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Dynamical critical behavior of the two-dimensional three-state Potts model
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We investigate the dynamical critical behavior of the two-dimensional three-state Potts model with single
spin-flip dynamics in equilibrium. We focus on the mean-squared deviation of the magnetization M (MSDM ) as
a function of time, as well as on the autocorrelation function of M. Our simulations reveal the existence of two
crossover behaviors at times τ1 ∼ Lz1 and τ2 ∼ Lz2 , separating three dynamical regimes. MSDM appears to shift
from ordinary diffusion in the first regime, to anomalous diffusion in the second, and finally to be constant in
the third regime. The magnetization autocorrelation function, on the other hand, is found to fluctuate between
exponential decay, stretched-exponential decay, and then again exponential decay along these three regimes.
This behavior is in agreement with the one reported recently for the two-dimensional Ising ferromagnet [Phys.
Rev. E 108, 034118 (2023)], indicating that the existence of two dynamic critical exponents is not a peculiarity
of the Ising model itself. A comparison of both MSDM and the magnetization’s autocorrelation function suggests
that within our numerical accuracy the exponents z1 and z2 are shared between the Ising and three-state Potts
models at least for the particular case of single spin-flip dynamics studied here, even though their equilibrium
universality classes are clearly distinct. Continuity of MSDM requires that α(z2 − z1) = γ /ν − z1, in which α is
the anomalous exponent in the intermediate regime. Since the ratio γ /ν is not shared between the two models,
it follows that α is not shared either, an aspect well verified in our simulations. Finally, we also discuss the
relevance of our main findings using another useful observable, namely the line magnetization Ml .
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I. INTRODUCTION

Universality, erstwhile phenomenologically established,
has been a leading principle of critical phenomena [1,2]. It is
the property that models or systems can have the exact same
set of critical exponents, describing their behavior near a criti-
cal point of a second-order phase transition, even though their
microscopic properties are very different. The explanation of
universality, in terms of diverse Hamiltonian flows to a single
fixed point, has been one of the crowning achievements of
renormalization-group theory [3]. There are several spin mod-
els in this context which have been used for the identification
and classification of universality classes [4–6]. Two of the
most common are the Ising model [7], the simplest fruit-fly
model of statistical physics, and the q-state Potts model [8]
which showcases a rich critical behavior depending on the
number of spin states q [9]. Of course, for q = 2 the Ising
case is recovered.

Although the existence and quantitative description of
universality classes in most pure spin systems with simple
interactions is well established for equilibrium properties, the
situation regarding dynamical properties is much more in-
volved [10–13]. Fortunately, however, the concepts of critical
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phenomena can be, broadly speaking, extended to dynamical
processes [10] and this has already pushed forward our under-
standing of the field.

In a numerical study, the dynamics of a lattice model
can be probed in various settings. One might consider
the autocorrelation time τ of a system in equilibrium or
various off-equilibrium situations. Roughly speaking, the
autocorrelation time τ is the time needed to generate a sta-
tistically independent configuration in a stochastic process at
equilibrium. In the neighborhood of a critical point, the auto-
correlation time increases with increasing correlation length
ξ , a phenomenon called critical slowing down. The increase
is governed by a power law of the form τ ∼ ξ z [14,15], where
z is the dynamic critical exponent, an exponent which is unre-
lated to the the static exponents. Note that in a finite system,
ξ is bounded by the linear system size L, so that τ ∼ Lz at
the incipient critical point. The exponent z is the main critical
entity that defines the corresponding dynamical universal-
ity classes, even in very complicated models, such as spin
glasses [16].

Recently, a new window of opportunities in further explor-
ing the universality aspects of dynamical phenomena has been
opened [17]. Via extensive simulations of the square-lattice
Ising ferromagnet it was shown that, in contrast to the standard
belief of a single dynamic exponent (denoted as z2 in our
framework), there is another dynamic critical exponent z1

which also appears to be of great practical relevance, since
for obtaining statistically uncorrelated samples the proper
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sampling frequency should be set by the newly introduced
exponent. We should underline here that earlier work on
nonequilibrium dynamics has also suggested the presence of
a new exponent θ [18] akin to the newly introduced exponent
z1 in Ref. [17]. Our previous work communicated that the
dynamical critical behavior of the Ising model with Glauber
dynamics is much richer than recorded so far, thus calling for
further examination of dynamical universality classes, even in
simple models.

In this context, the three-state Potts model is a natural
upcoming candidate that has been anyway extensively used
in the literature of critical phenomena, and that lies in a differ-
ent equilibrium universality class as compared to that of the
Ising ferromagnet. We note the static critical exponent values
ν = 5/6, β/ν = 2/15, and γ /ν = 26/15 for the three-state
Potts universality class [9], and the values ν = 1, β/ν = 1/8,
and γ /ν = 7/4 for the Ising one. From a dynamics perspec-
tive, although the dynamic critical exponent z of the Ising
model at two dimensions is known without doubt by the
seminal work of Nightingale and Blöte to be z = 2.1665(12)
[14], the same is not true for the three-state Potts model on
the square lattice. In particular, for the latter model there is
currently no consensus on the value of z, and the estimates
suggested in the literature, using a variety of methods from
Monte Carlo simulations to dynamic renormalization group
and short-time scaling, span the wide range z = 2.17(4) − 2.7
(4) [19–24].

In the current paper we attempt to enrich our under-
standing of dynamical critical phenomena by presenting a
substantiative analysis on the dynamical behavior of the
two-dimensional three-state Potts model. Following the pre-
scription of Ref. [17], we focus on the mean-squared deviation
of the magnetization M, MSDM , as a function of time, as
well as on the autocorrelation function of M. Our simulations
manifest the existence of two crossover behaviors at times
τ1 ∼ Lz1 and τ2 ∼ Lz2 , separating three dynamical regimes.
This behavior evinces the existence of two dynamic criti-
cal exponents z1 and z2, as in the case of the simple Ising
ferromagnet. Our main finding is that the dynamical critical
behavior appears to be independent of the equilibrium uni-
versality class for the present models under study and the
particular choice of local single spin-flip dynamics and that
the dynamic exponents z1 and z2 are not determined by their
corresponding static ones, such as γ and ν. Although we
can not make any more general claims regarding transversal
universality across models belonging to different equilibrium
universality classes, we believe that our analysis brings to
light an interesting feature in dynamical critical phenomena
that has not been previously reported. Finally, we also provide
a complementary analysis in the same framework based on the
line magnetization Ml of the system, from which additional
important conclusions may be drawn.

The rest of the paper is organized as follows: In Sec. II we
define the Potts model and give an outline of the numerical
protocol. Subsequently in Sec. III and after introducing the
basic observables, we present our numerical data for the bulk
and line magnetizations, providing insightful comparisons
with the already obtained results for the Ising ferromagnet.
This contribution closes with a summary and some concluding
remarks in Sec. IV.

II. MODEL AND SIMULATION DETAILS

Two versions of the Potts model exist, often referred to
as the vector and standard Potts model. For q = 2 and 3
the two models are identical. We consider here the nearest-
neighbor, zero-field, three-state vector Potts model (as it has
a more natural magnetization definition), described by the
Hamiltonian [9]

H = −2J

3

∑
〈i j〉

�σi · �σ j . (1)

In the above equation J > 0 indicates ferromagnetic interac-
tions, 〈. . .〉 refers to summation over nearest neighbors only
on the square lattice, and �σi defines the spin vector on lat-
tice site i which can take three possible options: (− 1

2 , 1
2

√
3),

(− 1
2 ,− 1

2

√
3), or (1,0). Note that �σi · �σ j = 1 for identical spin

vectors, and − 1
2 otherwise. This indicates that the Hamilto-

nian (1) is mathematically equivalent to its more conventional
version, where the spins take an integer value (0, 1, or 2) and
the dot product is replaced by the Kronecker delta function
(apart from a constant offset in the energy). Many equilibrium
properties of this model are known, such as the exact location
of the critical temperature, i.e., Tc = 1/ ln(1 + √

3) [8] but
also its critical exponents [9], as also outlined in the previous
section.

The Potts model is a generalization of the Ising model and
in principle its dynamics can also be a straightforward exten-
sion of Glauber dynamics [25–27]. However, in the present
work we chose for simplicity to implement the heat-bath
algorithm, where an elementary move is a proposed change of
a single spin at a random location, which is then accepted or
rejected according to the heat-bath acceptance ratio [5]. One
unit of time then consists of N = L2 elementary moves, where
L denotes the linear dimension of the lattice. Other commonly
used dynamical algorithms in the extensive literature are the
spin-exchange (Kawasaki) dynamics [28–30], as well as nu-
merous types of cluster algorithms [31–33]. Yet, these are
outside the scope of the current work.

Our numerical simulations of the three-state Potts model
were performed at the exact critical temperature [8] using
single spin-flip dynamics of heat-bath type and systems with
linear sizes within the range L = {16 − 192}, employing peri-
odic boundary conditions. As a reference, the simulation time
needed for a single realization of a system with linear size L =
96 on a node of Dual Intel Xeon E5-2690 V4 processor was
∼80 minutes. To ensure a sufficiently good statistical accuracy
in our numerical data, an extensive averaging over 104 − 105

independent realizations was performed for all sizes studied.

III. RESULTS AND ANALYSIS

A. Bulk magnetization

We follow in this section the analysis performed for the
Ising ferromagnet in Ref. [17]. The two key observables that
allow us to elaborate on some new aspects of the dynamical
behavior of the Potts model are based on the order parameter
(bulk magnetization) of the system, �M = ∑

i �σi, as it fluc-
tuates in its equilibrium state. The first corresponds to the
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FIG. 1. (a) Mean-square displacement of the magnetization
MSDM (t ), and (b) normalized autocorrelation function ĈM (t ) vs time
(t) for the same set of system sizes given in panel (b).

mean-squared deviation of the magnetization

MSDM (t ) = 〈|
 �M(t )|2〉 = 〈| �M(t ) − �M(0)|2〉, (2)

and the second to the magnetization’s autocorrelation func-
tion, defined as usual via

CM (t ) = 〈 �M(t ) · �M(0)〉. (3)

Figure 1 summarizes the raw numerical data ob-
tained for the two-dimensional three-state Potts model.
In particular, Fig. 1(a) depicts the MSDM (t ), whereas
Fig. 1(b) shows the normalized autocorrelation ĈM (t ) =
〈 �M(t ) · �M(0)〉/〈| �M(0)|2〉, both as a function of time. Three
well-defined regimes are detected, separated by two crossover
correlation times, which we define hereafter as τ1 and τ2,
respectively.

At short times t , the dynamics contains L2t proposed spin
flips at spatially separated locations, out of which the numeri-
cally computed fraction fp ≈ 0.33 is accepted. The dynamics

thus involve fpL2t uncorrelated changes of |
M| = ±
√

3
2 .

That being so, MSDM in the short-time regime is described
by

MSDM = 3
2 fpL2t (t � τ1). (4)

At these short times, the magnetization does not have enough
time to change significantly, remaining close to its t = 0
value. Additionally, the expectation of the squared magneti-
zation is related to the magnetic susceptibility [5]

χ = β

L2
〈M2〉. (5)

Thus, in the short-time regime (using the equilibrium property
χ ∼ Lγ /ν), we have that

CM (t ) ≈ kbT L2χ ∼ L2+γ /ν (t � τ1). (6)

Conversely, at very long times now, the two values of the
magnetization are uncorrelated so that 〈 �M(t ) · �M(0)〉 is small
as compared to 〈| �M|2〉. Therefore, we deduce that MSDM

saturates as

MSDM (t ) = 〈| �M(t )|2 + | �M(0)|2 − 2 �M(t ) · �M(0)〉
≈ 2〈M2〉 ≈ 2kbT L2χ. (7)

Rather than an operational procedure, the dynamics can
also be articulated from the application of the transition matrix
A to the state vector �S. This is clearly a dysfunctional formu-
lation due to the fact that A is a sparse 2L2 × 2L2

matrix, but
nevertheless useful for the sake of argument. This transition
matrix has an eigenvalue of e0 = 1, with an eigenvector in
which each element lies the likelihood of that state (the Boltz-
mann distribution). It also has a second-highest eigenvalue
e1 ≈ 1, which determines the final exponential decay of the
autocorrelation function. At long times t , the dynamical ma-
trix is applied tL2 times. Thus, expressed in A the dynamics
can be written as CM (t ) = 〈�StAtL2 �S0〉. For long times, the
decay of the autocorrelation function is dominated by the
largest nonzero eigenvector and eigenvalue CM (t ) ∼ etL2

1 ∼
exp [−t/τ2], where τ2 = −L2 ln (e1). Clearly, it is almost im-
possible to numerically retrieve τ2 via e1, unless L is a very
small number. However, the whole construction provides a
solid argument suggesting that the magnetization autocorrela-
tion function will eventually decay exponentially at long times
for finite L.

At the same time, the intermediate regime also plays a
crucial role in connecting the short- and long-time regimes
monotonically. The numerical data suggest that this happens
via anomalous diffusion, i.e., MSDM (t ) ∼ tα , whereas the
autocorrelation function seems to decay as a stretched expo-
nential with the same anomalous exponent α.

As in Ref. [17], the main target of this work is to obtain,
via finite-size scaling approaches [6], access to the dynamic
exponents z1 and z2 that mark the crossover behavior between
the three aforementioned regimes, as well as the anomalous
exponent α. Figure 2 imprints the collapse of MSDM (t ) curves
for all system sizes studied in the area around the first transi-
tion point, obtained for z1 = 0.50(5), in agreement with the
result z1 = 1/2 for the Ising ferromagnet [17]. At the inter-
mediate regime of this plot the curve is expected to decay
as ∼tα−1, leading to the numerical estimate of α = 0.74(4).
Figure 3 now presents an analog to Fig. 2, this time a col-
lapse of the curves around the second transition point. This
is established by plotting − ln (ĈM (t ))/(L−z2t ) as a function
of t/Lz2 , where in this case z2 = 2.17(1), in agreement with
the estimate 2.17(4) by Tang and Landau [21], but even more
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FIG. 2. Data collapse of the MSDM (t ) curves for the full range
of system sizes studied around the first crossover Lz1 with a scaling
form of MSDM (t )/(L2t ) ∼ t/Lz1 , where z1 is 0.50(5). The MSDM (t )
shifts from normal (∼L2t) to anomalous diffusion (∼L2+z1−αz1 tα)
at t = Lz1 .

importantly with the result z2 = 13/6 ≈ 2.1667 [14,17] for
the Ising ferromagnet.

The intermediate regime for MSDM initiates at time τ1 ∼
Lz1 at a value of 〈(
M )2〉 ∼ L2+z1 , followed by a power-law
increase controlled by the exponent α, and finally reaching
its saturation value ∼L2+γ /ν at time τ2 ∼ Lz2 . Following the
assumptions of Ref. [17] for a single power-law dependence
in the intermediate regime, the anomalous exponent α can be
expressed via

α = (γ /ν − z1)/(z2 − z1). (8)

Inserting the values γ /ν = 26/15, z1 = 1/2, and z2 = 13/6 in
the above Eq. (8) we obtain the analytical result α = 37/50 =
0.74, in excellent agreement with the numerical estimate
0.74(4) obtained from the scaling analysis of Fig. 2 (note the
value α = 3/4 for the Ising case [17]). This is another strong

FIG. 3. Data collapse of − ln (ĈM (t )) for the full range of sys-
tem sizes studied around the second crossover with a scaling form
− ln(ĈM (t ))/L−z2 t ∼ t/Lz2 , where z2 = 2.17(1).

evidence in favor of the dynamical universality hypothesis
between Ising and Potts models, as exemplified below in more
detail.

B. A direct comparison of Ising and Potts models

Since the values obtained above for the dynamic exponents
of the three-state Potts model are up to a good numerical ac-
curacy compatible to those of the Ising ferromagnet [17], we
perform here an additional direct comparison of the numerical
data for both models, considering equally the mean-squared
deviation of the magnetization and the magnetization autocor-
relation functions.

In Figs. 4(a) and 4(b) we focus on the relative values of
the first exponent z1. For a more meaningful comparison,
we exploit the knowledge that, at short times, the MSDM (t )
for the Potts model is smaller than that for the Ising model
simply because the acceptance ratio for the proposed moves is
larger—numerically we find this ratio to be fP = 0.33 (Potts)
and fI = 0.14 (Ising). Furthermore, the change in the squared
magnetization due to a single spin-flip corresponds to 3

2 and
4 for the Potts and Ising models, respectively. After removing
both of these relatively trivial effects, the curves of Figs. 4(a)
and 4(b) show a remarkable similarity, to the degree that
numerically we cannot determine which of the two models
has a larger exponent z1; our numerical estimation is that if
there is a difference in z1, it does not exceed the order of
∼10−3. Subsequently, we elaborate on the relative values of
the second exponent z2 in Figs. 4(c) and 4(d). Here, we apply
arbitrary scaling factors along the horizontal and vertical axes,
and plot − ln(ĈM (t ))/L−z2t vs t/Lz2 . Again, the curves show
an excellent matching, indicating that the difference in the
numerical value of the dynamic exponent z2 between the two
models is negligible, and thus undetectable in our simulations.

Finally, as mentioned in Sec. I, the exponent ratio γ /ν

which is known exactly for both models in equilibrium, ap-
pears to be only slightly different; note the values 7/4 =
1.75 (Ising ferromagnet) and 26/15 ≈ 1.733 (three-state Potts
model). When combining Eq. (8) with the numerically in-
distinguishable values for the dynamic exponents z1 and z2

obtained in the current work and in Ref. [17] one would expect
a slight difference in the anomalous exponent α. This is indeed
the case, as is clearly visible from Figs. 4(a) and 4(b).

C. Line magnetization

Besides the most studied bulk magnetization, another con-
venient observable is the line magnetization, which can also
provide insightful results pertaining to the universality aspects
of criticality. To define the line magnetization we need to
switch notation from the generic coordinate i used above, to
the location (x, y), so that the new observable is simply the
sum of spins along the sites with the same x coordinate (or
alternatively, y coordinate). For convenience, we now focus
on the line magnetization for the collection of the x = 0 sites,
given by

�Ml (x = 0) =
L−1∑
y=0

�M(0, y). (9)
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FIG. 4. Comparative results for the two-dimensional three-state
Potts (red curves) and Ising (black curves) models. Panels (a) and
(b) showcase the data collapse of the MSDM (t) curves with a scal-
ing form of MSDM (t )/(t fxαx ) ∼ t fx , where fx and αx are some
arbitrary constants for Ising and Potts models, respectively. Pan-
els (c) and (d) present the collapse of − ln (ĈM (t )) around the

In full analogy to the bulk magnetization, both the mean-
squared deviation [MSDMl (t )] and the normalized autocorre-
lation function [ĈMl (t )] of the line magnetization Ml can be
defined. In fact, our simulations revealed the same dynamical
behavior featuring three distinct regimes separated by two
crossover behaviors distinguished at times t ∼ Lz(l )

1 and t ∼
Lz(l )

2 : (i) A first short-time regime where the MSDMl increases
linearly with time and the autocorrelation function remains
constant; (ii) a second intermediate regime where the MSDMl

increases as a power law, but the autocorrelation function de-
creases as a stretched exponential; and (iii) a final asymptotic
regime where the MSDMl saturates with the autocorrelation
function decaying exponentially.

As in Sec. III A above, we numerically determined the
dynamic exponents z(l )

1 and z(l )
2 , as well as the anomalous

exponent α(l ) via data collapses of the available numerical
data. In this case, we considered systems with linear sizes
L ∈ {24, 48, 64}. The collapsed curves are shown in Fig. 5
for both the three-state Potts and Ising models. The resulting
values are listed below: (i) z(l )

1 = 0 for Ising and Potts, clearly
different from the values obtained for the bulk magnetiza-
tion; (ii) z(l )

2 = 2.17(1), numerically indistinguishable from
the estimates obtained for the bulk magnetization for both
models; and (iii) α(l ) = 0.35(1) and 0.34(1) for the Potts and
Ising models, respectively. This slight difference is visible in
Fig. 5(a) from the minor variation in the relevant slopes. Note
that the Ising result α(l ) = 0.34(1) is in agreement with the
earlier work of Ref. [34], and that for the line magnetiza-
tion, continuity requires α(l ) = (γ /ν − 1 − z(l )

1 )/(z(l )
2 − z(l )

1 ),
as the saturation of the MSDMl follows the scaling of the
form ∼Lγ /ν+1.

IV. CONCLUDING REMARKS

We analyzed the results of extensive simulations of the
two-dimensional three-state Potts model with local spin-flip
dynamics. We scrutinized the time evolution of the mean-
squared deviation and autocorrelation function of the bulk
and line magnetizations, featuring three dynamical regimes
separated by two crossover times at τ1 ∼ Lz1 and τ2 ∼ Lz2 .
In the short-time regime, the mean-squared deviation shows
ordinary diffusive behavior and the autocorrelation function
exponential decay. In the second intermediate regime the
mean-squared deviation is characterized by anomalous dif-
fusive behavior, and the autocorrelation function decays in
a stretched-exponential way. Finally, in the third late-time
regime the mean-squared deviation saturates at a constant
value while the autocorrelation function again decays expo-
nentially. This intricate behavior was originally highlighted in
Ref. [17] for the square-lattice Ising ferromagnet and its bulk
magnetization.

In particular, the second crossover to the exponential decay
of the autocorrelation function is well documented in the
literature for the bulk magnetization of the two-dimensional

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
second crossover with a scaling form − ln(ĈM (t ))/L−z2 t ∼ t/Lz2 .
Numerical data for two system sizes are shown, namely L = 32 and
L = 64.
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FIG. 5. Results based on the analysis of the line magnetization
for both the three-state Potts and Ising models. (a) Data collapse
of the MSDMl (t) curves with a scaling form of MSDMl (t )/(Lt ) ∼
t/Lz(l )

1 around the first crossover regime for L = 24, 48, and
64. (b) Data collapse of − ln (ĈMl (t )) according to the scaling

form − ln(ĈMl (t ))/(L−z(l )
2 t ) ∼ t/Lz(l )

2 for L = 64 around the second
crossover regime.

Ising model. Nightingale and Blöte elucidated that this decay
sets in at a time determined by the dynamic critical exponent
z = 2.1665(12) [14]. Our results are in agreement with this
value, but extend also to the line magnetization of the Ising
model, and more surprisingly to the bulk and line magneti-
zations of the three-state Potts model. On the other hand, the
first crossover has only recently been disclosed by our group

[17] for the bulk magnetization of the square-lattice Ising
ferromagnet, and was found to occur at a time determined
by a new dynamic exponent z1 ≈ 0.5. In the current work,
we find that this exponent shares the same value for the bulk
magnetization of the three-state Potts model, similar to the
exponent z2. However, the same analysis based on a differ-
ent observable, namely the line magnetization, suggested the
value z(l )

1 ≈ 0 for both Ising and Potts models. At the moment,
we don’t have any theoretical argument for this numerically
observed behavior.

In the intermediate regime, the mean-squared deviation of
the magnetization shows power-law behavior with an anoma-
lous exponent α, and related to this, the autocorrelation
function is a stretched-exponential decay with the same ex-
ponent. Continuity sets a relation between γ /ν (the ratio of
two equilibrium critical exponents), z1, z2, and α; see Eq. (8).
Since z1 and z2 are shared between the Ising and three-state
Potts models but γ /ν is not, it is not surprising that α takes
different values between the two models. This result pertains
to both the bulk and line magnetizations considered.

To conclude, we provided numerical evidence suggesting
that at two dimensions the three-state Potts model and the
Ising ferromagnet, which belong to distinct equilibrium uni-
versality classes, share within our numerical accuracy their
dynamical critical exponents z1 and z2. This result has been
obtained using heat-bath dynamics but we expect it to hold
for other types of single spin-flip dynamics as well, such as
Metropolis, Glauber, and others. At this stage, it would be
very interesting to place the results of the present work in a
more general framework of universality but this would require
an extensive testing of the current protocol against different
spin models, and perhaps also different algorithm dynamics
(including the most commonly used cluster algorithms). Work
in this direction is currently under way. We hope that our
work will stimulate additional research on the field of dynam-
ical critical phenomena providing a more rigorous theoretical
ground to accommodate for the reported numerical results.
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