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Faculty of Science, University of Kragujevac, POB 60, 34000 Kragujevac, Serbia

Bosiljka Tadić
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Using numerical simulations, we investigate the impact of the demagnetization field and finite temperature
on the hysteresis phenomena in disordered ferromagnetics systems. We model the behavior of thin systems
employing the thermal nonequilibrium random field Ising model driven by a finite-driving rate protocol to
study the shape of the hysteresis loop and demagnetization line and the magnetization fluctuations for varied
parameters. Our results reveal a significant interplay of the disorder, the demagnetizing fields, and thermal
fluctuations. In particular, at a fixed disorder and temperature, the increasing demagnetization coefficient
gradually prologues the magnetization reversal process, altering the multifractal nature of the magnetization
fluctuations. The process accompanies the appearance of extended linear segments in the hysteresis loop and
changes in the demagnetization line while practically preserving the value of the coercive field and slightly
changing the remanent magnetization. On the other hand, increasing temperature expands the system’s response
fluctuations and narrows the loop, affecting the coercive field and remanent magnetization. The interplay of
thermal fluctuations and demagnetizing fields fully manifests in limiting the large-scale magnetization fluctua-
tions, revealed by the multifractal spectra and the scaling functions of the avalanches. Our research offers new
modeling perspectives with a more realistic scenario and provides insight into new hysteresis loop phenomena
relevant to theoretical analysis and applications.
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I. INTRODUCTION

During magnetization and demagnetization processes dis-
ordered ferromagnetic materials display hysteresis behavior
manifested by a hysteresis loop when the field is slowly
changing during the magnetization reversal; these pro-
cesses are accompanied by bursty (avalanching) response
events manifested in the magnetization jumps measured as
Barkhausen noise (BHN) signal [1]. Properties of the hys-
teresis loop, in particular, the coercivity and remanence
(measuring the resistance to the demagnetization and the
residual magnetization at the vanishing external field, respec-
tively), as well as the structure of BHN, are crucial for various
technological applications of these materials, for example,
in memory and logic devices [2,3], or for assessing the mi-
crostructure of materials [4]. Another characterization of the
states of the hysteresis loop is obtained by removing the finite
magnetization through cycling loops of gradually smaller am-
plitude (i.e., subloops), until the zero magnetization is reached
in the zero field [5]; these subloops’ peaks define a character-
istic demagnetization line of the sample [6].

Demagnetization of ferromagnetic systems has previ-
ously been investigated both theoretically and experimentally.
Experimental research has been conducted revealing the

role of demagnetizing effects on the avalanche statistics in
Fe-Ni-Co alloys, Nd-Fe-B sintered magnets, and ferrite
magnets [6,7]. In contrast, more current investigations con-
centrated on the demagnetizing field-induced magnetocaloric
effect of commercial-grade Gd plates [8]. With the aid of mag-
netic shields, the development of magnetometers and sensors
with increased sensitivity have resulted in several applications
in medical and biomedical science in recent years [9,10].
Using the ultrafast optical demagnetization and sophisticated
time-resolved magneto-optical Kerr effect (TRMOKE) mea-
surements, the dynamics of magnetization in diverse magnetic
structures was also examined [11–14]. In addition, thin and
multilayer structures have received attention from experimen-
tal investigations due to their controllable magnetic properties
and potential use as magnetic recording media [15,16]. For
example, in multilayer magnetic nanostructures, superdiffu-
sive spin transport has been experimentally proven as a new
mechanism of ultrafast demagnetization [17].

In equilibrium statistical physics, the random field Ising
model (RFIM) appears as a platform for investigating some
fundamental questions related to critical phenomena in dis-
ordered systems; see Ref. [18] and references there. For
example, some recent advances in this field concern the
question of supersymmetry [19,20], the universality of the
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critical behavior [21] and the finite-size scaling above the
upper critical dimension [22]. Numerical simulations of the
nonequilibrium (NEQ) athermal variant of RFIM [23–25],
considered as a paradigmatic model for disordered ferro-
magnets, have revealed the occurrence of the nonequilibrium
critical behavior of avalanches, elucidated by their finite-size
scaling analysis [26–28], both in equilateral [27,29–38] and
nonequilateral [39–43] system geometries. They also unveiled
the unusual properties in the low disorder phase in the pres-
ence of a demagnetizing field where one would have expected
the magnetization to have a significant jump. In contrast,
the demagnetizing field interferes with the reversal process,
resulting in a series of power-law distributed avalanches of
different sizes with the cutoff regulated by the demagnetiz-
ing factor [44]. Previous studies of the low-field hysteresis
near the demagnetized state in disordered ferromagnets have
demonstrated that demagnetization is not achievable in the
limit of weak disorder and that the Rayleigh law of hysteresis
does not apply [45].

Standardly, numerous previous studies used the athermal
(zero-temperature) NEQ RFIM model employing the adia-
batic driving protocol in which the external field is constant
during an avalanche propagation and then changed by the
amount that triggers the least stable spin in the system.
The closest modification is quasistatic driving where the
external field is changed by a fixed amount �H between
avalanches and kept constant during avalanches. A more
realistic protocol, resembling an experimental situation, is
the constant driving rate protocol where the external field
is permanently changing regardless of the system activity.
Recent systematic comparison of the experimental data for
a nanocrystalline sample’s Barkhausen noise with the re-
sults obtained by numerical simulations of athermal NEQ
RFIM with finite-driving-rate protocol showed a remarkable
agreement [46].

In this work, we expand the athermal NEQ RFIM approach
to describe the simultaneous impact of the demagnetizing
fields and finite temperatures on the hysteresis loop behavior
in random ferromagnets. Specifically, we consider thin sam-
ples of disordered ferromagnets with open boundaries, driven
at finite rates by the external magnetic field. We consider
different strengths of the disorder estimated with respect to
the critical disorder, which we have determined considering
the same sample thickness in the athermal RFIM limit. We
investigate the hysteresis loop behavior, particularly the shape
of the saturation loop, subloops, and demagnetization line
at varied temperatures and demagnetizing factors. Further-
more, we study the impact of these factors on the multiscale
fluctuations of the magnetization (Barkhausen noise) and scal-
ing features of the magnetization avalanches considering in
particular conditions corresponding to low-temperature dy-
namics. By varying the system’s parameters in a reasonable
range, our results reveal a significant interplay of the disorder,
demagnetizing field, and thermal fluctuations, leading to some
new dynamical phenomena that can be scrutinized within the
extended NEQ RFIM.

The paper is structured as follows. In Sec. II the details
of the model are given. Section III shows the analysis of
the shape of the hysteresis loop and demagnetization line
by varied parameters. The effect of demagnetizing fields

on the structure of Barkhausen noise and system activity
events is given in Sec. IV. The discussion and conclusion in
Sec. V are followed by the two Appendixes A and B, giving
more details on the flowchart of a single-run algorithm and
a comparison with the behavior of the equilateral system,
respectively.

II. EXTENDED RANDOM-FIELD ISING MODEL
AND SIMULATIONS

In this paper, we study the system of Ising spins si = ±1
with the random field Ising model modified by including
the long-ranged demagnetizing field. The spins are located
at the sites i of a three-dimensional (i.e., 3D) thin cubic lat-
tice (L, L, l ), with quadratic base of linear size L and small
thickness l � L. The spins are exposed to the external homo-
geneous magnetic field �H = H �e that is parallel (H > 0), or
antiparallel (H < 0) to the unit vector �e = (e1, e2, e3) spec-
ifying two possible spins’ orientations (i.e., values) along �e:
up (si = +1) or down (si = −1). The Hamiltonian of the
considered system, containing L2l spins, is given by

H = −J
∑
〈i j〉

sis j − H
∑

i

si −
∑

i

hisi +
∑

i

JDMsi. (1)

In its first term, 〈i j〉 marks the summation over nearest
neighbors ferromagnetically coupled with the interaction
strength J , set to J = 1 for simplicity. The second and
third terms indicate the interaction of each spin si with the
homogeneous external magnetic field H and a quenched
random magnetic field hi at site i, respectively. The val-
ues hi are chosen independently at different lattice sites
from the zero-mean Gaussian probability distribution f (h) =
exp(−h2/2R2)/R

√
2π , whose standard deviation R speci-

fies the disorder strength in the system. The long-range
demagnetizing field −JDM, implemented in the last term
of Hamiltonian (1), is specified by an (effective) demag-
netization field coefficient (factor) JD � 0 and the actual
magnetization of the system M = (

∑
i si )/N . Therefore, each

spin si is under the influence of the effective magnetic field

heff
i =

∑
j

s(i)
j + H + hi − JDM, (2)

where s(i)
j are the nearest neighbors of si. During the field-

driven magnetization reversal process simulated with the NEQ
RFIM, the values of s(i)

j , H , and M change in time, inducing
the variations of the effective field heff

i . The spin si(t ) is
considered to be field unstable at the moment t of (discrete)
simulational time if the condition si(t )heff

i (t ) < 0 is fulfilled.
In the athermal NEQ RFIM, all unstable spins will be flipped
before the next moment t + �t (here with �t = 1), while
the field-stable spins, i.e., the spins for which si(t )heff

i (t ) � 0,
will remain unchanged. We note that when JD > 0, a back
flipping of spins might occasionally occur due to the influ-
ence of the demagnetization field. On the other hand, when
JD = 0, such back flipping is impossible due to ferromag-
netic coupling between the nearest neighbor spins at zero
temperature.

In addition to the preceding field-stability testing, in the
thermal (i.e., temperature T > 0) NEQ RFIM considered in
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this work, the spins are also checked for thermal flipping.
Given the spin-polarized states, we take that at each moment t
a fraction c = �N/N of randomly selected spins are exposed
to possible thermal flips [47]. Then a selected spin si will flip
with the probability p(th)

i , where

p(th)
i = exp

( − siheff
i

/
Tr

)

exp
( − siheff

i

/
Tr

) + exp
(
siheff

i

/
Tr

) , (3)

is the (Boltzmann-type) probability of thermal flipping for
spin si exposed to its effective field heff

i . Note that the pa-
rameter Tr stands for the relative temperature T/Tc where for
the ferromagnetic sample Tc = J . Hence, for siheff

i > 0 it is
likely (but not certain) that the selected spin si will be flipped,
whereas for siheff

i < 0, the selected spin si has a small nonzero
chance for flipping.

At each moment t , we change the value of H , perform the
flipping tests, and subsequently change the orientation of all
spins satisfying the flipping conditions. The magnetic field H
is incremented (decremented) along the rising (falling) part
of the hysteresis loop by the amount �H > 0 specifying the
driving rate � = �H/�t in the finite-driving-rate protocol
adopted in this work. Such change of the driving field H ,
followed by the subsequent spin flips, perpetually modifies the
effective field, which can induce a cascade of intermittent spin
flipping to spread in time and space as an avalanche. In this
type of driving, the simultaneously propagating avalanches
may overlap in time and possibly merge in space, forming a
system response named activity event [35].

Following the above-described rules, we simulate the sys-
tem’s evolution guided by the time-varying magnetic field,
which drives the system along its saturated hysteresis loop
and subsequently through a set of nested subloops shrinking
to zero. The evolution along the rising part of the satura-
tion hysteresis loop (i.e., the loop with magnetization ranging
between M = −1 and M = 1) proceeds as follows: initially,
all spins are with the same orientation (−1) and the external
magnetic field has a significant negative value H−∞ providing
that all spins are field stable. Then, the external magnetic field
is increased in each time step until H reaches the value H∞
such that all spins are si = 1 and field stable, completing the
rising part of the saturation loop. After that, the simulation
of the falling part of the saturation loop starts. To this end,
H is decreased in each time step by �H until all spins are
si = −1 and field stable when the simulation of the saturation
loop falling part is completed.

After we finish the simulation of the whole saturation loop,
we proceed to the simulation of the nested subloops. The
magnetization of each (kth) subloop ranges between some
maximum and minimum value, H (max)

k and H (min)
k = −H (max)

k ,
of the external field, with H (max)

k+1 < H (max)
k . The number of

subloops and their range is selected in advance (as a sequence
of fixed percentages of H∞); the simulations follow the same
steps as for the saturation loop, started, however, from the
remembered spin state of the previous (sub)loop when H falls
to H (min) for that previous (sub)loop. Finally, the demagnetiza-
tion curve is formed from the tips of all simulated (50 in our
study) subloops. The entire single-run simulation procedure
flowchart is given in Appendix A.

FIG. 1. Saturation hysteresis loop (full thick curve) with ten
subloops (shown out of 50 by thin full curves) and the demag-
netization (dashed) curve. System parameters are L = 256, l = 4,
R = 1.575, JD = 0.33, Tr = 0.01, � = 10−4, and c = 10%.

III. PROPERTIES OF THE HYSTERESIS LOOP AND
DEMAGNETIZATION CURVE BY VARIED PARAMETERS

This paper presents the results obtained in numerical sim-
ulations of the thermal NEQ RFIM with a demagnetizing
field. Because many parameters influence the hysteresis-loop
behavior, we show the results obtained when one parameter is
varied while fixing the remaining parameters to their conve-
nient or representative values.

The simulated systems contain a total of 262 144 spins
arranged in a thin plate geometry with an equilateral base of
linear size L = 256 and thickness l = 4. The demagnetization
coefficient for (homogeneously magnetized) thin plates varies
between 0 and 1 with the direction of the external field relative
to the plate [48] (JD = 0 for the field parallel to the base, and
JD = 1 for the field perpendicular to the base; showcased also
in numerical simulations [49]). In Fig. 1, we first show the
case of JD = 0.33, which is also characteristic of the three-
dimensional equilateral systems; for comparison, the results
are shown in Appendix B. Then the results for a systematic
variation of the parameters JD ∈ [0, 1] and Tr ∈ [0.001, 10]
are obtained, as shown in Figs. 2 and 3. The fraction of spins
exposed to the thermal flipping, c, is varied within the range
10–50%.

Saturation hysteresis loops are cycled over up to 50
subloops. For the strength of disorder R, three representa-
tive values are considered: the subcritical (R = 1.2 < Reff

c ),
supercritical (R = 2.0 > Reff

c ), and R = 1.575, which is ap-
proximately equal to the effective critical disorder Reff

c (L, L, l )
estimated for the adiabatically driven athermal system sit-
uated on the same (L, L, l ) cubic lattice, but with JD = 0.
In more details, for the adiabatically driven athermal infinite
systems, the critical disorder Rc separates the supercritical
domain of disorder R > Rc (where all avalanches are finite)
from the subcritical domain of disorder R < Rc in which
the phase transition of the first kind (i.e., jump in magne-
tization) appears due to the onset of infinite avalanche. In
finite systems, the role of the infinite avalanche is played
by the spanning avalanches, extending at least along one of
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FIG. 2. The shrinking of single-run saturation magnetization curves with increasing relative temperature (top row) along with pertinent
demagnetization curves (bottom row) obtained for systems with the same parameters L = 256, l = 4, JD = 0.33, � = 10−4, c = 50%, and
disorder values shown in legends. The relative temperature is varied in the range Tr = 0.01–10 as is shown in the legend in the first and
applicable to all panels.

FIG. 3. Top row: Single-run magnetization loops for three values of relative temperature T1 = 0.001, T2 = 0.01, and T3 = 0.1, the disorder
value R = 1.575, c = 10%, and a range of JD values shown in the legend. Full lines show saturation curves, and the dashed ones, one
representative subloop for each of the saturation loops. For JD = 0 the saturation loops are (almost) rectangular (with rounded corners)
becoming more and more tilted/slanted with the increase of JD. Bottom row: Magnetization signals n+ − n− vs simulation time t from the
single-run simulations of the saturation loops shown in the top row; n+ (n−) is the number of spins flipped up (down) at a time step t . The
results in all panels correspond to the 256 × 256 × 4 system driven by the finite-driving-rate protocol with the driving rate � = 10−4. Legends
in the first panels apply to all panels in the same row.
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the system’s dimensions [26,50,51]. For finite systems, such
avalanches are likely (unlikely) for sufficiently low (high)
disorders belonging to the subcritical (supercritical) domains
of disorder separated by the domain of transitional disorders
(Rc < R < Reff

c ), see Ref. [30], ending at some value Reff
c

named the effective critical disorder, which depends on the lat-
tice geometry (Lx, Ly, Lz). So, for a finite system, the effective
critical disorder is the minimal disorder such that the spanning
avalanches are (statistically) absent for the system’s lattice
geometry. The effective critical disorder value is influenced
not only by the lattice geometry but also by the driving rate
� (particularly in the fast driving regime used in this work),
as well as by the nonzero values of the T and JD parame-
ters. For (L, L, l ) type lattices the theoretical prediction about
dependence of Reff

c on L, l for adiabatically driven athermal
NEQ systems with JD = 0 is given by Eq. (7) in Ref. [39]
that is in agreement with the value Reff

c (256, 256, 4) = 1.575
found in our simulations (for T = 0, � = 10−7, JD = 0) and
used in what follows. Note, however, that this value should
be considered here merely as a representative value close to
the effective critical disorder, while the other two considerably
different chosen values, R = 1.2 and R = 2.0, are subcritical
and supercritical for all employed values of JD and T .

The system is driven using the finite-rate driving protocol
with the driving rate � = 10−4, and open boundary conditions
applied along all three axes.

A. Saturation magnetization loops, subloops,
and demagnetization curves

Saturation magnetization loops are often prioritized in
studies of ferromagnetic systems given that analysis of their
shape and scaling behavior of avalanches provide substantial
insights into the hysteresis-loop criticality [43,52,53]. On the
other hand, the importance of hysteresis subloops also comes
to light due to their intriguing properties (such as return point
memory and history-induced critical scaling [23]), and also
given the experimental challenges, e.g., the large magnetic
fields required to push the magnetic samples to their saturation
point.

For illustration, in Fig. 1, we show ten equally spaced
subloops simulated for our system with disorder R = 1.575,
demagnetizing factor JD = 0.33 at low temperature and ther-
mal activation fraction. The magnetization cycled through
nested subloops when the external field, with a shrinking
amplitude, swung back and forth. One can see that the shapes
of the subloops resemble the shape of the saturation one
while gradually decreasing in size upon decreasing the field
amplitude. The dashed line in this figure shows the demagne-
tizing curve, defined as the line interconnecting the subloop
tips [44].

B. Thermal effects on the hysteresis loop
and demagnetization curve

To explore the effects of thermal fluctuations in the
demagnetizing system, we have performed numerical sim-
ulations for several nonzero temperature values (relative to
the system’s critical temperature). The saturation hysteresis
loops and related demagnetization curves as functions of the

external magnetic field are displayed in Fig. 2. Thermal ef-
fects are studied in three distinct domains of disorder, more
precisely, below, at and above the effective critical disor-
der Reff

c (L = 256, L = 256, l = 4) ≈ 1.575, estimated in the
adiabatic and athermal limit. The relative temperature varies
within a wide range Tr = 0.01–10. The demagnetizing coef-
ficient is set to JD = 0.33, which allows a comparison with
the fully equilateral system of linear size L = 64, whose sat-
uration magnetization curves varied over the same relative
temperature range are shown in Fig. 8 of the Appendix B.

As can be seen in the top row of Fig. 2, the saturation
magnetization loops exhibit a steep rise at the lower tem-
peratures, especially in the low disorder domain (e.g., for
R = 1.2); this feature is comparable to the athermal (i.e.,
T = 0) scenario. With the increase in temperature, we observe
that the hysteresis loops for the three representative disorder
values gradually narrow until it is virtually impossible to tell
the difference between the rising and decreasing hysteresis
branch (absence of hysteresis), and the coercive field tends
to zero; in Ref. [54] they make a similar observation. The
demagnetization curve’s distinctive plateau, previously noted
in the athermal case [44], persists in the range of lower tem-
peratures. In the high-temperature range, it likewise contracts
with the increase in temperature before dissolving, leading to
a smooth demagnetization curve; see bottom row of Fig. 2.

Further, we focus on the impact of varied demagnetizing
fields on the hysteresis loop and Barkhausen noise at low tem-
peratures. We find that the dynamics of the system is greatly
affected by the demagnetizing field, operating to counterbal-
ance the external field and producing nonlocal long-range
interactions among spins. In thin samples, the effective de-
magnetizing coefficient JD can vary practically within the
entire range JD ∈ [0, 1], depending on the domain structure
and the direction of the external field [8]; meanwhile, a fixed
value JD = 1/3 is expected for a cubic sample with uniform
magnetization [55]. The effects of the varied JD values on the
shape of the loops of the studied thin sample are illustrated
in Fig. 3 for three representative relative temperatures. As the
figure shows, the vertical parts of the hysteresis loops become
gradually more inclined with increasing demagnetizing factor
JD; meanwhile, the coercivity and the remanent magnetization
remain unchanged. The corresponding magnetization fluctua-
tion δM = n+ − n− is determined as the difference between
the number of spins that flip up n+ and down n− at a time step
t ; the signals corresponding to the complete saturation loops
are shown in the bottom row of Fig. 3. The shape of the cor-
responding subloop changes accordingly. The appearance of a
sizable linear segment, previously also observed in Ref. [44],
extends the central part of the hysteresis loop, which, in turn,
prolongs the magnetization reversal process compared to the
case without the demagnetizing fields.

IV. BARKHAUSEN NOISE AND ACTIVITY EVENTS AT
VARIED DEMAGNETIZATION FACTOR

AT LOW TEMPERATURES

In this section, we further demonstrate the interplay of the
demagnetizing fields and temperature on the magnetization
fluctuations (Barkhausen noise signals) by fixing the disor-
der, i.e., at the effective critical disorder estimated in the
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FIG. 4. Bottom panel: The magnetization-fluctuation signals for
varied relative temperature T1 = 0.001, T2 = 0.01, T3 = 0.1, fixed
JD = 1, R = 1.575, and c = 10%. Top panel: Power spectra of the
magnetization fluctuations for fixed temperature T1 and three values
of the demagnetization factor JD, and for the fixed JD = 1 and tem-
peratures T2 and T3, as indicated in the legend.

adiabatically driven athermal simulations of the same thin
sample. Specifically, we analyze the collective nature of these
fluctuations on the ascending branch of the saturation loop
by computing the signals’ power spectra and multifractal fea-
tures. In addition, the scale invariance of the magnetization
activity events determined for varied disorders above the crit-
ical one is investigated. The results are reported in Figs. 4, 5,
and 6.

In the presence of demagnetizing fields, back flips occur,
reducing the magnetization, which leads to a prolonged re-
versal process compared to the case without demagnetizing
fields (JD = 0), even at very low temperatures. These effects
cause differences in the left part of the power spectrum (low
frequencies), thereby shifting the region where the power law
is observed towards higher frequencies, cf. Fig. 4 top panel;
meanwhile, the power-law exponent in W (ν) ∼ ν−φ remain
relatively stable; we find φ = 1.68 ± 0.04, fitting the case
with the low relative temperature T1 = 0.001 and a moderate

FIG. 6. Integrated distributions D(S) of size S (circle symbols)
and D(TDur ) of duration TDur (triangle symbols) of activity events
for the system with parameters L = 256, l = 4, JD = 0.33, Tr =
0.01, � = 10−4, c = 10%, and (activity event detection) threshold
region between −2 and 2, for a set of disorder values R > Reff

c .
Presented data are averaged over 20 different realizations of random
magnetic field. Insets show pertinent scaling collapses obtained for
exponents τint = 1.95 ± 0.09, αint = 2.60 ± 0.02, σ = 0.98 ± 0.04,
σγ = 1.01 ± 0.03, and Reff

c = 1.575 ± 0.108, and having the col-
lapse widths wD(S) = 0.108 and wD(TDur ) = 0.171.

demagnetizing factor JD = 0.33. However, a similar slope
applies (albeit in a changed region) for all considered sig-
nals; see Fig. 4. Further elongation of the signal is caused
by the increasing temperature, where thermal fluctuations also
change the nature of the fluctuations, as described below. For
example, Fig. 4, bottom panel shows three signals for a large
JD = 1 and different relative temperatures. In the following,
their multifractal properties are analyzed to provide another
quantitative measure of the altered nature of fluctuations.

We use the detrended multifractal analysis of time se-
ries [56] adapted for the study of sunspot time series in
Ref. [57] and the Barkhausen noise in Ref. [58]. In this
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FIG. 5. The main panels show the fluctuation function Fq(n) vs segment length n for a large demagnetization factor JD = 1, R = 1.575,
c = 10%, and very low relative temperature T1 = 0.001, left, and a larger temperature T3 = 0.1, right. The straight colored lines indicate fitted
scaling regions, leading to the generalized Hurst exponent; symbols with the matching color are shown in the top right inset, in addition to Hq

for T2 = 0.01 case, determined in the section s2; see text. The corresponding singularity spectrum �(α) vs α for the case T1 is shown in the
left panel inset.
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approach, for the considered magnetization fluctuation time
series {mt }, cf. Fig. 4, the profile Y (i) = ∑i

t=1(mt − 〈mt 〉) is
constructed and then divided into nonoverlapping segments
of the length n, starting from the beginning of the time se-
ries; Ns = int(N/n) intervals are defined, where N denotes the
number of nonzero data points in the considered time series.
Since the time series length is often not a multiple of the
segment length n, the process is repeated starting from the
endpoint, resulting in total of 2Ns intervals. With polynomial
interpolation the local trend yμ(i) is found at each segment
μ, and standard deviation around it determined as F 2(μ, n) =
1
n

∑n
i=1{Y [(μ − 1)n + i] − yμ(i)}2, for μ = 1, 2 · · · Ns. Sim-

ilarly, starting from the endpoint, we get the expression
F 2(μ, n) = 1

n

∑n
i=1{Y [N − (μ − Ns)n + i] − yμ(i)}2 for μ =

Ns + 1, · · · 2Ns. Using these expressions, the qth order fluctu-
ation function

Fq(n) =
⎧⎨
⎩

1

2Ns

2Ns∑
μ=1

[F 2(μ, n)]q/2

⎫⎬
⎭

1/q

∼ nHq (4)

is determined as a function of the segment length varied in the
range n ∈ [2, N/4]; for each value of the amplification factor
q, here varied in the range q ∈ [−4.5, 4.5], the fluctuation
function Fq(n) represents a separate line in the double-log
plot in Fig. 5. Straight-line sections of these curves are fitted
to determine the scaling exponents Hq, defined in (4). For a
multifractal time series, parts with different singularities are
amplified differently with positive or negative q values, lead-
ing to a broad spectrum of the generalized Hurst exponents Hq

as a function of q. In contrast, lines for different q values are
parallel in the case of monofractal time series. The singularity
spectrum �(α) is another quantitative measure of multifractal
features; it can be obtained [56] from Hq by the Legendre
transform �(α) = qα − τq, where τq = qHq − 1 is related to
standard box-probability measure in partition function meth-
ods and α = dτq/dq. n this context, α determines the strength
of singularity at a given data point in the time series, while
�(α) is the fractal dimension of the subset of data points with
the singularity α.

In the studied examples, the fluctuation function Fq(n) ex-
hibits different multifractal features in specified sections of
the time intervals n, indicated as s1, s2, and s3 in Fig. 5.
Specifically, we observe the absence of scaling for small n;
meanwhile, a broad spectrum Hq appears in the section s2
at low relative temperature T1. The corresponding singularity
spectrum is also shown in the inset to the left panel in Fig. 5.
We observe an asymmetry characterized by a wide range of
variations on the right side of the spectrum, which describes
small magnetization fluctuations. Meanwhile, the left part
of the spectrum, which is associated with large fluctuations,
changes in a narrow range. The corresponding values of α,
with the associated generalized Hurst exponent shown in the
right panel inset, are in the range of a fractional Gaussian pro-
cess. With the increasing temperature T2 = 0.01, the segment
s2 shrinks and eventually disappears at higher relative temper-
ature T3 = 0.1, where the scaling segment s3, corresponding
to extensive time intervals, appears. Here, persistent large
fluctuations lead to an entirely different type of the spectrum

with the Hurst exponent that exceeds one; see the inset in the
right panel of Fig. 5.

Avalanching activity events are characterized by parame-
ters such as the size S (number of spins flipped) and duration
TDur (the time between the start and end of an event). The
main panel of Fig. 6 shows the integrated distributions D(S)
and D(TDur ) calculated from the events realized throughout
the whole hysteresis loop. As can be seen, these distributions
exhibit power-law segments, described by the associated crit-
ical exponents, ending with a cutoff region. According to the
athermal and adiabatically driven version of RFIM [23], these
distributions D(S) and D(TDur ), considered to be generalized
homogeneous functions of their arguments, are expected to
follow the scaling

D(S) = S−τintDS (Sσ r) , (5)

D(TDur ) = T −αint
Dur DTDur

(
T σγ

Dur r
)
, (6)

where DS and DTDur are the appropriate universal scaling func-
tions and r the reduced disorder r = (R − Rc)/R [Rc being
the critical disorder of system in the thermodynamical limit
(L → ∞)]. Here, all the exponents are the standard RFIM
ones, namely, τint and αint are the size and duration exponents
of integrated distributions (see Ref. [59]), σ is the cutoff
exponent showing scaling of the largest size with the disor-
der, and γ the exponent describing the power-law correlation
〈S〉TDur ∼ T γ

Dur between the duration TDur and the mean size
〈S〉TDur of activity events having that duration, also shown to
be equal to the power-spectrum exponent φ within the context
of the athermal NEQ RFIM [60].

To find the values of related exponents, collapsing of the
D(S) and D(TDur ) distributions is carried out in accordance
with Eqs. (5) and (6), using the method that minimizes the
collapse width w, the width of the region that contains scaled
collapsing data (see Ref. [27], and the Appendix D in Ref. [32]
for more details). Because there is always some extent of
data scattering, the collapse width is always greater than zero,
even for the optimal values of scaling parameters estimated
so to minimize w and achieve the best possible overlay of
the scaled data onto a single curve. Presenting the scaled
data Sτint D(S) versus Sσ r, and T αint

Dur D(TDur ) versus T σγ

Dur r, cor-
responding to different disorders R > Reff

c , one achieves the
overlapping of pertinent distributions. Scaling collapses of
the integrated avalanche size and duration distributions for
our system with parameters JD = 0.33, Tr = 0.01, c = 10%,
and (activity event detection) threshold region between −2
and 2, are presented in pertinent insets of Fig. 6. The best
collapses are obtained for the following values of exponents:
τint = 1.95 ± 0.09, αint = 2.60 ± 0.02, σ = 0.98 ± 0.04, and
σγ = 1.01 ± 0.03, with the use of the effective reduced dis-
order reff = (R − Reff

c )/R and Reff
c = 1.575 ± 0.108.

We see that the exponents τint and αint agree within the error
bars with those found for the fully 2D adiabatically driven
athermal RFIM system, having values of τ 2D

int = 2.02 ± 0.06
and α2D

int = 2.62 ± 0.04 [27,32]. These results align with those
found for the thin system with the same base size L = 256,
in which the 2D behavior is recovered for system thicknesses
l � 4, followed by the two-slope distributions for 8 � l � 32,
and otherwise for thicknesses l � 64 displaying full 3D bulk
behavior [43]. On the other hand, variations are observed in
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the exponent values σ and γ . This discrepancy from the 2D
values (σ 2D = 0.10 ± 0.01 and γ 2D = 1.55 ± 0.03 [27,32])
may be explained by the disparity in the effective critical
disorder value as well as the strong mutual influence of
the nonzero parameters JD, Tr, and �, overriding the 2D
framework.

V. DISCUSSION AND CONCLUSION

The hysteresis-loop phenomena depend on many factors
such as the composition and preparation of the sample, degree
of disorder, temperature, sample’s shape, demagnetizing field,
protocol of sample’s driving by the external magnetic field,
and the rate of field change. In this work, we have employed
numerical simulations with an extended variant of the NEQ
RFIM incorporating the impact of demagnetizing fields and
thermal fluctuations on the hysteresis loop of a thin ferromag-
netic sample.

The random character of the thermally activated spin flips
tends to obstruct a precise detection of an avalanche, in
contrast to athermal deterministic spin flips. Due to ubiqui-
tous thermal fluctuations, the system’s inactivity intervals are
likely absent. For this reason, the detection of activity events
(with potentially superposed thermal fluctuations) is accom-
plished through the introduction of a double-sided threshold
region so that the system’s response signal lying within this
region is attributed to the sustained thermal activity, otherwise
considered a field-related activity event. Due to the entangled
field and thermal spin flipping, it is furthermore not realistic
to keep the constant value of the external field during the on-
going activity event propagation. Hence, we have considered
the constant rate of change of the external field.

While the probability of thermal flipping p(th)
i for a selected

spin is usually taken in the form (3), a more intricate question
regards the rate the spins are being selected. In a recent study
of the thermal model [54], in a chosen number of time steps,
the time of spin equilibration τeq, the spins are selected at
random one at a time. After each thermal flip, the spin con-
figuration is updated according to the field-activated flipping
rule at the value of H , which is constant during τeq; then, the
field is changed by an amount �H and the whole procedure
iterated. In our computationally more efficient protocol, a
given fraction c of spins is randomly selected and checked
for thermal flipping at the current value of H . The remaining
spins follow the field-flipping rule. These rules give more
weight to the field flipping than thermal flipping, especially
for small c, and are more suited to a low-temperature fixed
point in the appropriate field-theory models [61]; meanwhile,
the approach described in Refs. [54,62,63] is designed for the
vicinity of the critical temperature. Interestingly, qualitatively
similar conclusions are derived in both cases. Namely, the
main effects of finite temperature consist of an overabun-
dance of small activity events and hindering the propagation
of massive avalanches. Meanwhile, the statistics of well-
identified intermediate-range activity events are governed
by the same scaling exponents as in the equivalent T = 0
dynamics.

The demagnetizing effect is another factor that sig-
nificantly impacts the hysteresis loop dynamics. The de-
magnetizing field counteracts the external field inside the

sample, introducing nonlocal interactions, limiting the size of
underlying spin activity events and the maximum length of
magnetization jumps [64]. Understanding its influence be-
comes crucial for applications and in many experimental
investigations. In this context, the process of demagnetization
has also been investigated as an alternative optimization tool,
a way to determine the ground state of a disordered sys-
tem [65,66] by comparison of the ground state of the RFIM
with the demagnetized state, its nonequilibrium hysteretic
counterpart, obtained by a sequence of slow magnetic-field
oscillations with decreasing amplitude. The demagnetizing
energy of a straight domain wall in a thin film with a perpen-
dicular magnetic anisotropy was also calculated analytically,
and verified by micromagnetic simulations [67].

In the studied model at finite temperature, we have sys-
tematically investigated the impact of demagnetizing fields
on the nature of the magnetization fluctuations and system
activity events. We find that while the values of the coercive
field and remanent magnetization are virtually unchanged by
the presence of demagnetizing fields, the increased demag-
netizing coefficient changes the loop shape by introducing
extended linear segments, corresponding to significantly pro-
longed magnetization or demagnetization processes. On the
other hand, our analysis reveals that the hysteresis loop
shape corresponding to a given disorder strength is altered by
thermal fluctuations such that both coercivity and remanent
magnetizations are decreasing. Note, however, that including
the demagnetizing field is a sort of mean-field treatment of the
magnetic dipole-dipole interaction. The actual demagnetizing
field is constant over the entire sample only for the ellipsoidal
ones; therefore, the demagnetizing factor JD can be considered
an effective quantity. For thin samples studied here, its value
can be varied, theoretically, in the [0,1] range.

The presence of demagnetizing fields prolongs the mag-
netization reversal process and, at the same time, affects
the nature of magnetization fluctuations, quantified by the
multifractal time-series analysis of several representative
Barkhausen noise signals. More precisely, demagnetizing
fields mainly affect the large-scale fluctuations, resulting in
the asymmetric singularity spectrum and shifting it towards
smaller values of the singularity exponent α; cf. Fig. 5.
Moreover, our results demonstrated the multiscale fractality.
Specifically, different multifractal features occur in three seg-
ments of time intervals, roughly termed small, intermediate,
and large, relative to the length of a given time series. The
increasing temperature systematically alters the widths of
these intervals and the shape of the associated generalized
Hurst exponents spectra. In this way, our multifractal analysis
reveals and quantifies an intricate interdependence of thermal
fluctuations and demagnetizing effects in the magnetization
fluctuations on the hysteresis loop.

With the considered driving rate and thermal fluctua-
tions regarding low temperatures, we have conditions with
the separation of the relevant time scales τav < τdr � τth of
the avalanche propagation, driving, and thermalization, re-
spectively [68]. In these conditions, we have successfully
identified magnetization avalanches and studied their scaling
features for different disorder strengths. The scaling col-
lapse for both the distribution of the avalanche sizes and
durations, shown in the insets of Fig. 6, demonstrate a
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FIG. 7. A flowchart of the single-run algorithm used in our simulations.
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characteristic asymmetry, theoretically predicted for the
nonequilibrium critical dynamics by the renormalization
group analysis in Ref. [61]. Meanwhile, the scaling expo-
nents appear to be close (within error bars) to the ones
observed in the athermal NEQ RFIM [27], supporting the
idea of the RFIM universality [21]. A preliminary analy-
sis of the avalanche collapse in the low disorder regime
(not shown), suggests the occurrence of a new critical dis-
order and different exponents, potentially induced by the
long-range effects of demagnetizing fields. Using a for-
mal analogy with the model studied in Ref. [69], we may
expect a new critical point to be associated with a self-
organized criticality (SOC) on the hysteresis loop. The
occurrence of SOC on the hysteresis loop was recently
demonstrated in antiferromagnetic models on complex geom-
etry [70] and earlier in the case of infinite-range spin-glass
model [71]. These interesting aspects of the hysteresis-loop
criticality in our extended NEQ RFIM are left for future
study.

In conclusion, our work introduces a more realistic mod-
eling approach for numerical investigations of the hysteresis
loop phenomena in disordered ferromagnetic samples, thin
films, and heterostructures, which are currently the focus of
various applications. By appropriately extending the familiar
approaches using the random field Ising model, our results
revealed intricate interdependences of three factors often
present in the experimental situation: the driving rate, ther-
mal fluctuations, and demagnetizing fields and their impact
on the hysteresis loop criticality. We have shown how these
factors shape the hysteresis loop and the demagnetization
line and change the multifractal features of the Barkhausen
noise in these systems. Besides potential practical importance,
the presented study opens several questions for future theoret-
ical investigations in the context of out-of-equilibrium critical
dynamics.
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APPENDIX A: FLOWCHART OF A SINGLE-RUN
ALGORITHM

In Fig. 7 we present the flowchart of a single-run algorithm
used in our simulations of the RFIM version studied in this
paper. Below is the explanation of some flowchart steps.

(1) The single-run simulation input parameters are: the
size of the lattice (L, L, l ) (setting the number of spins in
the system N = L2 × l), the seed for the random number
generator used in generating the configuration {hi}N

i=1 of the
quenched random field, the disorder parameter R, the de-
magnetization field coefficient JD, relative temperature Tr,
the fraction of thermally flippable spins c, the value of �H
(setting the driving rate � = �H/�t), the number Nsl of
subloops and the corresponding sequence {H (max)

k }Nsl
k=1 (setting

the maximum values of the external field H in each of the
subloops).

(2) For the supplied value of seed, the (Gaussian) ran-
dom field configuration {hi}N

i=1 is formed with the aid of the
RNFARR procedure from Ref. [72] for generation of uniform
deviates in (0,1) interval; the saturated hysteresis loop sim-
ulation is initialized by setting si = −1 for all spins and H
to the maximum negative value such that all spins are field
stable.

(3) In each (new) time step we first change the external
field by �H .

(4) After H is changed, all spins are in parallel tested and
(possibly) flipped through the following steps:

(a) heff
i and peff

i are calculated for each si

(b) random numbers r (sel)
i , r (th)

i ∈ [0, 1] are generated
for each i

(c) for si that is:
(i) field unstable, si is flipped

(A) if r (sel)
i > c or

(B) (r (sel)
i < c and r (th)

i < peff
i )

(ii) field stable, si is flipped if (r (sel)
i < c and

r (th)
i < peff

i )
(5) When H < H (min)

k for the first time on the falling part
of the current kth (sub)loop, the initial spin state {s(k+1)

i }N
i−1

for the next (i.e., k + 1th) subloop is stored.
(6) After H falls below the H (min)

k for the first time on the
falling part of the current (kth) (sub)loop, the simulation of
the rising part of the next (i.e., k + 1th) subloop is initiated by
restoring the spins to the initial spin configuration {s(k+1)

i }N
i−1

and H to H (min)
k+1 .

To perform quenched averaging, the foregoing single-run
algorithm is repeated each time with a new configuration of
the random field (initiated by a different value of the seed for
the random number generator) and the same remaining input
parameters.

FIG. 8. The shrinking of single-run saturation magnetization
curves with increasing temperature obtained for equilateral cubic
system with parameters L = 64, JD = 0.33, � = 10−4, c = 50%.
The relative temperature is varied in the range Tr = 0.01–10.
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APPENDIX B: CASE OF EQUILATERAL SYSTEM

Determining the effects of demagnetization on the prop-
erties and behavior of the sample remains still a challenging
task, particularly for nonellipsoidal forms. For instance,
recent study conducted on cuboid systems [55] revealed
temperature-dependent departures from the usual demagne-
tizing transformation, indicating inhomogeneous fields within
the sample.

Here, in addition to the thin sample geometry examined
in this work, we show how thermalization and presence of
demagnetizing field affect the system with cubic geometry.
By maintaining the same number of spins as in the thin system
(total of 262 144 spins), we have conducted numerical simu-
lations of the equilateral 3D cubic system with size L = 64.
Thermal effects are examined in the domain of the effec-
tive critical disorder Reff

c (L = 64) ≈ 2.57 estimated for the

athermal case with adiabatic driving. With c = 50% as the
fraction of thermally flippable spins, the relative tempera-
ture is varied throughout a broad range of values, from Tr =
0.01–10. The demagnetizing coefficient is set at JD = 0.33,
a value that corresponds to the homogeneously magnetized
sample, and the system is driven with the same constant driv-
ing rate of � = 10−4.

Figure 8 shows the saturation hysteresis loops as functions
of the external magnetic field. It is evident that the saturation
magnetization loops show steep ascent at low temperatures,
much like in the case of thin systems but with a milder tran-
sition to saturation values. As temperature rises, the width of
hysteresis loops progressively narrows, eventually resulting in
the overlapping of the rising and falling branches. This effect
of ultimate hysteresis diminishing with temperature manifests
at a lower relative temperature (Tr = 5) for the cubic than for
the thin system (Tr = 10).
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and K. Trojan, Influence of demagnetization and microstruc-
ture non-homogeneity on Barkhausen noise in the high-strength
low-alloyed steel 1100 MC, Appl. Sci. 14, 1511 (2024).

[6] J. S. Urbach, R. C. Madison, and J. T. Markert, Interface depin-
ning, self-organized criticality, and the Barkhausen effect, Phys.
Rev. Lett. 75, 276 (1995).

[7] Y. Matsuura, K. Ishigami, R. Tamura, and T. Nakamura, De-
magnetization processes of Nd-Fe-B sintered magnets and
ferrite magnets as demonstrated by soft X-ray magnetic circular
dichroism microscopy, J. Magn. Magn. Mater. 579, 170854
(2023).

[8] Q. Badosa, L. Mañosa, E. Vives, A. Planes, B. Weise,
L. Beyer, and E. Stern-Taulats, Demagnetizing field-induced
magnetocaloric effect in Gd, J. Appl. Phys. 134, 113902
(2023).

[9] H. Kikuchi, S. Kamata, T. Nakai, S. Hashi, and K. Ishiyama,
Influence of demagnetizing field on thin-film GMI magnetic
sensor elements with uniaxial magnetic anisotropy, Sens.
Actuators, A 230, 142 (2015).

[10] J. Yang, M. Shi, X. Zhang, Y. Ma, Y. Liu, S. Yuan, and B. Han,
Demagnetization parameters evaluation of magnetic shields
based on anhysteretic magnetization curve, Materials 16, 5238
(2023).

[11] X. Chen, R. Adam, F. Wang, Y. Song, L. Pan, C. Song, S.
Heidtfeld, C. Greb, Q. Li, J. Yu, J. Zhang, Y. Cui, S. Li,
J. Xu, M. Cinchetti, C. Schneider, and D. Cao, Magnetic

domain-dependent ultrafast optical demagnetization in stripe
domain films, J. Phys. D 56, 285001 (2023).

[12] W. Zhang, T. Blank, C. Guillemard, C. de Melo, S. Mangin, A.
Kimel, S. Andrieu, and G. Malinowski, Ultrafast demagnetiza-
tion of Co2 MnSi1−xAlx Heusler compounds using terahertz and
infrared light, Phys. Rev. B 107, 224408 (2023).

[13] Z. Xie, Y. Cai, M. Tang, J. Zhou, J. Liu, J. Peng, T. Jiang,
Z. Shi, and Z. Chen, Fluence and temperature dependences of
laser-induced ultrafast demagnetization and recovery dynamics
in L10-FePt thin film, Materials 16, 5086 (2023).

[14] Z. Gong, W. Zhang, J. Liu, Z. Xie, X. Yang, J. Tang, H. Du,
N. Li, X. Zhang, W. He, and Z.-h. Cheng, Ultrafast demagneti-
zation dynamics in the epitaxial FeGe(111) film chiral magnet,
Phys. Rev. B 107, 144429 (2023).

[15] J. E. Davies, O. Hellwig, E. E. Fullerton, and K. Liu,
Temperature-dependent magnetization reversal in (Co/Pt)/Ru
multilayers, Phys. Rev. B 77, 014421 (2008).

[16] A. Berger, C. Binek, D. T. Margulies, A. Moser, and E. E.
Fullerton, Reversible hysteresis loop tuning, Phys. B: Condens.
Matter 372, 168 (2006), Proceedings of the Fifth International
Symposium on Hysteresis and Micromagnetic Modeling.

[17] T. Jiang, X. Zhao, Z. Chen, Y. You, T. Lai, and J. Zhao, Ultrafast
dynamics of demagnetization in FeMn/MnGa bilayer nanofilm
structures via phonon transport, Nanomaterials 12, 4088
(2022).

[18] S. Rychkov, Lectures on the Random Field Ising Model:
From Parisi-Sourlas Supersymmetry to Dimensional Reduction,
Springer Briefs in Physics (Springer, Berlin, 2023).

[19] N. G. Fytas, V. Martín-Mayor, G. Parisi, M. Picco, and N.
Sourlas, Evidence for supersymmetry in the random-field Ising
model at D = 5, Phys. Rev. Lett. 122, 240603 (2019).

[20] A. Kaviraj, S. Rychkov, and E. Trevisani, Parisi-sourlas super-
symmetry in random field models, Phys. Rev. Lett. 129, 045701
(2022).

[21] N. Fytas, and V. Martín-Mayor, Universality in the three-
dimensional random-field Ising model, Phys. Rev. Lett. 110,
227201 (2013).

[22] N. G. Fytas, V. Martín-Mayor, G. Parisi, M. Picco, and N.
Sourlas, Finite-size scaling of the random-field Ising model

014133-11

https://doi.org/10.1016/0304-8853(86)90066-1
https://doi.org/10.1126/science.1145799
https://doi.org/10.1126/science.1108813
https://doi.org/10.1016/j.jmmm.2022.169310
https://doi.org/10.3390/app14041511
https://doi.org/10.1103/PhysRevLett.75.276
https://doi.org/10.1016/j.jmmm.2023.170854
https://doi.org/10.1063/5.0161334
https://doi.org/10.1016/j.sna.2015.04.027
https://doi.org/10.3390/ma16155238
https://doi.org/10.1088/1361-6463/accd7d
https://doi.org/10.1103/PhysRevB.107.224408
https://doi.org/10.3390/ma16145086
https://doi.org/10.1103/PhysRevB.107.144429
https://doi.org/10.1103/PhysRevB.77.014421
https://doi.org/10.1016/j.physb.2005.10.040
https://doi.org/10.3390/nano12224088
https://doi.org/10.1103/PhysRevLett.122.240603
https://doi.org/10.1103/PhysRevLett.129.045701
https://doi.org/10.1103/PhysRevLett.110.227201
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Spasojević, A tool for identifying the criticality in the dis-
ordered systems with metastable dynamics, Physica A 572,
125883 (2021).

[29] O. Perković, K. A. Dahmen, and J. P. Sethna, Disorder-induced
critical phenomena in hysteresis: Numerical scaling in three and
higher dimensions, Phys. Rev. B 59, 6106 (1999).
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Avalanche properties in striplike ferromagnetic systems, Phys.
Rev. E 102, 022124 (2020).
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