t ), (5)

with the probability vector p(t ) = (p1(t ) p2(t ) . . .) and
the transition rate matrix W = (wi j ). The entries wi j > 0
for i �= j are the transition rates from a state j to state a i
and w j j = −∑

i �= j wi j . To fully characterize the process x(t ),
each state i is assigned a specific value xi, which are not
necessarily different from each other.

For such a random process, the calculation of the mean and
the variance follows standard procedures [17,18] and is based
on the stationary probability vector limt→∞ p(t ) = p (we indi-
cate the stationary state by omitting the time argument). This
vector can be obtained from the stationary master equation

0 = W p, (6)

together with the normalization condition
∑

i pi = 1; the ad-
ditional condition is needed because of the rank deficiency
of the matrix W . Practically, the normalization can be in-
corporated by replacing an arbitrary row of the matrix W
with ones and the corresponding entry in the zero vector on
the left-hand side (l.h.s.) by a one. This leads to a linear
system of equations solvable by standard methods. Given the
stationary probabilities pi, the mean and the variance can be
calculated by

μ =
∑

xi pi, σ 2 =
∑

i

(xi − μ)2 pi. (7)

The calculation of the noise intensity is more advanced.
We recall the definition of the noise intensity by the inte-
gral over the autocorrelation function Eq. (3). In principle,
the correlation function can be determined by solving the
time-dependent master Eq. (5). However, it turns out that the
calculation of the time-dependent probability vector p(t ) is
not necessary to calculate the noise intensity. Instead, taking
advantage of the fact that the integrated correlation function is

of interest, an algebraic equation can be found that determines
the noise intensity and is not much more complicated to solve
than the equations that determine the mean or variance. We
emphasize that this approach has been put forward much
earlier in different contexts [30,32–34].

To show this, we relate the noise intensity to the probabili-
ties of the Markov chain

D =
∫ ∞

0
dt ′ 〈x(t + t ′)x(t )〉 − 〈x(t )〉2

=
∫ ∞

0
dt ′ ∑

i, j

[xix j pi j (t
′)p j − xix j pi p j]

=
∑
i, j

xi fi jx j p j,

(8)

where pi j (t ′) = p(i, t + t ′| j, t ) is the transition probability,
i.e., the probability of finding the state i at t + t ′ given the
state j at time t . Since we are considering a homogeneous
process, this conditional probability does not depend on the
absolute time t , but only on the difference t ′ and is determined
by the master Eq. (5) with the initial condition pk (t ) = δk j .
The auxiliary function introduced in the last line of Eq. (8),

fi j =
∫ ∞

0
dt ′ pi j (t

′) − pi, (9)

is given by the integral over the difference between the tran-
sition and stationary probabilities. Equation (8) is of course
just a reformulation of the problem. However, it turns out that
the auxiliary functions fi j for a given j can be calculated from
a system of algebraic equations together with an additional
condition, a calculation that is very similar to that of the sta-
tionary probabilities pi. To see this, we formulate the master
equation where the state at some reference time t has been
specified [pk j (0) = δk j]:

ṗk j (t
′) =

∑
i

wki pi j (t
′),

ṗk j (t
′) =

∑
i

wki[pi j (t
′) − pi],

pk − δk j =
∑

i

wki fi j .

(10)

To get from the first to the second line we subtracted the
stationary master equation 0 = ∑

i wki pi. To get from the
second to the third line we integrated over t ′, used Eq. (9),
and exploited that

∫ ∞
0 dt ′ ṗk j (t ′) = pk − δk j . The last line in

Eq. (10) looks like an equation that uniquely determines fi j .
However, because of the rank deficiency of W we need an
additional condition that is obtained by observing that

∑
i

fi j =
∫ ∞

0
dt ′ ∑

i

[pi j (t
′) − pi] = 0. (11)

This condition is independent of j and reflects that for any t ′
both the transition probability and the stationary probability
are normalized over the states i.

Finally, while Eqs. (8) to (11) allow for the calculation of
noise intensity, they can be expressed more conveniently. For
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this purpose, we write Eq. (8) in matrix notation

D = xT Fy, (12)

where fi j is the entry in the ith row and jth column of the ma-

trix F and the two vectors are given by x = (x1 x2 . . .)T

and y = (x1 p1 x2 p2 . . .)T . Similarly, the set of linear
Eqs. (10) can be combined into a single matrix equation

P − 1 = W F, (13)

where P is a matrix in which each entry in the ith row is given
by the stationary probability pi and 1 is the identity matrix.
The additional condition Eq. (11) can be written as

(1 1 . . . 1)F = 0, (14)

implying that each column of the matrix F adds up to zero.
Again, practically, these conditions can be incorporated by
replacing an arbitrary row in W by ones and the corresponding
row of the matrix P − 1 by zeros. The analytical expressions
Eq. (6) for the stationary probability vector p and Eq. (13) for
the auxiliary matrix F are equivalent to Eqs. (43) and (44) in
Ref. [34], which are needed to compute the zero-frequency
power spectrum, i.e., the noise intensity.

In the following, we put the theory to the test for different
models. The first model is the well-known Markovian two-
state model, the second is a more involved eight-state model
for a subunit of a calcium channel (De Young-Keizer model),
and the third example comprises the Ssodium and potassium
channels in a stochastic version of the Hodgkin-Huxley model
of an excitable nerve membrane.

To compute the statistics of interest in stochastic simu-
lations, we follow standard procedures to obtain the time
series x(t ) [35]. We choose an initial state j at time t0 = 0
and simulate the stochastic sequence of states at (discrete)
times t1 < t2 < · · · < tN with fixed step size �t = ti+1 − ti
(for specific values, see figure captions). At each time, the
stimulation is performed in two steps. In a first step, we
determine whether the state of the Markov chain changes
over the interval �t . To this end, we calculate the transi-
tion probability Pj = ∑

i �= j wi j�t (recall that wi j denotes the
transition rate from a state j to a state i) and compare it to
a random number η1 that is uniformly distributed over the
interval [0, 1]; the step size �t must be chosen so that Pj 	 1.
If η1 < Pj , the state of the model changes and, in a second
step, the specific state attained is determined. To this end, we
draw a second random number η2, uniformly distributed over
the interval [0,

∑
i �= j wi j]. If this number falls in the interval

[
∑

i<k wi j,
∑

i<k+1 wi j], the model attains the state k which is
associated with x(t ) = xk .

Finally, we numerically determine the mean, variance, and
noise intensity from the time series x(t ). Both mean and
variance are computed as time averages μ = ∫ tN

0 dt x(t )/tN
and σ 2 = ∫ tN

0 dt [x(t ) − μ]2/tN , respectively; the expression
become exact for N → ∞, here we take a sufficiently large
value N = 107. To compute the noise intensity, we introduce
the smoothed process X (t ; T ) = ∫ t+T

t dt x(t )/T and use that
its variance σ 2

X (T ) is related to the noise intensity by D =
limT →∞ σ 2

X (T )T/2; in practice T must be chosen much larger
than the correlation time of the process x(t ) which depends on
the specific model (for specific values, see figure captions).

FIG. 1. State diagram of a dichotomous noise. The system con-
sists of two states 1 and 2 with corresponding levels x1 and x2. The
transitions between the two states occur at rates α and β.

III. A SIMPLE EXAMPLE:
MARKOVIAN DICHOTOMOUS NOISE

As an introduction to the method, we consider a Markovian
dichotomous noise for which the noise intensity is known
and can be calculated in several ways [23]. A dichotomous
Markov noise x(t ) is a Markov process with two levels x1 and
x2, corresponding to two different states with transition rates α

and β between them. A schematic representation of the model
is shown in Fig. 1.

To calculate the noise intensity according to Eq. (12), we
first determine the stationary probabilities using the stationary
master Eq. (6)

0 =
(−α β

α −β

)(
p1

p2

)
, (15)

together with the normalization condition p1 + p2 = 1 and
obtain p1 = β/(α + β ) and p2 = α/(α + β ). We can now
calculate F using Eq. (13)(

p1 p1

p2 p2

)
−

(
1 0
0 1

)

=
(−α β

α −β

)(
f11 f12

f21 f22

)
(16)

with the additional conditions that each column of F sums to
zero, i.e., f11 + f21 = 0 and f12 + f22 = 0. This yields

F = 1

(α + β )2

(
α −β

−α β

)
(17)

and allows to determine the noise intensity using Eq. (12)

D = 1

(α + β )3

(
x1 x2

)( α −β

−α β

)(
x1β

x2α

)

= αβ

(α + β )3
(x1 − x2)2,

(18)

an expression that is in agreement with the result presented in
Ref. [23]. The noise intensity has a maximum as a function
of the rate α, keeping the other rate β fixed, at α∗ = β/2
[Fig. 2(a)]. As a function of the correlation time τ = 1/(α +
β ) has also a maximum at τ ∗ = 2/(3β ) [Fig. 2(b)]. If the
intensity is plotted as a function of the ratio x1/x2 (Fig. 2(c)],
it has a minimum and vanishes for x∗

1 = x2 because the vari-
ance vanishes in this case. When plotted as a function of the
variance σ 2 [Fig. 2(d)], the noise intensity increases linearly
according to Eq. (4).

The calculation presented here serves only as a sanity
check. The real advantage of the method lies in the possibility
of calculating the noise intensity for more complicated transi-
tion rate matrices, as we will show in the following.
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FIG. 2. The noise intensity of a Markovian Dichotomous noise.
Panels (a), (b) show the noise intensity as a function of the ratio
between the transition rates α/β or the correlation time τ = 1/(α +
β ). The intensity has a maximum at α∗ = β/2 or τ ∗ = 2/(3β ).
Panels (c), (d) show the noise intensity as a function of the ratio
between the values taken in the two states x1/x2 or the variance
σ 2 = αβ(x1 − x2 )2/(α + β )2. The intensity has a minimum at x∗

1 =
x2 and scales linearly with the variance. Parameters: β = 1, x2 = 1
and �t = 10−2, T = 200.

IV. A BIOPHYSICAL EXAMPLE: STOCHASTIC
Ca2+ CHANNEL MODEL

In this section, we consider a biophysical example and
calculate the noise intensity for a eight-state Markov model as
illustrated in Fig. 3 and used in the De Young-Keizer model
to describe a single subunit of an inositol trisphosphate (IP3)
receptor [36]. For such a model, no closed-form expression
for the noise intensity is known.

The entire De Young-Keizer model describes the dynamics
of the intracellular calcium (Ca2+) concentration, which in
many cells serves as a signaling molecule to transmit infor-

TABLE I. Simulation parameters for a IP3-receptor subunit in the
De Young-Keizer model [36].

Parameter Value Description

binding constants
α̂1(μM−1s−1) 400 IP3

α̂2(μM−1s−1) 0.2 Ca2+ inhibition
α̂3(μM−1s−1) 400 IP3

α̂4(μM−1s−1) 0.2 Ca2+ inhibition
α̂5(μM−1s−1) 20 Ca2+ activation

dissociation constants γi = βi/α̂i

γ1(μM) 0.13 IP3

γ2(μM) 1.049 Ca2+ inhibition
γ3(nM) 943.4 IP3

γ4(nM) 144.5 Ca2+ inhibition
γ5(nM) 82.34 Ca2+ activation

FIG. 3. State diagram of a Ca2+ channel subunit [36]. Panel
(a) shows the eight-state model of a single IP3-receptor subunit. The
states are denoted i jk, where each index represents one of the three
binding sites for IP3 (i), activating Ca2+ ( j), and inhibitory Ca2+ (k).
An index is 1 (0) if the binding site is occupied (unoccupied). The
conducting state 110 is highlighted in green. Panel (b) shows the
transition rates on the front and back of the die. Panel (c) shows
the transitions between the front and back faces. Binding rates are
denoted α and depend linearly on the corresponding concentration
(αi = α̂i[IP3] for i = 1, 3 and αi = α̂i[Ca2+]i for i = 2, 4, 5), while
unbinding rates are denoted β and are constants. Parameters are
according to Table I.

mation about extracellular stimuli (calcium signaling) [37,38].
The characteristic short periodic increases in the intracellular
Ca2+ concentration that carry the information can be caused
either by an influx of Ca2+ from the extracellular medium or
by a release of Ca2+ from an intracellular store, the endo-
plasmic reticulum (ER). In both cases, stochastic transitions
between discrete states of the ion channels give rise to macro-
scopic fluctuations in the intracellular Ca2+ concentration.
The De Young-Keizer model covers the case where the Ca2+

signal is evoked by the release of Ca2+ from the ER through
the IP3 receptor channel. This receptor channel in turn is
assumed to consist of three independent and identical subunits
with three binding sites each: one for the second-messenger
molecule IP3, produced in the cell in response to an extracel-
lular stimulus (IP3 pathway), and one activating Ca2+ binding
site and one inhibiting Ca2+ binding site. The Ca2+ current
through a single IP3 receptor channel is given by

ICa = c1x(1)(t )x(2)(t )x(3)(t )([Ca2+]er − [Ca2+]i), (19)

where [Ca2+]er and [Ca2+]i are the ER and intracellular (cy-
tosolic) Ca2+ concentrations, c1 is the volume ratio between
the ER and the cytosol, and x(n)(t ) are dichotomous (two-
valued) stochastic processes capturing the state of the three
IP3 receptor subunits. The kinetics of a single subunit is de-
scribed by the scheme shown in Fig. 3. The eight possible
states shown in Fig. 3(a) result from the fact that each of the
three binding sites can be in two possible states, occupied or
unoccupied. The subunit states are labeled i jk, where i, j, and
k indicate whether the IP3, activating Ca2+, and inhibitory
Ca2+ binding sites are occupied (i, j, k = 1) or unoccupied
(i, j, k = 0). The entire channel is open when in all subunits
the IP3 and activating Ca2+ binding sites are occupied and the
inhibitory Ca2+ binding site is unoccupied, i.e., when all three
subunits are in the 110 state, highlighted in green in Fig. 3(a).
Put differently, every state is assigned a value according to
xi jk = δi1δ j1δk0, i.e., the value of the conducting state 110 is
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1 and the value of every other state is 0. The transition rates
between the states on the front and back faces of the cube
are shown in Fig. 3(b), while the transition rates between the
two faces are shown in Fig. 3(c). Binding rates are denoted α

and depend linearly on the IP3 or Ca2+ concentration accord-
ing to the law of mass action (αi = α̂i[IP3] for i = 1, 3 and
αi = α̂i[Ca2+]i for i = 2, 4, 5), whereas unbinding rates are
denoted β and are constants (we keep the original notation of
De Young and Keizer in terms of α̂ and γ = β/α̂, see Table I).

While De Young and Keizer considered the IP3 receptor
and its subunits in the thermodynamic limit, we calculate the
variance σ 2, correlation time τ and noise intensity D for a
single subunit x(n)(t ). Note that these noise characteristics
have no equivalent in the thermodynamic limit case. Although
the noise intensity for the Markov chain can be calculated
analytically, the expressions for the stationary probability vec-
tor p and the auxiliary matrix F are lengthy. Therefore, we
determine these two statistics numerically by inverting the
transition rate matrix W . Since W does not have full rank,
this requires some manipulation, that we mentioned already
in Sec. II and are more detailed below.

To compute the stationary probability vector p, we im-
plement the normalization condition by replacing all entries
in an arbitrary row of W with ones, and the corresponding
entry in the zero vector on the l.h.s. of the stationary master
equation [Eq. (6)] with a one. This removes a redundant row
in W , which can be obtained by linear combination of the
other rows, and replaces it with the normalization condition∑

i pi = 1. The same trick is used to compute the auxiliary
matrix F , again replacing all entries in a row of W with ones
and the corresponding row of the matrix P0 − 1 on the l.h.s. of
Eq. (13) with zeros. This satisfies the conditions

∑
i fi j = 0.

The results for three statistics are shown in Fig. 4. In
all cases, the numerically calculated values show excellent
agreement with the theoretical predictions, demonstrating that
the method is applicable even when the transition rate matrix
is more complicated. Furthermore, the results show that the
variance alone is an insufficient measure to quantify the effect
of a random process on a driven variable. For example, while
the variance is nearly constant for low values of [Ca2+]i, the
noise intensity shows a pronounced maximum for an interme-
diate value.

V. VOLTAGE-GATED CHANNELS: MODELS
OF STOCHASTIC K+ AND Na+ CHANNELS

As a third and final example, we calculate the noise inten-
sity for two Markov chains, as used in stochastic variants of
the Hodgkin-Huxley model to describe the gating of the potas-
sium (K+) and sodium (Na+) channels [39–41]. Similar to the
example discussed in the previous section, microscopic tran-
sitions between different discrete states of the ion channels
lead to stochastic ion currents and eventually to macroscopic
fluctuations, here in the voltage of an excitable membrane.
We emphasize that we now consider the characteristics of the
current through an entire ion channel (K+ or Na+), in contrast
to the subunit activity addressed in the previous section.

FIG. 4. Statistical measures of a stochastic Ca2+ channel sub-
unit. Panels (a)–(c) show the variance σ 2, correlation time τ ,
and noise intensity D as a function of the intracellular calcium
concenntration [Ca2+]i for a stochastic IP3 receptor subunit gov-
erned by the scheme illustrated in Fig. 3. Vertical lines indicate
the standard error calculated from ten simulations. The vari-
ance and noise intensity are calculated according to Eq. (7) and
Eq. (12), respectively. The correlation time is determined as the ratio
τ = D/σ 2. Parameters are according to Table I and �t = 10−4s,
T = 100s.

The classical Hodgkin-Huxley model describes the dynam-
ics of the membrane potential V and the generation of an
action potential in a neuron by means of a passive leak current,
a voltage-dependent K+ current, and a voltage-dependent
Na+ current [42,43]. In a stochastic formulation the latter two
currents can be expressed by

IK = gKn(1)(t )n(2)(t )n(3)(t )n(4)(t )(V − EK),

INa = gNam(1)(t )m(2)(t )m(3)(t )h(1)(t )(V − ENa),
(20)

where gK and gNa are the maximal conductances and EK

and ENa are the reversal potentials. In our case, the variables
n(i), m( j), and h(k) are Markovian dichotomous processes that
capture the state of the subunits in a single K+ or Na+ channel
[44]. In accordance with Eq. (20), the K+ channel consists of
four activation gates of type n, whereas the Na+ channel con-
sists of three activation gates of type m and one inactivation
gate of type h. Only when all subunits are open is the channel
open.
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FIG. 5. State diagram of a K+ channel and a Na+ channel [41].
Panel (a) shows the five-state model of a stochastic K+ channel. The
five states represent the number of activated n-type subunits (0 to 4)
of the K+ channel. The transition rates are given above/below the
arrows. All four subunits must be activated (n4) for the K+ channel
to open. Panel (b) shows the eight-state model of a stochastic Na+

channel. The eight states represent the number of activated m-type (0
to 3) and deinactivated h-type (0 to 1) subunits of the Na+ channel.
All three subunits of type m must be activated and the subunit of type
h must be deinactivated (m3h1) for the Na+ channel to open.

In the original Hodgkin-Huxley model, the gating variables
are deterministic quantities bounded between zero and one
and governed by the differential equation

τz(V )ż = αz(V )(1 − z) − βz(V )z, (21)

with z = n, m, h. In this case, n, m, and h represent the fraction
of open subunits in a large ensemble. However, Eq. (21) can
also be interpreted as z(t ) describing the probability of a
single subunit taking a certain state in a two-state system with
voltage-dependent transition rates αz(V ) and βz(V ) (similar to
Fig. 1). This insight allows to formulate stochastic variants of
the Hodgkin-Huxley model consistent with the deterministic
model in the thermodynamic limit, where the state of each
subunit is represented by a Markovian dichotomous noise with
a mean governed by Eq. (21) [39,40]. In this formulation, the
gating variables correspond to the fluctuating fraction of open
subunits in a finite ensemble.

In the following we calculate the noise intensity of the
ion current through a single K+ channel or a single Na+

channel. We already emphasized that the kinetics of a single
subunit [n(i)(t ), m( j)(t ), and h(k)(t )] can be described by a
Markovian dichotomous noise with a transition rate matrix
similar to the one used in Sec. III. One could be tempted to
think that the noise intensity of the product of a number of
independent random processes can be easily found from the
intensities of the single factors. However, this is only true for
certain special processes, such as those with an exponential
correlation function. In general we are not aware of a simple
relation between the intensities.

To calculate the noise intensity for the product, we need
to formulate the transition rate matrix for the random pro-
cesses x(t ) = n(1)(t )n(2)(t )n(3)(t )n(4)(t ) for the K+ channel or
x(t ) = m(1)(t )m(2)(t )m(3)(t )h(1)(t ) for the Na+ channel. Here,
we follow the formulation of [41] and use transition rate
matrices corresponding to the state diagrams in Fig. 5, which
provide alternative but still exact descriptions of the currents
through the two ion channels The five possible states for the

TABLE II. Simulation parameters for K+ and Na+ channels in
the Hodgkin-Huxley model [45].

Parameter Value

αn(ms−1) 0.01(V + 55)/{1 − exp[−0.1(V + 55)]}
αm(ms−1) 0.1(V + 40)/{1 − exp[−0.1(V + 40)]}
αh(ms−1) 0.07 exp[−0.05(V + 65)]

βn(ms−1) 0.125 exp[−0.0125(V + 65)]

βm(ms−1) 4 exp[−0.0556(V + 65)]

βh(ms−1) 1/{1 + exp[−0.1(V + 35)]}
gK(mS) 36

gNa(mS) 120

EK(mV) −77

ENa(mV) 50

K+ channel [Fig. 5(a)] result from the fact that the subunits
are identical and independent. Therefore, it is sufficient to
describe the number of subunits in the activated state. In
this formulation, the transition rate from the state n3 (three
activated n-type subunits) to n4 is αn, the rate at which the
last deactivated gate is activated, and the transition from n3

to n2 is 3βn, the rate at which one out of three activated
gates deactivates (see Refs. [41,45]). The entire K+ channel
is considered open when all gates are activated, i.e., the value
of the state n4 is 1 and the value of every other state is 0.
Similarly, a reduced state diagram can be formulated for the
Na+ channel [Fig. 5(b)]. In this case, the number of activated
m-type subunits and number of inactivated h-type subunit
must be distinguished, resulting in eight different states. The
K+ channel is considered open, when all three m-type sub-
units are activated and the h-type subunits deinactivated, i.e.,
the value of the state m3h1 is 1 and the value of every other
state is 0.

In Fig. 6 we compare simulation results and theoreti-
cal predictions of the open probability, variance, correlation
time, and noise intensity of the stochastic K+ and Na+ cur-
rents according to Eq. (20) where the product of the gating
variables, x(t ) = n(1)(t )n(2)(t )n(3)(t )n(4)(t ) in case of the K+
channel and x(t ) = m(1)(t )m(2)(t )m(3)(t )h(1)(t ) in case of the
Na+ channel are described by by a single random process,
governed by the Markov schemes illustrated in Figs. 5(a) and
5(b), respectively. In both cases, the numerical computations
agree with the theoretical predictions, demonstrating that the
method is applicable to the stochastic Hodgkin-Huxley model.
However, we note that our method relies on the assumption of
a clamped voltage.

Regarding the interpretation of the obtained curves, we
first note that the two upper panels agree with the deter-
ministic open probability of the classical Hodgkin-Huxley
model: A monotonically increasing function for the K+
channel [Fig. 6(a1)] and a nonmonotonic function for the Na+

channel [Fig. 6(b1)] due to the interplay between activation
and inactivation. The latter maximum implies maxima in the
variance [Fig. 6(b2)] and the noise intensity [Fig. 6(b4)]. We
note that there are also maxima in the characteristics of the
K+ channel at different voltage values Figs. 6(a2)–6(a4). The
maximum of the variance is plausible because the open prob-
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(a1) (b1)

(a2) (b2)

(a3) (b3)

(a4) (b4)

(b)(a)

FIG. 6. Statistical measures of a stochastic K+ and Na+ channel.
Panels (a), (b) show the open probability, variance σ 2, correlation
time τ , and noise intensity D as a function of the membrane potential
V for the stochastic K+ and Na+ channels governed by the scheme
illustrated in Figs. 5(a) and 5(b), respectively. Vertical lines indicate
the standard error calculated from ten simulations. The variance and
noise intensity are calculated according to Eq. (7) and Eq. (12), re-
spectively. The correlation time is determined as the ratio τ = D/σ 2.
Parameters are according to Table II and �t = 10−2 ms, T = 200 ms.

ability reaches zero and one in the limit of extreme voltage
values. This maximum then also entails a maximum of the
noise intensity.

VI. SUMMARY AND DISCUSSION

In this paper, we developed a general framework to char-
acterize a noise process that is described by a finite Markov
chain, i.e., by a Master equation with a finite number of states.
More specifically, we demonstrated that the calculation of the
noise intensity and correlation time of the process is only
slightly more complicated than the computation of the steady
state and its mean and variance, all in agreement with previous
results from the literature [32–34]. We illustrated our general
result by application to three cases: (i) the dichotomous noise
(for which all characteristics are, of course, well known); (ii)
a stochastic calcium channel subunit as it is used in the De
Young-Keizer model; and (iii) sodium and potassium currents

as used in the Hodgkin-Huxley equation of action potential
generation. In all these cases, our comparison to stochastic
simulations of the underlying discrete dynamics agreed well
with the analytical predictions of our formulas over a wide
range of tested parameters.

The computation of noise intensity and correlation time has
particular importance in the context of the so-called diffusion
approximation. In several situations of interest the discrete
fluctuations described by the Master equation can be well
approximated by a white Gaussian noise. This stochastic pro-
cess is fully characterized by its mean value and its noise
intensity, for which we derived a simple expression above.
Once this approximation has been made, the apparatus of
nonlinear diffusion processes, in particular, the Fokker-Planck
equation for the evolution of the probability density, can be
used. To learn whether this approximation is really justified
for a specific system, it is crucial to know the correlation time
of the noise and to test whether it is much shorter than all
other timescales in the system: only if this is the case are
we permitted to neglect the temporal correlations of the noise
process entirely. This may also apply in the more complicated
situation in which both the mean and intensity depend on
the dynamical variable(s) of the driven system, i.e., when
there is a feedback between the dynamical variable(s) and
the noise statistics. This is only one instance of a nonequi-
librium situation, in which parameters of the system turn into
time-dependent functions. It remains an interesting task for
future investigations to examine how the calculations done in
our paper can be generalized (at least approximately) in such
cases.

Returning to the problem of the white-noise approxima-
tion, let us revisit the dynamics of the calcium subunit, for
which the correlation time was shown in Fig. 4(b) as a func-
tion of the (clamped) calcium concentration. The maximum
correlation time is below 3 seconds in this case. If we now
take into account that calcium is not clamped but in fact obeys
a dynamics on the timescale of tens of seconds to multiple
minutes [46,47], we may justify to approximate the stochastic
activity of the single subunit by a Gaussian white noise with
a calcium-dependent mean value and a calcium-dependent
noise intensity. This is true when the Ca2+ concentration is
below some spiking threshold, and it does not include the
dynamics that is responsible for the spike shape. For another
calcium channel (cluster) model, this has been carried out
in a integrate-and-fire type model of intracellular calcium
excitability and thoroughly tested by us and a collaborator
[30,31].

For the gating variables of the Hodgkin-Huxley model a
similar argument may be possible. A naive version of the
approximation is not justified to describe the generation of
the action potential. It is exactly the nonlinear interplay be-
tween the voltage and gating dynamics that gives the action
potential its characteristic shape, i.e., the upstroke of the spike
caused by the positive feedback of sodium-channel opening
upon an initial (and sufficiently strong) depolarization and the
downstroke due to the slower inactivation of sodium channels
and the opening of potassium channels. The membrane time
constant in the original Hodgkin-Huxley model (roughly, the
timescale of the voltage dynamics) is of the order of 3 ms [48]
and thus comparable to the correlation time of the potassium
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channel fluctuations [according to Fig. 6(b) around 2.5 ms
for voltage values around the resting potential]. Hence, in
this case it is recommendable to abstain from a white-noise
approximation. Indeed, different approximation schemes that
are based on having a large number of channels have been
devised, see, e.g., the classical studies by Fox et al. [39,40]
who approximated the gating dynamics by chemical Langevin
equations, and more recent contributions which used stochas-
tic shielding to obtain numerically efficient descriptions of the
inherent stochasticity [6]. We note that our results are still use-
ful because in the experiment the voltage can and is routinely
clamped to a prescribed value and currents through specific
channels can be isolated (methods for this are, for instance,
discussed in the textbook by Izhikevich [42]), and in this
situation our formulas give exact results for the characteristics
of the respective current fluctuations. The same method can
be applied to more complicated kinetic schemes of channel

states, see, e.g., the review on the many models of sodium
channels [49].

Of course, the two above cases are more involved in the
sense that the dynamics of the Markov chain itself are not
always affected by the variable it drives. When the output
of the Markov chain acts as an external noise on a system,
no white-noise approximation has to be made and our results
then simply provide the most important noise characteristics
of this stochastic process, making it comparable to simpler
noise models (white or low-pass filtered Gaussian noise, white
Poissonian noise, or colored dichotomous noise).
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