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Machine learning analysis of dimensional reduction conjecture for nonequilibrium
Berezinskii-Kosterlitz-Thouless transition in three dimensions
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We investigate the recently proposed dimensional reduction conjecture in driven disordered systems using
a machine learning technique. The conjecture states that a static snapshot of a disordered system driven at a
constant velocity is equal to a space-time trajectory of its lower-dimensional pure counterpart. This suggests
that the three-dimensional (3D) random field XY model exhibits the Berezinskii-Kosterlitz-Thouless transition
when driven out of equilibrium. To verify the conjecture directly by observing configurations of the system, we
utilize the capacity of neural networks to detect subtle features of images. Specifically, we train neural networks
to differentiate snapshots of the 3D driven random field XY model from space-time trajectories of the two-
dimensional pure XY model. Our results demonstrate that the network cannot distinguish between the two,
confirming the dimensional reduction conjecture.
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I. INTRODUCTION

The large-scale behavior of classical and quantum many-
body systems in nonequilibrium steady states has been a
central research topic in modern statistical physics. The ab-
sence of the detailed balance due to nonequilibrium driving
results in unique behaviors that are not found in thermal equi-
librium, such as long-range order in two-dimensional (2D)
systems with continuous symmetry [1,2], absorbing-state
phase transitions [3–5], and motility-induced phase separation
[6–9]. Recent advancements in experiments, from ultracold
atomic gases to biological systems, have heightened interest
in this expansive subject.

Recent studies suggest that, when the three-dimensional
(3D) XY model with a random field is driven at a constant
velocity, it shows the Berezinskii-Kosterlitz-Thouless (BKT)
transition [10,11]. This finding is striking because, under ther-
mal equilibrium, the 3D random field XY model remains
disordered and does not exhibit any phase transition [12,13].
The principle behind the 3D nonequilibrium BKT transition
is the dimensional reduction conjecture [14,15]. In simple
terms, it proposes that a static snapshot of a D-dimensional
disordered system driven at a constant velocity is equal to a
space-time trajectory of its (D − 1)-dimensional pure coun-
terpart (see Fig. 1 for a schematic illustration). Using this idea,
the 3D driven random field XY model equates to the 2D pure
XY model, leading to the expectation of the BKT transition
in the 3D model. However, it remains unclear when and under
which circumstances this dimensional reduction holds true, as
there are simple counterexamples (see Appendix E).

In this paper, we aim to test the dimensional reduction
conjecture using machine learning. Neural networks excel at
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identifying subtle data patterns that humans cannot capture.
In statistical physics, they have been employed to identify and
categorize thermodynamic phases in classical spin systems
[16–21], glassy systems [22–26], and quantum many-body
systems [27–33]. Our goal with the neural network is to
compare the structures of a driven disordered system with its
simpler, lower-dimensional pure version. To do this, we train
a convolutional neural network (CNN) and a fully connected
neural network (FNN) to distinguish between snapshots of the
3D driven random field XY model (DRFXYM) and space-
time trajectories of the 2D pure XY model. This is a standard
binary classification task (see Fig. 4). We demonstrate that
the classification accuracy of the trained network is no better
than a random guess, suggesting that the two systems are
indistinguishable.

This paper is organized as follows: In Sec. II, we introduce
a prototypical model for driven phase ordering systems with
disorder, referred to as the driven random field O(N ) model.
From a naïve argument, we propose the dimensional reduction
conjecture for this model. The main discussion will focus on
the 3D DRFXYM (N = 2). In Sec. III, before exploring the
machine learning verification of dimensional reduction, we
highlight characteristics of the 3D BKT transition. Specifi-
cally, we compute the helicity modulus for the 3D DRFXYM,
revealing a jump at a certain critical disorder strength. Addi-
tionally, the jump amplitude of the helicity modulus satisfies
the universal jump relation given by Eq. (21). Section IV is
devoted to our machine learning examination of the dimen-
sional reduction conjecture. Our findings indicate that the task
of distinguishing between the 3D DRFXYM and the 2D pure
XY model becomes challenging when the parameters of both
models match the anticipated values for model mapping of
the dimensional reduction. We summarize our conclusions
in Sec. V. In Appendix A, we review the analysis of the
spin-wave approximation for the 2D XY model and the 3D
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FIG. 1. Schematic illustration of the dimensional reduction con-
jecture. It predicts that (a) a snapshot of D-dimensional disordered
systems driven at a constant velocity is equivalent to (b) a space-time
trajectory of the (D − 1)-dimensional pure system.

DRFXYM. Appendix B provides details of our numerical
simulation procedures. In Appendix C, we present details
of coarse-graining procedures applied to data. Appendix D
discusses the reproducibility of the neural network results. In
Appendix E, we discuss a counterexample of the dimensional
reduction. Specifically, we demonstrate that the 2D driven ran-
dom field Ising model is not identical to the one-dimensional
(1D) pure Ising model, emphasizing the intricate nature of the
dimensional reduction conjecture.

II. MODEL AND DIMENSIONAL REDUCTION

We introduce a model of driven phase ordering systems
with disorder and address the dimensional reduction con-
jecture. Let us consider an N-component real vector field
given by φ(r) = [φ1(r), . . . , φN (r)]. The Hamiltonian for the
D-dimensional O(N ) model with a quenched random field
h(r) = [h1(r), . . . , hN (r)] is

H[φ; h] =
∫

dDr

[
1

2

N∑
i=1

|∇φi|2 + U (ρ) − h · φ
]
, (1)

where U (ρ) = (g/2)(ρ − 1
2 )2 denotes the local potential with

field amplitude ρ = |φ|2/2. The random field h(r) obeys a
Gaussian distribution with zero mean satisfying

〈hi(r)h j (r′)〉 = �2δi jδ(r − r′), (2)

where 〈. . . 〉 denotes averaging over disorder realizations and
� is a parameter characterizing the intensity of the random
field. Equation (2) implies that the correlation of the random
field is short range.

The dynamics of the model is described by

∂tφi + �[φi] = −δH[φ; h]

δφi
+ ξi, (3)

where ξi(r, t ) represents the thermal noise satisfying

〈ξi(r, t )ξ j (r′, t ′)〉T = 2T δi jδ(r − r′)δ(t − t ′). (4)

In this, 〈. . . 〉T denotes averaging over the thermal noise. The
term �[φi] in Eq. (3) signifies the effect of nonequilibrium
driving. For �[φi] = 0 and h = 0, Eq. (3) corresponds to
the conventional dynamics of phase ordering systems with a

nonconservative order parameter, known as model A [34]. We
postulate that �[φ] satisfies the following conditions:

(1) Nonpotentiality: There is no potential functional V [φ]
such that �[φ] = δV [φ]/δφ.

(2) Locality: �[φ] is a function of φ and its spatial deriva-
tives at the same space-time point.

(3) Symmetry: �[φ] is transformed in the same way as
φ by the transformation corresponding to the Z2 or O(N )
symmetry.

(4) Linearity: �[φ] is linear with respect to φ.
The simplest choice is �[φi] = (v · ∇ )φi with a constant

vector v. Therefore, the dynamics simplifies to

∂tφi + v∂xφi = −δH[φ; h]

δφi
+ ξi. (5)

Hereafter, we refer to this as the driven random field O(N )
model [DRFO(N )M], which has been introduced in Ref. [10].

The DRFO(N )M characterizes the relaxation dynamics of
ordered systems flowing in a random environment, exempli-
fied by liquid crystals flowing through porous media. Recent
interest has surged in the dynamics of liquid crystals within
complex geometries, driven by both fundamental research
interest and industrial applications [35]. In porous media, the
irregular surface of the substrate induces random anchoring
that breaks the symmetry, analogous to the random field in
the O(N ) model.

We discuss the dimensional reduction conjecture for the
DRFO(N )M [14,15]. At zero temperature T = 0 (without the
thermal noise ξi), Eq. (5) is written as

∂tφi + v∂xφi = [∇2 − U ′(ρ)]φi + hi. (6)

We assume that, after a sufficiently long time, the system
relaxes to a steady state, which satisfies

v∂xφi = [∇2 − U ′(ρ)]φi + hi. (7)

In the large length scale, the longitudinal elastic term ∂2
x φi

is negligible compared with the advection term v∂xφi. Thus,
Eq. (7) can be rewritten as

v∂xφi(x, r⊥) = {∇2
⊥ − U ′[ρ(x, r⊥)]

}
φi(x, r⊥) + hi(x, r⊥),

(8)

where ∇⊥ represents the spatial derivative with respect to the
transverse directions and r⊥ represents the transverse coor-
dinate. If the coordinate x is considered a fictitious time and
hi(x, r⊥) as thermal noise, Eq. (8) is equal to the dynamical
equation for the (D − 1)-dimensional pure O(N ) model with
an effective temperature:

Teff = �2

2v
. (9)

This naïve argument concludes that a static snapshot of the
D-dimensional DRFO(N )M at zero temperature is identical to
a space-time trajectory of the (D − 1)-dimensional pure O(N )
model at finite temperature. We refer to this as the dimensional
reduction conjecture, which is illustrated in Fig. 1.

We now turn our attention to the case where N = 2,
the driven random field XY model (DRFXYM). If the di-
mensional reduction conjecture is correct, the 3D DRFXYM
corresponds to the usual 2D XY model. Given that the 2D XY
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model undergoes the BKT transition at a critical temperature
Tc, it is anticipated that the 3D DRFXYM will similarly ex-
hibit a transition at a critical disorder �c. From Eq. (9), the
critical disorder can be expressed as

�c =
√

2vTc. (10)

We note that the heuristic argument leading to the di-
mensional reduction rests on nontrivial assumptions. First, it
is not trivial whether the system always relaxes to a steady
state after a sufficiently long time. The system might exhibit
chaotic fluctuations indefinitely, even if there is no thermal
noise. Secondly, typical steady states satisfying Eq. (8) are
not guaranteed to be the typical dynamical solutions of the
lower-dimensional counterpart. More precisely, the realiza-
tion probability of steady states satisfying Eq. (8) might be
quite different from that of space-time trajectories of the
lower-dimensional counterpart at thermal equilibrium. This
argument does not provide clarity on the comparative re-
alizability of one steady state over another. Given these
intricacies, the applicability of the dimensional reduction con-
jecture to a driven disordered system remains a nontrivial
issue. In the main body of this paper, we demonstrate that
dimensional reduction is valid for DRFXYM. However, as
discussed in Appendix E, the dimensional reduction does not
hold for the case of N = 1, i.e., the driven random field Ising
model.

We briefly remark on the dimensional reduction conjec-
ture for disordered systems in thermal equilibrium, a concept
established in the 1970s. This predicts that the large-scale
physics of D-dimensional disordered systems is the same as
that of the (D − 2)-dimensional counterparts without disorder
[36–39]. Well-studied examples of such systems include elas-
tic manifolds in random media [40–44], the random field Ising
model [45,46], and the random field and random anisotropy
O(N ) models [47–50]. Nonetheless, it is recognized that the
dimensional reduction can break down due to nonpertur-
bative effects linked to the existence of numerous energy
landscape local minima [40–50]. Our dimensional reduc-
tion conjecture discussed in this paper can be considered a
nonequilibrium counterpart of this well-established concept.
In nonequilibrium cases, the similar nonperturbative effects
arising from an abundance of steady states could undermine
the validity of the dimensional reduction [14,15].

III. UNIVERSAL JUMP OF HELICITY MODULUS

Before proceeding to the test of the dimensional reduction
conjecture using machine learning, we first discuss the basic
characteristics of the BKT transition in the 3D DRFXYM. The
conventional BKT transition is signified by a discontinuous
jump in the helicity modulus [51,52]. In this section, we exam-
ine the helicity modulus of the 3D DRFXYM, demonstrating
that it similarly exhibits a jump at the transition point.

A. 2D XY model

We begin by examining the standard 2D XY model as our
reference system. The Hamiltonian is given by

H = −
∑
〈i j〉

cos(θi − θ j ), (11)

where θi is the angle of the spin at site i in a square lattice of
length L, and 〈i j〉 denotes a nearest-neighboring pair.

A well-understood aspect of this model is the behavior of
the helicity modulus 
. The helicity modulus 
 is determined
by measuring the response force to the twist of the spins.
Suppose twisting the spins at the left boundary of a 2D square
simulation box of length L by a slight angle θ with respect to
the right boundary. The helicity modulus 
 is then expressed
as


 = lim
θ→0

1

θ

〈
∂H

∂θ

〉
. (12)

At the critical temperature Tc, 
 displays a sharp drop to zero.
The amplitude of this jump in 
 satisfies the universal jump
relation [51,52]:


c

2Tc
= 1

π
. (13)

We conduct Monte Carlo simulations over 105L2 steps, and
the time average for the helicity modulus 
 is computed after
an initial transient regime to ensure system equilibration. Ad-
ditionally, these measurements are ensemble-averaged over
50–100 different initial states to improve statistical reliability
and reduce sampling errors. In Fig. 2(a), we show 
 as a
function of temperature for various system sizes L. For tem-
peratures below Tc � 0.9, the value of 
 remains unaffected
by changes in L. However, for temperatures above this critical
point, 
 diminishes to zero as L increases. The solid line
in Fig. 2(a) represents 
 = 2T/π . Using Eq. (13), this line
intersects with the 
 curve right at the critical temperature.

To deal with the finite-sized effect, it is important to
point out that, for different system sizes L, the values of 


should collapse to a single curve when plotted against the
ratio L/ξ (T ), where ξ (T ) represents the correlation length
[53]. Close to the BKT transition, the correlation length ξ (T )
behaves as

ξ (T ) ∝ exp

[
B

(T − Tc)1/2

]
, (14)

where B is a nonuniversal constant. With this in mind, in
Fig. 2(b), we plot 
 as a function of ln[L/ξ (T )] = ln L −
B/(T − Tc)1/2. We can observe data collapse with parameters
Tc = 0.89 and B = 1.73.

The BKT transition can also be characterized by the system
size dependence of the magnetization. The magnetization per
spin is given by

M̂ = 1

L2

∫
d2rφ(r), (15)

where its average is noted to vanish, 〈M̂〉 = 0. Consequently,
we consider its standard deviation:

M := 〈|M̂|2〉1/2 = 1

L2

[∫
d2rd2r′〈φ(r) · φ(r′)〉

]1/2

. (16)

Below the critical temperature Tc � 0.9, the spin correlation
function exhibits a power-law decay:

〈φ(r) · φ(r′)〉 ∝ |r − r′|−η2D(T ), (17)

where η2D(T ) is a temperature-dependent exponent. With the
spin-wave approximation, which is reviewed in Appendix A,
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ln
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FIG. 2. Helicity modulus 
 and magnetization M for (a)–(c) the two-dimensional (2D) XY model and (d)–(f) the three-dimensional (3D)
driven random field XY model (DRFXYM). (a) Helicity modulus 
 for the 2D XY model as a function of temperature with systems sizes
L = 16, 32, 64, and 128. The dashed line represents 
 = 2T/π . (b) Finite-sized scaling plot of 
 as a function of ln L − B/(T − Tc )1/2. The
scaling parameters are Tc = 0.89 and B = 1.73. (c) Magnetization M for the 2D XY model with systems sizes L = 16, 32, 64, and 128 from
top to bottom. The inset shows the system size dependence of M at the transition point, shown in log scale on the both axes. (d) Helicity
modulus 
 for the 3D DRFXYM as a function of disorder � with systems sizes L = 20, 30, 40, and 60. The driving velocity is v = 2. The
dashed curve represents 
 = �2/(vπ ). (e) Finite-sized scaling plot of 
 as a function of ln L − B/(�2 − �2

c )1/2. The scaling parameters are
�c = 2.17 and B = 8.06. (f) Magnetization M for the 3D DRFXYM with systems sizes L = 20, 30, 40, and 60 from top to bottom. The inset
shows the system size dependence of M at the transition point, shown in log scale on the both axes.

this exponent is given by η2D(T ) = T/(2π ). At the critical
temperature, it reaches a value of

η2D(Tc) = 1
4 . (18)

Equations (16) and (17) imply that the magnetization follows
a power-law decay:

M ∼ L−η2D(T )/2. (19)

In Fig. 2(c), we show M as a function of the temperature
for several system sizes. The inset of Fig. 2(c) shows the
relation of M with L at the critical temperature T = 0.9. This
relationship fits well with a power-law function described as
aL−b. The resulting exponent b = 0.122 closely matches the
theoretical value η2D(Tc)/2 = 1

8 .

B. 3D DRFXYM

Now we turn our attention to the 3D DRFXYM at zero
temperature. Like the 2D XY model, we evaluate the helicity
modulus by measuring the response force to the twist of the
spins. Suppose twisting the spins at the top boundary of a
3D cubic simulation box of length L by a slight angle θ with
respect to the bottom boundary. The helicity modulus 
 is then
expressed as


 = lim
θ→0

1

Lθ

〈
∂H

∂θ

〉
, (20)

where H is the Hamiltonian of the 3D DRFXYM. Impor-
tantly, Eq. (20) can be applied to nonequilibrium situations,
considering 〈. . . 〉 as the average for nonequilibrium steady
states. Assuming that the concept of dimensional reduction is
valid, the universal jump relation is obtained by substituting
the effective temperature Eq. (9) into Eq. (13). The resulting
equation is


cv

�2
c

= 1

π
, (21)

where �c is the critical disorder strength.
In simulations, the equation of motion is integrated using

the Euler method for 105 steps, with a time discretization
of dt = 1/10v, where v represents the driving velocity. We
compute the time average for the helicity modulus 
 after
an initial transient phase, and it is also supplemented by
ensemble averages over 50–100 different initial states. For
more details on the simulation of the DRFXYM, refer to
Appendix B. In Fig. 2(d), we show 
 as a function of the
disorder � for various system sizes L. The behavior observed
here mirrors that of the standard 2D XY model. Specifically,
the value of 
 remains unaffected by changes in L when
� < �c � 2.2. However, for � > �c, 
 diminishes to zero
as L increases. The solid curve represents 
 = �2/(vπ ). The
point where this curve intersects with the 
 curve close to �c

suggests that our universal jump relation in Eq. (21) is a good
approximation.
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The finite-sized scaling can be performed similarly to how
we did with the 2D XY model. From Eqs. (9) and (14), the
correlation length ξ (�) is expected to behave as

ξ (�) ∝ exp

[
B(

�2 − �2
c

)1/2

]
, (22)

where B is a nonuniversal constant. In Fig. 2(e), we plot

 against ln[L/ξ (�)] = ln L − B/(�2 − �2

c )1/2. We can ob-
serve data collapse with parameters �c = 2.17 and B = 8.06.

For weak disorder, the spin correlation function shows a
power-law decay with anisotropic exponents [10,11]:

〈φ(r) · φ(r′)〉 ∝
{|r − r′|−η⊥(�) (r − r′ ⊥ v),
|r − r′|−η‖(�) (r − r′ ‖ v),

(23)

where v = (v, 0, 0) is parallel to the x direction. The deriva-
tion of Eq. (23) with the spin-wave approximation is presented
in Appendix A. According to the dimensional reduction
conjecture, the transverse direction of the driven disordered
system corresponds to the spatial direction of the lower-
dimensional counterpart (see Fig. 1). Thus, from Eq. (9), the
transverse exponent η⊥(�) is given by

η⊥(�) = η2D

(
�2

2v

)
, (24)

in terms of the exponent η2D(T ) for the 2D XY model. Since
the longitudinal direction is mapped to the time direction of
the lower-dimensional system by the dimensional reduction, a
simple scaling argument implies

η‖(�) = η⊥(�)

2
, (25)

which is because Eq. (8) contains the first-order derivative
of time and the second-order derivative of space (see Ap-
pendix A for explicit calculations).

Let us consider the system size dependence of the magne-
tization:

M = 1

L3

[∫
d3rd3r′〈φ(r) · φ(r′)〉

]1/2

. (26)

Equations (23) and (26) imply that, in the quasi-long-range
ordered phase (� < �c), the magnetization exhibits a power-
law decay:

M ∼ L−η⊥(�)/2. (27)

Note that η‖(�) does not influence Eq. (27) because, for suf-
ficiently large L, the exponent of magnetization is determined
by the largest exponents of the correlation function. Thus, the
dimensional reduction predicts that M ∼ L−1/8 at the transi-
tion point � = �c. In Fig. 2(f), we show the magnetization
M as a function of the disorder �. The inset shows M as a
function of L at the tentative transition point � = 2.2. The
magnetization can be fitted by a power-law function aL−b

with an exponent b = 0.104, which deviates ∼20% from the
theoretical prediction of 1

8 . This deviation might stem from
the finite-sized effect. Since the correlation function given
by Eq. (23) features anisotropic exponents η‖(�) < η⊥(�),
for not sufficiently large L, the magnetization exponent may
be slightly shifted toward the smaller η‖(�), resulting in a

(a) (b)

(c) (d)

π

FIG. 3. Verification of the universal jump relation for the he-
licity modulus in Eq. (21). (a) The critical disorder intensity �c

as a function of the driving velocity v, shown in log scale on the
both axes. The solid line represents

√
2vTc, where Tc is the critical

temperature of the two-dimensional (2D) XY model [see Eq. (10)].
(b) �c − √

2vTc as a function of v, shown in log scale on both axes.
The solid line represents the least-square fitting by av−b, where the
exponent is estimated as b = 0.47. (c) �2

c/
cv as a function of the
driving velocity v, where 
c is the jump of the helicity modulus at
the transition � = �c. The solid line represents the universal jump
relation in Eq. (21). (d) �2

c/
cv − π as a function of v, shown in log
scale on both axes. The solid line represents the least-square fitting
by av−b, where the exponent is estimated as b = 0.67.

smaller observed exponent relative to the theoretical expec-
tation, which is anticipated in the limit as L → ∞. If we
determine the transition point from M ∼ L−1/8, we get a
slightly larger critical value �c = 2.32.

To verify the universal jump relation of the helicity mod-
ulus given in Eq. (21), we determine the critical disorder
�c as follows. First, we compute the magnetization M(�, L)
across various values of � and L, fitting the results to a
power-law form aL−b. The critical disorder �c is identified
using the criterion b = 1

8 . We show �c as a function of the
driving velocity v in Fig. 3(a). The solid line in Fig. 3(a)
represents the theoretical prediction given by Eq. (10). As
shown in Fig. 3(b), the deviation from the theoretical value
decreases as v−1/2. Figure 3(c) shows �2

c/
cv as a function
of the driving velocity v, where 
c is the jump of the helicity
modulus at the transition point. The determination method
for 
c is described in Appendix B. Figure 3(d) demonstrates
that �2

c/
cv approaches π as v increases. These findings are
consistent with Eq. (21).

The deviations observed in Fig. 3 from theoretical pre-
dictions may be attributed to the spatial discretization in
the simulation procedure, detailed in Appendix B. In these
simulations, conducted within a moving frame, the spins
rest while the random field moves at velocity v. Given the
spatial discretization �x, each spin experiences a randomly
varying field updated at time intervals �x/v. If the cou-
pling between spins is neglected, the dynamics of each spin
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FIG. 4. Illustration of the testing procedure for the dimensional reduction using a neural network. (a) Training Phase: During this stage, the
neural network with two output neurons is trained using snapshots of the three-dimensional (3D) driven random field XY model (DRFXYM)
and space-time trajectories of the two-dimensional (2D) XY model. The objective is to differentiate between data from the 3D DRFXYM and
the 2D XY model. (b) Testing Phase: In this stage, the trained network is employed to categorize new data from either the 3D DRFXYM or the
2D XY model. The inability of the network to distinguish between the two indicates the validity of the dimensional reduction. A coarse-graining
process is applied to the spin configurations before they are put into the neural network during both training and testing phases.

resemble those in the Euler-Maruyama method with time
discretization �t = �x/v, effectively simulating a single spin
influenced by white noise. It is known that the (weak) er-
ror associated with the Euler-Maruyama method is O(�t )
[54], proportional to v−1 in the present situation. This
introduces a relative error in �c proportional to v−1, specif-
ically, (�c − �c,DR)/�c,DR = O(v−1), or equivalently, �c −
�c,DR = O(v−1/2), where the dimensional reduction value
�c,DR is given by Eq. (10). Consequently, the error in �c

being proportional to v−1/2 results in a corresponding er-
ror in the critical helicity modulus 
c − 
c,DR = O(v−1/2),
assuming that d
/d� = O(1) near � = �c. This argument
suggests that �2

c/
cv − π = O(v−1/2), which is consistent
with Fig. 3(d).

IV. TEST OF DIMENSIONAL REDUCTION

We employ a machine learning technique, specifically
neural networks, to directly test the dimensional reduction
conjecture using spin configurations. Neural networks excel
at identifying intricate patterns in data, often beyond human
perceptual abilities. Our task involves distinguishing a snap-
shot of the 3D DRFXYM from a space-time trajectory of the
2D XY model, which according to the conjecture, should be
indistinguishable.

The procedure is illustrated in Fig. 4. We use a multilayer
neural network with two output neurons, labeled A and B,
tasked with a binary classification. During the training phase
[see Fig. 4(a)], the network learns to output a 1 from neuron
A and a 0 from neuron B when given a snapshot of the 3D
DRFXYM. Conversely, for a space-time trajectory of the 2D
XY model, neuron A outputs 0, and neuron B outputs 1. In
the testing phase [see Fig. 4(b)], we apply the trained network
to unseen data from either snapshots of the 3D DRFXYM
or space-time trajectories of the 2D XY model. If the di-
mensional reduction conjecture is valid, the network should
struggle to differentiate between the two, leading to a mere
50% accuracy, equivalent to random chance or a coin toss.

However, if the conjecture does not hold, the network should
confidently and accurately distinguish between them.

We explain here how to generate the space-time trajectories
of the 2D XY model. The dynamics of the 2D XY model is
described by

τ∂tφi(r, t ) = {∇2 − U ′[ρ(r, t )]}φi(r, t ) + ξi(r, t ), (28)

where r represents the 2D coordinates. Here, we have intro-
duced a control parameter τ , which is related to the relaxation
time scale. The thermal noise ξi(r, t ) satisfies

〈ξi(r, t )ξ j (r′, t ′)〉 = 2τT2Dδi jδ(r − r′)δ(t − t ′). (29)

In this context, the temperature T2D should not be confused
with T in Eq. (4), which is set to zero when simulating
the 3D DRFXYM. From Eq. (8), the dimensional reduction
conjecture predicts that snapshots of the 3D DRFXYM with a
driving velocity v are equivalent to space-time trajectories of
the 2D XY model when τ = v. It is important to note that
the time scale parameter τ does not influence the thermal
equilibrium of the 2D XY model. Instead of the continuous
model given by Eq. (28), it is convenient to use the conven-
tional XY model on a square lattice. Its time evolution is
described by

τ∂tθi(t ) =
∑
j∈〈i〉

sin[θ j (t ) − θi(t )] + ζi(t ), (30)

where θi(t ) is the spin angle at the ith site, and 〈i〉 denotes the
set of neighboring sites of the ith site. The thermal noise ζi(t )
satisfies

〈ζi(t )ζ j (t
′)〉 = 2τT2Dδi jδ(t − t ′). (31)

We solve Eq. (30) by using the Euler-Maruyama method with
time discretization dt = 0.005 to generate space-time trajec-
tories of spin configuration {[cos θi(t ), sin θi(t )]} of the 2D
XY model in thermal equilibrium.

It should be noted that the dimensional reduction conjec-
ture predicts the equivalence of the large-scale behaviors of
the 3D DRFXYM and the 2D XY model, as indicated by
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Eq. (8). Therefore, prior to inputting spin configurations into
the neural network, we implement a coarse-graining process.
For any given 3D spin configuration, either a snapshot of the
3D DRFXYM or a space-time trajectory of the 2D XY model,
a convolution procedure utilizing a Gaussian kernel with stan-
dard derivation σ is performed (see Appendix C for details).
This convolution procedure smooths the spin configurations
by averaging over a neighborhood defined by σ . The effect is
to blur and reduce local fluctuations, emphasizing larger-scale
structures in the data. Subsequently, normalization standard-
izes the spin amplitude uniformly. As we will demonstrate,
this coarse-graining step is crucial for successfully apply-
ing the dimensional reduction. Furthermore, it is confirmed
that the specifics of the coarse-graining procedure do not
qualitatively affect the trend of classification accuracy, as dis-
cussed in Appendix C. Additionally, to prevent any bias in the
spin angle, a uniform global random phase in the range [0, 2π ]
is added to all spins in each sample.

The structure of the neural networks employed in this pa-
per is detailed as follows. We utilize two different network
architectures: a deep CNN and a FNN with one hidden layer.

(1) CNN: The input for the CNN consists of L × L × L
spin configurations, each with two channels representing the
first and second components of φ. The first layer is a 3D
convolutional layer, featuring filters of size 4 × 4 × 4 with a
stride of 2, where the channel number increases to 8. The ac-
tivation function employed here is the rectified linear (ReLU)
function. The second layer is the same convolutional layer as
the first but maintains the channel number. The output from
this layer is reshaped and fed into the third layer, a fully
connected layer with 16 ReLU output units. This output is
then passed to a fourth layer consisting of 2 output units,
where the softmax function is applied to determine classifi-
cation probabilities. Note that the last layer does not involve
an activation function prior to the application of the softmax
function.

(2) FNN: The input for the FNN is a 2L3-dimensional vec-
tor, obtained by flattening the spin configuration. The initial
layer is a fully connected configuration with 64 output units,
activated by the ReLU function. This output advances to a
second layer with 2 output units, and classification probabil-
ities are again derived using the softmax function. Like the
CNN, the last layer in this network also does not include an
activation function prior to softmax.

In both models, the loss function is given by the cross-
entropy between the predicted probability and the one-hot
encoded target labels: (1, 0) for the 3D DRFXYM and (0, 1)
for the 2D XY model.

Figure 5 depicts the composition of the training dataset.
The parameters of both the 3D DRFXYM and the 2D XY
model are set to values corresponding to the transition point.
Specifically, we have v = 2 and � = 2.2 for the 3D DR-
FXYM and T2D = 0.9 for the 2D XY model. For each value of
the control parameter τ , N spin configurations are prepared for
both the 3D DRFXYM and the 2D XY model, making a total
of 2N samples. Classification accuracy is assessed through
fivefold cross-validation, where in each fold, 8N/5 samples
are utilized for training and 2N/5 samples are employed
to estimate classification accuracy. This process is itera-
tively performed across different values of τ . The network is

1

N

1

N

1

N

τ   = τ1 τi τn

22 2

1

N

2

2

Snapshots of the 3D DRFXYM

Space-time

of the 2D XY model
trajectories

by 5-fold cross validation

Evaluate
classification accurary

FIG. 5. Composition of the training dataset. For each value of
τ , N space-time trajectories of the two-dimensional (2D) XY model
are generated by solving Eq. (30). These trajectories, along with
N snapshots of the three-dimensional (3D) driven random field XY
model (DRFXYM), comprise the training dataset. The classification
accuracy is evaluated by fivefold cross-validation.

implemented using the FLUX library in the JULIA programming
language. Network parameters are optimized using the ADAM

optimizer with a learning rate of 10−3, and training is con-
ducted over 30 epochs with a batch size of 50.

In Fig. 6, the classification accuracy and loss function
values for the CNN are plotted as functions of the time
scale parameter τ for the 2D XY model. The estimation
of accuracy and loss involves repeating five sets of fivefold
cross-validation, each with different random number seeds.
The average and standard deviation of both accuracy and
loss are calculated, with the latter being indicated by error
bars in Fig. 6. Panels (a) and (d) display the accuracy and
loss for varying sample numbers with a system size L = 24
and a coarse-graining scale σ = 1. Notably, the classification
accuracy reaches 0.5 around τ = v = 2, suggesting that the
neural network is unable to distinguish between snapshots of
the 3D DRFXYM and space-time trajectories of the 2D XY
model. Note that the value of the loss function peaks around
τ = v [see panel (d)], which serves as additional evidence of
the inability of the neural network to discern the differences
between the two types of data. While the dip in accuracy
sharpens with increasing the sample number N , its depth does
not change. This suggests that the two types of data remain
indistinguishable at τ = v, even as N → ∞.

Figures 6(b) and 6(e) show the accuracy and loss for
varying system sizes with a sample number N = 5000 and a
coarse-graining scale σ = 1. As the system size L increases,
the accuracy profile converges toward a characteristic curve
around τ = v, with a minimum at τ = v reaching an accuracy
of 0.5. It is observed that, for larger system sizes (e.g.,
L = 48), the accuracy diminishes at both small and large
values of τ . This reduction in accuracy is attributed to the
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(a)

(d)

(b)

(e)

(c)

(f)

FIG. 6. (a)–(c) Accuracy and (d)–(f) loss of the convolutional neural network (CNN) in the testing phase. The horizontal axis denotes the
time scale parameter τ of the two-dimensional (2D) XY model, shown in log scale. (a) and (d) Accuracy and loss for different numbers of
samples. The system size is L = 24, and the coarse-graining scale is σ = 1. (b) and (e) Accuracy and loss for different system sizes. The
sample number is N = 5000, and the coarse-graining scale is σ = 1. (c) and (f) Accuracy and loss for different coarse-graining scales. The
system size is L = 24, and the sample number is N = 5000. For large coarse-graining scales σ � 1, the accuracy reaches 0.5 around τ = 2,
which implies that the neural network fails to differentiate snapshots of the three-dimensional (3D) driven random field XY model (DRFXYM)
from space-time trajectories of the 2D XY model.

fact that networks are trapped in local minima within the
parameter space during the training phase, which are asso-
ciated with higher loss values (see Fig. 9 and Appendix D).
This explains the pronounced fluctuations in accuracy
observed at the extremities of the τ range. Additionally,
the likelihood of training failures escalates with increasing
system size L.

Finally, Figs. 6(c) and 6(f) show the accuracy and loss
for varying coarse-graining scales with a system size L = 24
and a sample number N = 5000. A notable observation is
that, when the neural network is trained on configurations
with a low coarse-graining scale σ = 0.5, it successfully
distinguishes between snapshots of the 3D DRFXYM and
space-time trajectories of the 2D XY model, even near τ = v.
As σ increases, the accuracy decreases toward 0.5 around τ =
v. This trend suggests that the dimensional reduction may not
be applicable for small-scale fluctuations in the configurations
of the system.

Note that the maximum value of loss around τ = v is larger
than − ln(0.5) = 0.693, the value of cross-entropy per sample
if the network were to output (0.5, 0.5) for all input data. The
large loss value means that the output of the neural network is
highly biased, e.g., (0.99, 0.01), but is uncorrelated with the
target label, as indicated by the low accuracy. In other words,
the neural network is making incorrect decisions with a high
degree of confidence.

Next, let us consider the case of FNN. We utilize a FNN
with one hidden layer and have verified that adding more
hidden layers does not improve the classification accuracy. In
Fig. 7, the classification accuracy and loss function values for
the FNN are plotted as functions of the time scale parameter τ

for the 2D XY model. The behavior aligns with that observed
in the CNN, where accuracy approaches 0.5 around τ = v =
2; however, the accuracy is lower in the FNN than in the CNN.
This superiority of the CNN in phase classification has been
highlighted previously in Ref. [20]. Figures 7(a) and 7(d) dis-
play the accuracy and loss for varying sample numbers with a
system size L = 24 and a coarse-graining scale σ = 1. While
the accuracy increases with the sample number N , its value at
τ = v does not change, akin to the observations in Figs. 6(a)
and 6(d). Figures 7(b) and 7(e) show the accuracy and loss
for varying system sizes with a sample number N = 5000
and a coarse-graining scale σ = 1. The reduction in accuracy
with increasing system size L is more pronounced than that
observed for the CNN, a phenomenon also noted in Ref. [20].
Finally, Figs. 7(c) and 7(f) show the accuracy and loss for
varying coarse-graining scales with a system size L = 24 and
a sample number N = 5000. In line with observations in the
CNN, the accuracy at τ = v diminishes as the coarse-graining
scale σ increases.

V. CONCLUSIONS

We have investigated the BKT transition in 3D driven
disordered systems, employing machine learning techniques.
Central to this paper is the recently proposed concept of the
dimensional reduction conjecture. It suggests that a static
snapshot of a D-dimensional disordered system driven at a
constant velocity is equal to a space-time trajectory of its (D −
1)-dimensional pure counterpart. Initially, we have examined
the fundamental characteristics of the 3D BKT transition
in the DRFXYM. The universal jump relation in Eq. (21)
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(a)

(d)

(b)

(e)

(c)

(f)

FIG. 7. (a)–(c) Accuracy and (d)–(f) loss of the fully connected neural network (FNN) in the testing phase. The horizontal axis denotes
the time scale parameter τ of the two-dimensional (2D) XY model, shown in log scale. (a) and (d) Accuracy and loss for different numbers
of samples. The system size is L = 24, and the coarse-graining scale is σ = 1. (b) and (e) Accuracy and loss for different system sizes. The
sample number is N = 5000, and the coarse-graining scale is σ = 1. (c) and (f) Accuracy and loss for different coarse-graining scales. The
system size is L = 24, and the sample number is N = 5000. The qualitative behavior is the same as that observed in the convolutional neural
network (CNN).

of the helicity modulus within this model has been confirmed
through nonequilibrium simulations. Moving forward, we put
the dimensional reduction conjecture to the test using machine
learning. We trained neural networks to differentiate between
snapshots of the 3D DRFXYM and space-time trajectories of
the 2D XY model. When presented with unseen data from
either the 3D DRFXYM or the 2D XY model, the neural net-
work was unable to make accurate distinctions. This finding
supports the dimensional reduction conjecture.

We discuss a potential experimental setup to realize the
3D DRFXYM. A promising approach involves using ne-
matic liquid crystals in porous media [35]. In such a setup,
the anchoring energy between the surface of the porous
medium and the director of the liquid crystal promotes a
random orientation of the director, effectively simulating a
symmetry-breaking random field. To align with the symmetry
characteristics of the XY model, we can utilize the dielec-
tric anisotropy of the liquid crystal. Specifically, when the
liquid crystal exhibits negative dielectric anisotropy, e.g., p-
azoxyanisole (PAA), its director tends to align perpendicular
to an applied electric field [55]. Consequently, liquid crys-
tals in porous media under an external electric field can be
roughly modeled by the random field XY model. To drive
the system out of equilibrium, we introduce a steady flow
of liquid crystal through the porous medium by applying a
pressure gradient. Here, two aspects should be noted. First, in
this setup, the influence of thermal fluctuations in the directors
is minimal. Thus, the system can be approximated as the
3D DRFXYM at zero temperature. Secondly, the directors
of liquid crystals do not have distinct head and tail, resulting
in a symmetry that is slightly different from the conventional
XY model. Despite this, it is anticipated that such a difference

will not significantly alter the qualitative nature of the phase
transition.

Let us consider future possibilities and directions. As
highlighted in the Appendix E, there are instances where
the concept of dimensional reduction does not apply. The
exact reasons and extent to which dimensional reduction fails
are not fully understood [14,15]. In typical scenarios, the
failure of dimensional reduction becomes apparent through
macroscopic quantities, such as the order parameter and its
two-point correlation function. These are quantities that can
often be easily measured in experiments. However, there
are potential situations where the breakdown of dimensional
reduction is so subtle that it does not cause noticeable
anomalies in these macroscopic quantities. In such cases, the
machine learning approach we have showcased in this paper
could prove to be a valuable tool. This technique may help
detect minor disruptions in dimensional reduction that are
only identifiable through snapshots of the system, offering
insights that might not be evident through traditional methods.
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APPENDIX A: SPIN-WAVE APPROXIMATION

In this Appendix, we overview the analysis of the spin-
wave approximation; for comprehensive details, refer to
Ref. [10]. It is crucial to note that this approximation is
accurate primarily in the case of weak disorder, where the
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spin configuration φ changes gradually in space, and the
density of vortices is low. However, as vortices proliferate near
the transition point, the spin-wave approximation loses its
validity.

Let us start by examining the 2D XY model. When vortices
are absent, the magnitude of φ becomes irrelevant. Hence, φ
can be expressed as φ = (cos θ, sin θ ), with θ being the spin
angle. The Hamiltonian for the standard XY model is then
rewritten as

H = 1

2

∫
d2r|∇θ (r)|2 = 1

2

∫
d2q

(2π )2
q2θ̃qθ̃−q, (A1)

where θ̃q denotes the Fourier transform of θ (r). The mean-
square displacement of spins is calculated as

〈[θ (r) − θ (0)]2〉 = T
∫

d2q
(2π )2

|1 − exp(iq · r)|2
q2

= T

π
ln r.

(A2)

Consequently, the spin correlation function is

〈φ(r) · φ(0)〉 = exp

{
−1

2
〈[θ (r) − θ (0)]2〉

}
∝ r−η2D(T ),

(A3)

with the exponent η2D(T ) given by

η2D(T ) = T

2π
. (A4)

Note that this expression for η2D(T ) is only applicable at low
temperatures.

Now let us consider the 3D DRFXYM. According to the
steady state Eq. (7), the spin angle θ (r) satisfies

v∂xθ (r) = ∇2θ (r) − h1(r) sin θ (r) + h2(r) cos θ (r), (A5)

where the last two terms on the right-hand side represent the
force induced by the random field (h1(r), h2(r)). The mean-
square displacement of spins is calculated as

〈[θ (r) − θ (0)]2〉 = 2�2
∫

d3q
(2π )3

1 − cos q · r
q4 + v2q2

x

, (A6)

where we have utilized approximations like

〈hi(r)h j (r′) sin θ (r) sin θ (r′)〉
� 〈hi(r)h j (r′)〉〈sin θ (r) sin θ (r′)〉. (A7)

Equation (A6) is further evaluated to

〈[θ (r) − θ (0)]2〉 ∝
{

�2

2πv
ln r (r ⊥ v),

�2

4πv
ln r (r ‖ v),

(A8)

leading to

η⊥(�) = �2

4πv
, η‖(�) = �2

8πv
. (A9)

These expressions align with Eqs. (24) and (25).

APPENDIX B: SIMULATION METHOD FOR DRFXYM

In simulations, it is convenient to switch from the labora-
tory frame to a moving frame using the Galilei transformation:

r′ = r − vt and φ′(r′) = φ(r). Then Eq. (5) transforms to

∂tφ
′
i (r

′) = −δH[φ′(r′); h(r′ + vt )]

δφ′
i (r

′)
, (B1)

with the temperature set to zero. Our objective is to simulate
the spin model with a random field that moves at a constant
velocity.

Instead of the continuous Hamiltonian in Eq. (1), we use
the conventional XY Hamiltonian on a cubic lattice:

H1[θ ] = −
∑

j

∑
ν=x,y,z

cos[θ (R j ) − θ (R j + eν )], (B2)

where θ (R j ) is the angle of the spin at site j with coor-
dinates R j = (m, n, l ) (m, n, l ∈ N ), and eν (ν = x, y, z) is
the unit vector along the ν direction. The interaction be-
tween spins and the random field h(R j ) = [h1(R j ), h2(R j )] is
described by

H2[θ, h] = −
∑

j

[h1(R j ) cos θ (R j ) + h2(R j ) sin θ (R j )].

(B3)

Each component of h(R j ) is sampled from a mean-zero
Gaussian distribution with standard derivation �. The time
evolution of θ is described by

∂tθ (R j ) = − ∂H1[θ ]

∂θ (R j )
− ∂H2[θ, hmoving(t )]

∂θ (R j )
. (B4)

The moving random field hmoving is given by

hmoving(R j, t ) = h(R j + [vt]ex ), (B5)

where [x] denotes the largest integer not greater than x. A
cubic simulation box with length L is considered, with open
boundary conditions along the x direction. The random field is
generated at the front of the simulation box and shifts one step
every 1/v time interval. The equation of motion in Eq. (B4)
is integrated using the Euler method with a time discretization
of dt = 1/10v, meaning that 10 updates occur for each shift
of the random field. For the calculation of the magnetization,
periodic boundary conditions are imposed along the y and z
directions.

The components of the total magnetization are given by

M̂x =
∑

j

cos θ (r j ), M̂y =
∑

j

sin θ (R j ). (B6)

The averaged magnetization per spin is

M = 1

L3

〈
M̂2

x + M̂2
y

〉1/2
, (B7)

where 〈. . . 〉 denotes the long-time average in the steady state.
For the calculation of the helicity modulus, spins at the

boundary at y = L are twisted by an angle ε � 2πL relative
to the boundary at y = 1. The response force against the twist
is given by

ftwist (ε) = 1

L2

∑
j

sin[θ (R j + ey) − θ (R j )], (B8)

and the helicity modulus is


 = 〈 ftwist (ε)〉
ε

. (B9)
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To avoid phase slip, ε should be less than π . In main sim-
ulations, we set ε = π/2. Periodic boundary conditions are
imposed along the z direction.

To determine the critical disorder �c and critical helicity
modulus 
c in Fig. 3, we first calculate the magnetizations
M(�, L) for different system sizes L = 10, 15, 20, and 30,
and they are fitted using a power-law form L−η(�)/2. Once
η(�) is obtained, the critical disorder �c is determined by
the condition η(�c) = 1

4 . Next, we calculate the helicity
modulus 
(�, L) at � = �c for different system sizes L =
10, 15, 20, and 30. As in the conventional XY model [56], the
helicity modulus 
c in the limit L → ∞ is obtained by fitting

(�c, L) with


(�c, L) = 
c

[
1 + 1

2 ln L + C

]
, (B10)

where C is a nonuniversal constant.

APPENDIX C: COARSE-GRAINING PROCEDURE

Given a 3D scaler configuration φ(n1, n2, n3) where
n1, n2, n3 = 1, . . . , L, we detail the coarse-graining procedure
used in this paper. Let K (m1, m2, m3), with m1, m2, m3 =
1, . . . , l , be a kernel with size l . The convolution φ̃(n1, n2, n3)
is calculated as follows:

φ̃(n1, n2, n3) =
l∑

m1,m2,m3=1

K (m1, m2, m3)φ

(
n1 +

⌊
l + 1

2

⌋

− m1, n2 +
⌊

l + 1

2

⌋
− m2, n3

+
⌊

l + 1

2

⌋
− m3

)
, (C1)

where �x� denotes the largest integer not greater than x. In the
main text, we employ a Gaussian kernel:

K (m1, m2, m3) = CN exp

[
− 1

2σ 2

(
m1 − l + 1

2

)2

− 1

2σ 2

(
m2 − l + 1

2

)2

− 1

2σ 2

(
m3 − l + 1

2

)2]
, (C2)

where CN is the normalization constant ensuring∑l
m1,m2,m3=1 K (m1, m2, m3) = 1. For a two-component spin

configuration, this convolution is applied to each component,
followed by a normalization procedure to standardize the
amplitude of spins to unity. Note that the coarse-graining
transformation preserves the global O(2) symmetry of the
model.

To assess whether the choice of kernel affects the
qualitative behavior of classification accuracy, we also eval-
uate a coarse-graining procedure using a uniform kernel
K (m1, m2, m3) = 1/l3, which is equivalent to a moving aver-
age over scale l . Figure 8 presents the classification accuracy
and loss across different kernel sizes, showing a reduction in
accuracy around τ = v with an increase in kernel size. This

(a) (b)

FIG. 8. (a) Classification accuracy and (b) loss of the convo-
lutional neural network (CNN) employing a uniform kernel for
the coarse-graining process. The horizontal axis denotes the time
scale parameter τ of the two-dimensional (2D) XY model, shown
in log scale. Kernel sizes are l = 1 (no coarse-graining), l = 2,
3, and 4. The system size is set at L = 24 and the sample num-
ber at N = 5000. The observed trend is consistent with that of
the coarse-graining process using a Gaussian kernel, as depicted
in Fig. 6(c).

behavior mirrors the results observed with a Gaussian kernel,
as shown in Fig. 6(c).

APPENDIX D: REPRODUCIBILITY OF NEURAL
NETWORK RESULTS

In this Appendix, we examine the reproducibility of neural
network outcomes with respect to variations in the random
number seed, which influences data segmentation in cross-
validation, the sequence of training data, and the initialization
of network parameters.

Figure 9 illustrates the evolution of the loss function during
the training phase. The horizontal axis denotes each training

(a) (b)

(c) (d)

L = 24, τ = 1 L = 24, τ = 2

L = 48, τ = 1 L = 48, τ = 2

FIG. 9. Evolution of the loss function of the convolutional neural
network (CNN) during the training phase for varying parame-
ters: (a) L = 24, τ = 1, (b) L = 24, τ = 2, (c) L = 48, τ = 1, and
(d) L = 48, τ = 2, each with a sample number of N = 5000. Three
plots in each panel represent the loss values for three different ran-
dom number seeds. At τ = 2, where the dimensional reduction is
anticipated, the decline of the loss values becomes slow. Addition-
ally, for L = 48, some neural networks fail to reach minimal loss
values due to entrapment in local minima of the loss function.
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(a) (b)

L = 24 L = 48

FIG. 10. Accuracy of the convolutional neural network (CNN)
from fivefold cross-validation using four different random number
seeds. The horizontal axis denotes the time scale parameter τ of the
two-dimensional (2D) XY model, shown in log scale. The system
sizes are (a) L = 24 and (b) L = 48, each with a sample number of
N = 5000. Notably, for L = 48, significant fluctuations in accuracy
are observed, attributable to some neural networks failing to achieve
minimal loss values.

step for the minibatches of data. Three plots in each panel
represent the loss values for three different random number
seeds. The initial loss value is approximately − ln(0.5) =
0.693, reflecting the cross-entropy per sample when the net-
work predicts uniform probabilities of (0.5, 0.5) for all inputs.
At τ = 1, where dimensional reduction is not applicable, the
loss rapidly declines to zero. Conversely, at τ = 2, where
dimensional reduction is expected, the loss decreases more
gradually, highlighting the challenge in distinguishing be-
tween the two types of data. Particularly for larger system
size L = 48, certain neural networks do not achieve minimal
loss values due to being trapped in local minima of the loss
function.

Figure 10 displays the classification accuracy of the CNN
obtained through fivefold cross-validation using four different
random number seeds. It is important to note that Fig. 6 in
the main text averages these accuracies across five differ-
ent random number seeds. For system size L = 48, notable
fluctuations in accuracy are observed, which are attributed to
the failure of some neural networks to achieve minimal loss
values, as evidenced in Figs. 9(c) and 9(d).

APPENDIX E: FAILURE OF THE DIMENSIONAL
REDUCTION FOR N = 1

Let us consider the case of N = 1 in the DRFO(N )M,
i.e., the driven random field Ising model (DRFIM). We aim
to demonstrate that the 2D DRFIM, at zero temperature, un-
dergoes a phase transition from a ferromagnetic phase to a
paramagnetic phase as the disorder strength increases. This
finding contradicts the dimensional reduction conjecture be-
cause it incorrectly predicts that the 2D DRFIM should behave
like a one-dimensional pure Ising model, which does not
exhibit any phase transition.

Instead of the continuous Hamiltonian in Eq. (1), we con-
sider the conventional Ising model on a square lattice with
length L:

H1[S] = −
∑

j

∑
ν=x,y

S(R j )S(R j + eν ), (E1)

where S(R j ) = −1, 1 represents the spin variable at site j
with coordinates R j = (m, n) (m, n ∈ N ), and eν (ν = x, y)

is the 2D unit vector along the ν direction. The inter-
action between the spins and the random field h(R j ) is
described by

H2[S, h] = −
∑

j

h(R j )S(R j ), (E2)

where h(R j ) is sampled from a mean-zero Gaussian distribu-
tion with standard derivation �.

As detailed in Appendix B, the DRFIM is simulated in a
moving frame with velocity v. The Hamiltonian for the Ising
model with a moving random field is given by

H[S, h, t] = H1[S] + H2[S, hmoving(t )], (E3)

hmoving(R j, t ) = h(R j + [vt]ex ), (E4)

where [x] denotes the largest integer not greater than x.
The time evolution follows a standard Monte Carlo pro-
cedure at zero temperature. In each step, a single spin is
randomly selected for potential flipping. If flipping the spin
reduces H[S, h, t], the update is accepted; if it increases
H[S, h, t], the update is rejected. In one unit of time, L2

updates are attempted. Open boundary conditions are as-
sumed along the x direction, and periodic conditions along
the y direction. The random field is generated at the front
of the simulation box and shifts one step every 1/v time
interval.

The total magnetization is given by

M =
∑

j

S(R j ). (E5)

For our analysis, we focus on two key observable quantities.
The first is the average magnetization per spin:

M = 1

L2
〈M〉, (E6)

and the second is its fluctuation:

χ = 1

L2
[〈M2〉 − 〈M〉2], (E7)

where 〈. . . 〉 represents the long-time average in the steady
state. In thermal equilibrium, χ would equal the susceptibility
of the magnetization in response to an external field. However,
in our out-of-equilibrium model, this fluctuation-dissipation
relationship generally does not apply.

Figure 11 shows the averaged magnetization M and the
fluctuation χ as functions of the disorder strength � for
different system sizes. In Fig. 11(a), we observe that the
magnetization disappears when the disorder strength sur-
passes a critical value �c � 1.7. In Fig. 11(b), a peak in
χ emerges at � = �c as the system size increases. These
observations support the existence of a phase transition
from a ferromagnetic phase in � < �c to a paramagnetic
phase in � > �c.
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(a) (b)

FIG. 11. (a) Magnetization M and (b) its fluctuation χ of the
driven random field Ising model (DRFIM) as functions of the dis-
order strength �. The system sizes are L = 16, 32, 48, and 64, and
the driving velocity is v = 4. The peak of χ at �c = 1.7 indicates
the existence of a phase transition.

The presence of long-range order in the 2D DRFIM can
be understood through the following heuristic reasoning.
First, it should be noted that the lower critical dimension
of the random field Ising model in thermal equilibrium is
2 [45,46]. This is a significant finding because the equi-
librium version of the dimensional reduction conjecture
predicts the lower critical dimension to be 3. Secondly,
introducing a constant velocity driving reduces the lower
critical dimension by 1. This is because the advection
term v∂xφ weakens the infrared singularity of the Green
function from k−2 to (k2 − ivkx )−1 (see Appendix A). Con-
sequently, it is expected that the lower critical dimension
for the DRFIM is one, implying the presence of long-range
order in 2D.
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